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Abstract

The sphericity sph(G) of a graph G is the minimum dimension d for which G is the intersection graph of a family of congruent
spheres in R<. The edge clique cover number 0(G) is the minimum cardinality of a set of cliques (complete subgraphs) that covers
all edges of G. We prove that if G has at least one edge, then sph(G) < 6(G). Our upper bound remains valid for intersection graphs
defined by balls in the L »-norm for 1 < p <oo.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let % be a family of subsets of a set S. The intersection graph of # has vertex set # with distinct vertices joined
by an edge provided the intersection of the corresponding sets is non-empty. When the intersection graph is isomorphic
to a graph G, we say that & represents G.

We are interested in graphs that are represented by families of balls in d-dimensional space. The sphericity of the
graph G, denoted by sph(G), is equal to the smallest dimension d for which G is represented by a family of open balls
of the same radius in the Euclidean space R?. For example, complete graphs, paths, and cycles on n vertices satisfy
sph(K,) = sph(P,) =1 and sph(C,) = 2 for n > 4. Graphs with sphericity 1 (unit interval graphs) possess a forbidden
subgraph characterization [18]. However, the recognition problem for graphs with sphericity 2 (unit disk graphs [3,8])
is NP-hard [2]. Researchers have focused on computing the sphericity for special classes of graphs [5,6,10-12,14]
and on discovering general bounds for the sphericity in terms of various graph parameters [7,13,16,17]. Maehara [9]
obtained the following upper bound for the sphericity of a graph G in terms of the cligue number >(G), i.e., the largest
number of vertices in a clique (complete subgraph) of G.

Maehara’s inequality. If G is a non-complete graph with n vertices and clique number w(G), then the sphericity of
G satisfies

sph(G)<n — w(G).
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The inequality cannot be substantially improved; for each m =1, 2, ... Maehara exhibited a graph G, satisfying
m = sph(Gp) = V(G| — o(Gp) — 1.

Our main theorem gives a new inequality that relates the sphericity to the cliques of a graph G. Briefly, the sphericity
of G cannot exceed the minimum number of cliques needed to cover all edges of G. Our upper bound remains valid
for intersection graphs defined by balls in the L ,-norm for 1< p <oo.

We remark that using intersections of closed spheres instead of open spheres yields an equivalent notion of sphericity.
For if ¢ is a sufficiently small positive number, then we may replace each open sphere of radius r by a closed sphere
of radius r — ¢ without destroying or creating any intersections; similarly a slight increase in the radii of a family of
closed spheres yields a family of open spheres with the same intersection pattern.

2. Edge clique covers and sphericity

An edge clique cover of a graph G is a set of cliques 2 = {Q1, ..., Q;} that covers the edges of G, i.e., every edge
of G occurs among the cliques in 2. The edge clique cover number 0(G) is the minimum number of cliques in an
edge clique cover of G. The graph G satisfies 0(G) = 0 if and only if G has no edges; we exclude this trivial case by
assuming that 6(G) is positive throughout our work. See the surveys [15,20] for a variety of results about edge clique
covers and their applications.

The intersection number int(G) of the graph G is the minimum cardinality of a set S such that G has an intersection
representation as a family of subsets of S. A fundamental theorem of Erd@s et al. [4] asserts that int(G) = 0(G) for
every graph G.

The sphericity sph(G) refers to an intersection representation of a graph that is minimal in a geometric sense, while
the edge clique cover number 0(G) refers to an intersection representation that is minimal in a purely combinatorial or
set-theoretic sense. Our main theorem establishes a simple inequality between these two parameters.

Theorem 1. Let G be a graph with positive edge clique cover number 0(G). Then

sph(G) <0(G).
Proof. Without loss of generality G has no isolated vertices. Let {vy, ..., v,} be the vertex set of G, and let 2 =
{01, ..., Qp} be an edge clique cover of G with cardinality 0 = H(G): Suppose that v; occurs in exactly ¢; cliques in
2fori=1,...,n, and define the components of the vector x() = (xf'), el x(()l)) in R? by

) (l/cl-)l/2 if vertex v; is in the clique Qk,
X, = . . . .
0 if vertex v; is not in the clique Q.

