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Abstract

The sphericity sph(G) of a graph G is the minimum dimension d for which G is the intersection graph of a family of congruent
spheres in Rd . The edge clique cover number �(G) is the minimum cardinality of a set of cliques (complete subgraphs) that covers
all edges of G. We prove that if G has at least one edge, then sph(G)��(G). Our upper bound remains valid for intersection graphs
defined by balls in the Lp-norm for 1�p�∞.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let F be a family of subsets of a set S. The intersection graph of F has vertex set F with distinct vertices joined
by an edge provided the intersection of the corresponding sets is non-empty. When the intersection graph is isomorphic
to a graph G, we say that F represents G.

We are interested in graphs that are represented by families of balls in d-dimensional space. The sphericity of the
graph G, denoted by sph(G), is equal to the smallest dimension d for which G is represented by a family of open balls
of the same radius in the Euclidean space Rd . For example, complete graphs, paths, and cycles on n vertices satisfy
sph(Kn) = sph(Pn) = 1 and sph(Cn) = 2 for n�4. Graphs with sphericity 1 (unit interval graphs) possess a forbidden
subgraph characterization [18]. However, the recognition problem for graphs with sphericity 2 (unit disk graphs [3,8])
is NP-hard [2]. Researchers have focused on computing the sphericity for special classes of graphs [5,6,10–12,14]
and on discovering general bounds for the sphericity in terms of various graph parameters [7,13,16,17]. Maehara [9]
obtained the following upper bound for the sphericity of a graph G in terms of the clique number �(G), i.e., the largest
number of vertices in a clique (complete subgraph) of G.

Maehara’s inequality. If G is a non-complete graph with n vertices and clique number �(G), then the sphericity of
G satisfies

sph(G)�n − �(G).
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The inequality cannot be substantially improved; for each m = 1, 2, . . . Maehara exhibited a graph Gm satisfying
m = sph(Gm) = |V (Gm)| − �(Gm) − 1.

Our main theorem gives a new inequality that relates the sphericity to the cliques of a graph G. Briefly, the sphericity
of G cannot exceed the minimum number of cliques needed to cover all edges of G. Our upper bound remains valid
for intersection graphs defined by balls in the Lp-norm for 1�p�∞.

We remark that using intersections of closed spheres instead of open spheres yields an equivalent notion of sphericity.
For if � is a sufficiently small positive number, then we may replace each open sphere of radius r by a closed sphere
of radius r − � without destroying or creating any intersections; similarly a slight increase in the radii of a family of
closed spheres yields a family of open spheres with the same intersection pattern.

2. Edge clique covers and sphericity

An edge clique cover of a graph G is a set of cliques Q = {Q1, . . . , Qt } that covers the edges of G, i.e., every edge
of G occurs among the cliques in Q. The edge clique cover number �(G) is the minimum number of cliques in an
edge clique cover of G. The graph G satisfies �(G) = 0 if and only if G has no edges; we exclude this trivial case by
assuming that �(G) is positive throughout our work. See the surveys [15,20] for a variety of results about edge clique
covers and their applications.

The intersection number int(G) of the graph G is the minimum cardinality of a set S such that G has an intersection
representation as a family of subsets of S. A fundamental theorem of Erdős et al. [4] asserts that int(G) = �(G) for
every graph G.

The sphericity sph(G) refers to an intersection representation of a graph that is minimal in a geometric sense, while
the edge clique cover number �(G) refers to an intersection representation that is minimal in a purely combinatorial or
set-theoretic sense. Our main theorem establishes a simple inequality between these two parameters.

Theorem 1. Let G be a graph with positive edge clique cover number �(G). Then

sph(G)��(G).

Proof. Without loss of generality G has no isolated vertices. Let {v1, . . . , vn} be the vertex set of G, and let Q =
{Q1, . . . , Q�} be an edge clique cover of G with cardinality � = �(G). Suppose that vi occurs in exactly ci cliques in
Q for i = 1, . . . , n, and define the components of the vector x(i) = (x

(i)
1 , . . . , x

(i)

� ) in R� by

x
(i)
k =

{
(1/ci)

1/2 if vertex vi is in the clique Qk,

0 if vertex vi is not in the clique Qk.

