Note

Sphericity, cubicity, and edge clique covers of graphs

T.S. Michaela, Thomas Quintb

aMathematics Department, United States Naval Academy, Annapolis, MD 21402, USA
bDepartment of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA

Received 1 January 2005; received in revised form 6 January 2006; accepted 10 January 2006
Available online 15 March 2006

Abstract

The sphericity sph\((G)\) of a graph \(G\) is the minimum dimension \(d\) for which \(G\) is the intersection graph of a family of congruent spheres in \(\mathbb{R}^d\). The edge clique cover number \(\theta(G)\) is the minimum cardinality of a set of cliques (complete subgraphs) that covers all edges of \(G\). We prove that if \(G\) has at least one edge, then \(\text{sph}(G) \leq \theta(G)\). Our upper bound remains valid for intersection graphs defined by balls in the \(L_p\)-norm for \(1 \leq p \leq \infty\).

© 2006 Elsevier B.V. All rights reserved.

Keywords: Intersection graph; Sphericity; Edge clique cover; Cubicity

1. Introduction

Let \(\mathcal{F}\) be a family of subsets of a set \(S\). The intersection graph of \(\mathcal{F}\) has vertex set \(\mathcal{F}\) with distinct vertices joined by an edge provided the intersection of the corresponding sets is non-empty. When the intersection graph is isomorphic to a graph \(G\), we say that \(\mathcal{F}\) represents \(G\).

We are interested in graphs that are represented by families of balls in \(d\)-dimensional space. The sphericity of the graph \(G\), denoted by \(\text{sph}(G)\), is equal to the smallest dimension \(d\) for which \(G\) is represented by a family of open balls of the same radius in the Euclidean space \(\mathbb{R}^d\). For example, complete graphs, paths, and cycles on \(n\) vertices satisfy \(\text{sph}(K_n) = \text{sph}(P_n) = 1\) and \(\text{sph}(C_n) = 2\) for \(n \geq 4\). Graphs with sphericity 1 (unit interval graphs) possess a forbidden subgraph characterization [18]. However, the recognition problem for graphs with sphericity 2 (unit disk graphs [3,8]) is NP-hard [2]. Researchers have focused on computing the sphericity for special classes of graphs [5,6,10–12,14] and on discovering general bounds for the sphericity in terms of various graph parameters [7,13,16,17]. Maehara [9] obtained the following upper bound for the sphericity of a graph \(G\) in terms of the clique number \(\omega(G)\), i.e., the largest number of vertices in a clique (complete subgraph) of \(G\).

\textbf{Maehara’s inequality.} If \(G\) is a non-complete graph with \(n\) vertices and clique number \(\omega(G)\), then the sphericity of \(G\) satisfies

\[\text{sph}(G) \leq n - \omega(G).\]

E-mail address: tsm@usna.edu (T.S. Michael).
The inequality cannot be substantially improved; for each \(m = 1, 2, \ldots \) Maehara exhibited a graph \(G_m \) satisfying \(m = \text{sph}(G_m) = |V(G_m)| - \omega(G_m) - 1 \).

Our main theorem gives a new inequality that relates the sphericity to the cliques of a graph \(G \). Briefly, the sphericity of \(G \) cannot exceed the minimum number of cliques needed to cover all edges of \(G \). Our upper bound remains valid for intersection graphs defined by balls in the \(L_p \)-norm for \(1 \leq p \leq \infty \).

We remark that using intersections of closed spheres instead of open spheres yields an equivalent notion of sphericity. If \(\varepsilon \) is a sufficiently small positive number, then we may replace each open sphere of radius \(r \) by a closed sphere of radius \(r - \varepsilon \) without destroying or creating any intersections; similarly a slight increase in the radii of a family of closed spheres yields a family of open spheres with the same intersection pattern.

2. Edge clique covers and sphericity

An edge clique cover of a graph \(G \) is a set of cliques \(\mathcal{Q} = \{Q_1, \ldots, Q_t\} \) that covers the edges of \(G \), i.e., every edge of \(G \) occurs among the cliques in \(\mathcal{Q} \). The edge clique cover number \(\theta(G) \) is the minimum number of cliques in an edge clique cover of \(G \). The graph \(G \) satisfies \(\theta(G) = 0 \) if and only if \(G \) has no edges; we exclude this trivial case by assuming that \(\theta(G) \) is positive throughout our work. See the surveys \([15,20]\) for a variety of results about edge clique covers and their applications.