If v; and v; are not adjacent in G, then ||x) —x/)|| = 2!/2, On the other hand, if v; and v; are adjacent, then there is
at least one index k such that x,ﬁ” >0 and x,EJ )~ 0, and it follows that the strict inequality [|x® — x| <2!/2 holds.
Therefore the family of open balls with centers x", ..., x"" and radii (%) 2172 represents G as an intersection graph

inR?, O

The complete graph K, satisfies sph(K,) = 0(K,) = 1, and thus equality sometimes holds in Theorem 1.

3. Examples, consequences, and other metric spaces

Suppose that ¢; = - - - = ¢, = ¢ > 1 in the proof of Theorem 1. Then the components of the vector x) sum to ¢!/? for
i=1,...,n,and thus the sphere centers x'", . .., x" all lie on a hyperplane in RY. By projecting onto this hyperplane
we may lower the dimension of the space by 1 and find that in this case

sph(G)<0(G) — 1. (1)
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One may show that the graph G,, constructed by Maehara satisfies sph(G,,) =m and 0(G,,) =m+2form=1,2, ...,
and thus Theorem 1 performs essentially as well as Maehara’s inequality for G,,. The following examples show that
Theorem 1 is sometimes stronger than Maehara’s inequality.

Example 1. Let K j denote the d-fold Cartesian product of the complete graph K, with itself. Thus K ;1 has vertex
set equal to the d-tuples of integers chosen from the set {I, ..., a}, where two vertices are adjacent provided the
corresponding d-tuples differ in exactly one component. Suppose that @ >2. Then Kg has a? vertices and clique
number a. Hence Maehara’s inequality gives sph(K j )<a’ —a.Itis also not difficult to see that K fl’ has an edge clique
cover with da?~! cliques and that inequality (1) gives sph(Kg) <da®~! — 1. Therefore, Theorem 1 gives a stronger
upper bound for the sphericity of Kg than Maehara’s inequality when d is much smaller than a.

Example 2. With a latin square [a;;] of order g >3 we associate a graph L, with g* vertices as follows. The vertex set
is {(i, j): 1<i, j<gq}, and distinct vertices(i, j) and (i’, j’) are adjacent provided i =i’, or j = j’, or a;; = a; j. One
readily shows that w(L,) =¢ and 0(L,) = 3¢q. Thus Maehara’s inequality gives the quadratic bound sph(L,) < g’ —q,
while (1) gives the linear bound sph(L,;) <3g — 1.

Theorem 1 yields a bound on the sphericity of the complement G of a bipartite graph G.

Corollary 2. Let G be a bipartite graph with n' and n" vertices in the two vertex subsets, where n’ + n" >3. Then
sph(G) < min{n’, n”"} + 2.

Proof. Let the vertex subsets of Gbe V' and V", where V' ={vy, ..., v, }. Fori=1, ..., n"let Q; denote the clique of
G consisting of v; and its neighbors in V”. Also, let Q" and Q" be the cliques of G induced by V" and V", respectively.
Then {Q1, ..., Oy} U {Q’, Q"}is an edge clique cover of G, and thus sph(G)<n’ + 2 by Theorem 1. Similarly,
sph(G)<n” +2. O

Let G be a graph with vertex set {vy, ..., v,}. The spherical dimension [16,17] of G, denoted by sd(G), is the
smallest d for which there exists a set of unit vectors v(, ..., v® in R? with the following property: there is a real
number 7 such that vertices v; and v; are adjacent in G if and only if the dot product of v® and v\ is at least 7. If we
choose 7 to be a sufficiently small positive number, then the same construction in our proof of Theorem 1 shows that
sd(G) < 0(G), which is slightly stronger than our stated result, since it is known [16] that sd(G) — 1 <sph(G) <sd(G).

The proof of Theorem 1 makes scant use of the Euclidean distance function; a similar respresentation of a graph
G as an intersection graph can be performed in RV equipped with other metrics.