If vi and vj are not adjacent in G, then ‖x(i) − x(j)‖ = 21/2. On the other hand, if vi and vj are adjacent, then there is

at least one index k such that x
(i)
k > 0 and x

(j)
k > 0, and it follows that the strict inequality ‖x(i) − x(j)‖ < 21/2 holds.

Therefore the family of open balls with centers x(1), . . . , x(n) and radii
( 1

2

)
21/2 represents G as an intersection graph

in R�. �

The complete graph Kn satisfies sph(Kn) = �(Kn) = 1, and thus equality sometimes holds in Theorem 1.

3. Examples, consequences, and other metric spaces

Suppose that c1 =· · ·= cn = c > 1 in the proof of Theorem 1. Then the components of the vector x(i) sum to c1/2 for
i =1, . . . , n, and thus the sphere centers x(1), . . . , x(n) all lie on a hyperplane in R�. By projecting onto this hyperplane
we may lower the dimension of the space by 1 and find that in this case

sph(G)��(G) − 1. (1)
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One may show that the graph Gm constructed by Maehara satisfies sph(Gm)=m and �(Gm)=m+2 for m=1, 2, . . . ,

and thus Theorem 1 performs essentially as well as Maehara’s inequality for Gm. The following examples show that
Theorem 1 is sometimes stronger than Maehara’s inequality.

Example 1. Let Kd
a denote the d-fold Cartesian product of the complete graph Ka with itself. Thus Kd

a has vertex
set equal to the d-tuples of integers chosen from the set {1, . . . , a}, where two vertices are adjacent provided the
corresponding d-tuples differ in exactly one component. Suppose that a�2. Then Kd

a has ad vertices and clique
number a. Hence Maehara’s inequality gives sph(Kd

a )�ad − a. It is also not difficult to see that Kd
a has an edge clique

cover with dad−1 cliques and that inequality (1) gives sph(Kd
a )�dad−1 − 1. Therefore, Theorem 1 gives a stronger

upper bound for the sphericity of Kd
a than Maehara’s inequality when d is much smaller than a.

Example 2. With a latin square [aij ] of order q �3 we associate a graph Lq with q2 vertices as follows. The vertex set
is {(i, j) : 1� i, j �q}, and distinct vertices(i, j) and (i′, j ′) are adjacent provided i = i′, or j = j ′, or aij = ai′j ′ . One
readily shows that �(Lq)=q and �(Lq)= 3q. Thus Maehara’s inequality gives the quadratic bound sph(Lq)�q2 −q,
while (1) gives the linear bound sph(Lq)�3q − 1.

Theorem 1 yields a bound on the sphericity of the complement G of a bipartite graph G.

Corollary 2. Let G be a bipartite graph with n′ and n′′ vertices in the two vertex subsets, where n′ + n′′ �3. Then
sph(G)� min{n′, n′′} + 2.

Proof. Let the vertex subsets of G be V ′ and V ′′, where V ′ ={v1, . . . , vn′ }. For i =1, . . . , n′ let Qi denote the clique of
G consisting of vi and its neighbors in V ′′. Also, let Q′ and Q′′ be the cliques of G induced by V ′ and V ′′, respectively.
Then {Q1, . . . , Qn′ } ∪ {Q′, Q′′}is an edge clique cover of G, and thus sph(G)�n′ + 2 by Theorem 1. Similarly,
sph(G)�n′′ + 2. �

Let G be a graph with vertex set {v1, . . . , vn}. The spherical dimension [16,17] of G, denoted by sd(G), is the
smallest d for which there exists a set of unit vectors v(1), . . . , v(n) in Rd with the following property: there is a real
number � such that vertices vi and vj are adjacent in G if and only if the dot product of v(i) and v(j) is at least �. If we
choose � to be a sufficiently small positive number, then the same construction in our proof of Theorem 1 shows that
sd(G)��(G), which is slightly stronger than our stated result, since it is known [16] that sd(G)−1�sph(G)�sd(G).

The proof of Theorem 1 makes scant use of the Euclidean distance function; a similar respresentation of a graph
G as an intersection graph can be performed in R�(G) equipped with other metrics.

Recall that the Lp-norm of the vector x = (x1, . . . , xd) in Rd equals

‖x‖p =
{

(|x1|p + · · · + |xd |p)1/p if 1�p < ∞,

max{|x1|, . . . , |xd |} if p = ∞.