Recall that the L ,-norm of the vector x = (x1, ..., Xg) in R4 equals

xl, = | (117 e Ll DYP 1< p <0,
P I max{|xi], ..., |xql} if p=o0.

In RY an open p-ball with center xo and radius r is the set of all x such that ||x — x| p <r. Note that p-balls are not
rotationally symmetric except in the Euclidean case p = 2 (or d = 1). We define the p-sphericity of the graph G to
be the smallest dimension d for which there is a family of translates of an open p-ball in R that represents G as an
intersection graph. We denote the p-sphericity of G by sph ,(G). Of course, sph, (G) = sph(G).

When p < oo, the proof of Theorem 1 remains valid for the p-sphericity if we replace the exponent % by 1/p
throughout. Thus we have the following upper bound for the p-sphericity of a graph.

Proposition 3. If G is a graph with positive edge clique cover number, then sph ,(G) < 0(G) for 1 < p < 0.

4. Cubicity

If p = oo, then a p-ball of radius r in R? is a d-dimensional cube with edge length 2r. (All cubes in our discussion
are axis-aligned.) The parameter sph,, (G) is known as the cubicity of G and is denoted by cub(G). Roberts introduced
cubicity in [19] and adopted the convention that the cubicity of a complete graph satisfies cub(K,) =0. A limit argument
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with p — oo shows that Proposition 3 also holds for p = co. Thus we have our first upper bound for the cubicity of
a graph:

Theorem 4. Let G be a graph with positive edge clique cover number 0(G). Then
cub(G) <0(G).

Proof. Without loss of generality G has no isolated vertices. Let x be a point in an open cube with center xo and radius
r (i.e., edge length 2r) in R¥. If p is sufficiently large, then x is also in the open p-ball with the same center and radius.
It follows that any representation of a graph G as an intersection graph of a family of translates of an open cube in R¢
yields a representation of G as an intersection graph of a family of translates of an open p-ball in R for some sufficiently
large p (depending on G). Now Proposition 3 implies that for this value of p we have cub(G) <sph p(G) <0(G). O

A biclique is a complete bipartite graph. An edge biclique cover of a graph G is a set of bicliques {Bjy, ..., B;} that
covers the edges of G. The edge biclique cover number n(G) is the minimum number of bicliques in an edge biclique
cover of G. See the survey [15] for a full treatment of edge biclique covers. We now use edge biclique covers to give
another upper bound for the cubicity of a graph.

Theorem 5. Let G be a graph whose complement has edge biclique cover number 1(G). Then

cub(G) <n(G).

Proof. Firstnote that the inequality holds if G is a complete graph. Now suppose that G is not complete. We use a variant
of a construction employed by Boyer et al. [1] for a different problem in intersection graph theory. Let {vy, ..., vn} be
the vertex set of G, and let {B1, ..., By} be an edge biclique cover of G with cardinality = #(G). Let V,f and V,~ be

the vertex subsets of the biclique By (k=1, ..., 7). Now define the components of the vector y(i )= (yfi), e, y%i )) in

R" by
A 1 if vertex v; is in the set Vk+,
y,&') = —1 if vertex v; is in the set V,,
0 if vertex v; is not in the biclique By.

On the one hand, if v; and v; are adjacent in G, then there is no index k such that {y,g), y,ij)} = {1, —1}, and it follows
that [|[y® — y)| o <1. On the other hand, if v; and v ; are not adjacent in G, then there is an index k such that
{y,E'), y,ij)} = {1, —1}, and it follows that |[y® — y/)|oc = 2. We now see that the family of open cubes with centers
y, ...,y and edge lengths 2 represents G as an intersection graph in R”. Therefore cub(G) <7. [

We exhibit a family of graphs for which equality holds in Theorem 5.

Example 3. A formula of Roberts [19] gives the cubicity of a complete multipartite graph:

q
cub(Kny,...n,) = ) [0gy ()] @
i=1
Now it is not difficult to show that the edge biclique cover number of the complete graph K, is (K,) = [log,(n)].
It follows that the edge biclique cover number of the complement of K, ., . is given by the sum in (2). Therefore
cub(G) = n(G) if G is a complete multipartite graph.
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