In Rd an open p-ball with center x0 and radius r is the set of all x such that ‖x − x0‖p < r . Note that p-balls are not
rotationally symmetric except in the Euclidean case p = 2 (or d = 1). We define the p-sphericity of the graph G to
be the smallest dimension d for which there is a family of translates of an open p-ball in Rd that represents G as an
intersection graph. We denote the p-sphericity of G by sphp(G). Of course, sph2(G) = sph(G).

When p < ∞, the proof of Theorem 1 remains valid for the p-sphericity if we replace the exponent 1
2 by 1/p

throughout. Thus we have the following upper bound for the p-sphericity of a graph.

Proposition 3. If G is a graph with positive edge clique cover number, then sphp(G)��(G) for 1�p < ∞.

4. Cubicity

If p = ∞, then a p-ball of radius r in Rd is a d-dimensional cube with edge length 2r . (All cubes in our discussion
are axis-aligned.) The parameter sph∞(G) is known as the cubicity of G and is denoted by cub(G). Roberts introduced
cubicity in [19] and adopted the convention that the cubicity of a complete graph satisfies cub(Kn)=0. A limit argument
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with p −→ ∞ shows that Proposition 3 also holds for p = ∞. Thus we have our first upper bound for the cubicity of
a graph:

Theorem 4. Let G be a graph with positive edge clique cover number �(G). Then

cub(G)��(G).

Proof. Without loss of generality G has no isolated vertices. Let x be a point in an open cube with center x0 and radius
r (i.e., edge length 2r) in Rd . If p is sufficiently large, then x is also in the open p-ball with the same center and radius.
It follows that any representation of a graph G as an intersection graph of a family of translates of an open cube in Rd

yields a representation of G as an intersection graph of a family of translates of an open p-ball in Rd for some sufficiently
large p (depending on G). Now Proposition 3 implies that for this value of p we have cub(G)�sphp(G)��(G). �

A biclique is a complete bipartite graph. An edge biclique cover of a graph G is a set of bicliques {B1, . . . , Bt } that
covers the edges of G. The edge biclique cover number �(G) is the minimum number of bicliques in an edge biclique
cover of G. See the survey [15] for a full treatment of edge biclique covers. We now use edge biclique covers to give
another upper bound for the cubicity of a graph.

Theorem 5. Let G be a graph whose complement has edge biclique cover number �(G). Then

cub(G)��(G).

Proof. First note that the inequality holds if G is a complete graph. Now suppose that G is not complete. We use a variant
of a construction employed by Boyer et al. [1] for a different problem in intersection graph theory. Let {v1, . . . , vn} be
the vertex set of G, and let {B1, . . . , B�} be an edge biclique cover of G with cardinality � = �(G). Let V +

k and V −
k be

the vertex subsets of the biclique Bk (k = 1, . . . , �). Now define the components of the vector y(i) = (y
(i)
1 , . . . , y

(i)

� ) in

R� by

y
(i)
k =

⎧⎨
⎩

1 if vertex vi is in the set V +
k ,

−1 if vertex vi is in the set V −
k ,

0 if vertex vi is not in the biclique Bk.

On the one hand, if vi and vj are adjacent in G, then there is no index k such that {y(i)
k , y

(j)
k } = {1, −1}, and it follows

that ‖y(i) − y(j)‖∞ �1. On the other hand, if vi and vj are not adjacent in G, then there is an index k such that

{y(i)
k , y

(j)
k } = {1, −1}, and it follows that ‖y(i) − y(j)‖∞ = 2. We now see that the family of open cubes with centers

y(1), . . . , y(n) and edge lengths 2 represents G as an intersection graph in R�. Therefore cub(G)��. �

We exhibit a family of graphs for which equality holds in Theorem 5.

Example 3. A formula of Roberts [19] gives the cubicity of a complete multipartite graph:

cub(Kn1,...,nq ) =
q∑

i=1

�log2(ni)�. (2)

Now it is not difficult to show that the edge biclique cover number of the complete graph Kn is �(Kn) = �log2(n)�.
It follows that the edge biclique cover number of the complement of Kn1,...,nq is given by the sum in (2). Therefore
cub(G) = �(G) if G is a complete multipartite graph.
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