The intersection number \(\text{int}(G) \) of the graph \(G \) is the minimum cardinality of a set \(S \) such that \(G \) has an intersection representation as a family of subsets of \(S \). A fundamental theorem of Erdős et al. \([4]\) asserts that \(\text{int}(G) = \theta(G) \) for every graph \(G \).

The sphericity \(\text{sph}(G) \) refers to an intersection representation of a graph that is minimal in a geometric sense, while the edge clique cover number \(\theta(G) \) refers to an intersection representation that is minimal in a purely combinatorial or set-theoretic sense. Our main theorem establishes a simple inequality between these two parameters.

Theorem 1. Let \(G \) be a graph with positive edge clique cover number \(\theta(G) \). Then

\[
\text{sph}(G) \leq \theta(G).
\]

Proof. Without loss of generality \(G \) has no isolated vertices. Let \(\{v_1, \ldots, v_n\} \) be the vertex set of \(G \), and let \(\mathcal{Q} = \{Q_1, \ldots, Q_t\} \) be an edge clique cover of \(G \) with cardinality \(\theta = \theta(G) \). Suppose that \(v_i \) occurs in exactly \(c_i \) cliques in \(\mathcal{Q} \) for \(i = 1, \ldots, n \), and define the components of the vector \(\mathbf{x}^{(i)} = (x_1^{(i)}, \ldots, x_t^{(i)}) \in \mathbb{R}^\theta \) by

\[
x_k^{(i)} = \begin{cases}
(1/c_k)^{1/2} & \text{if vertex } v_i \text{ is in the clique } Q_k, \\
0 & \text{if vertex } v_i \text{ is not in the clique } Q_k.
\end{cases}
\]

If \(v_i \) and \(v_j \) are not adjacent in \(G \), then \(\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\| = 2^{1/2} \). On the other hand, if \(v_i \) and \(v_j \) are adjacent, then there is at least one index \(k \) such that \(x_k^{(i)} > 0 \) and \(x_k^{(j)} > 0 \), and it follows that the strict inequality \(\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\| < 2^{1/2} \) holds. Therefore the family of open balls with centers \(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \) and radii \(\left(\frac{1}{2} \right) 2^{1/2} \) represents \(G \) as an intersection graph in \(\mathbb{R}^\theta \). \(\square \)

The complete graph \(K_n \) satisfies \(\text{sph}(K_n) = \theta(K_n) = 1 \), and thus equality sometimes holds in Theorem 1.

3. Examples, consequences, and other metric spaces

Suppose that \(c_1 = \cdots = c_n = c > 1 \) in the proof of Theorem 1. Then the components of the vector \(\mathbf{x}^{(i)} \) sum to \(c^{1/2} \) for \(i = 1, \ldots, n \), and thus the sphere centers \(\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)} \) all lie on a hyperplane in \(\mathbb{R}^\theta \). By projecting onto this hyperplane we may lower the dimension of the space by \(1 \) and find that in this case

\[
\text{sph}(G) \leq \theta(G) - 1.
\]
Theorem 1 is sometimes stronger than Maehara’s inequality. Let the vertex subsets of G consisting of d-tuples of integers chosen from the set $\{1, \ldots, a\}$, where two vertices are adjacent provided the corresponding d-tuples differ in exactly one component. Suppose that $a \geq 2$. Then K_d^a has a^d vertices and clique number a. Hence Maehara’s inequality gives $\text{sph}(K_d^a) \leq a^d - a$. It is also not difficult to see that K_d^a has an edge clique cover with da^{d-1} cliques and that inequality (1) gives $\text{sph}(K_d^a) \leq da^{d-1} - 1$. Therefore, Theorem 1 gives a stronger upper bound for the sphericity of K_d^a than Maehara’s inequality when d is much smaller than a.

Example 2. With a latin square $[a_{ij}]$ of order $q \geq 3$ we associate a graph L_q with q^2 vertices as follows. The vertex set is $\{(i, j) : 1 \leq i, j \leq q\}$, and distinct vertices (i, j) and (i', j') are adjacent provided $i = i'$, or $j = j'$, or $a_{ij} = a_{i'j'}$. One readily shows that $\omega(L_q) = q$ and $\theta(L_q) = 3q$. Thus Maehara’s inequality gives the quadratic bound $\text{sph}(L_q) \leq q^2 - q$, while (1) gives the linear bound $\text{sph}(L_q) \leq 3q - 1$.

Theorem 1 yields a bound on the sphericity of the complement \overline{G} of a bipartite graph G.

Corollary 2. Let G be a bipartite graph with n' and n'' vertices in the two vertex subsets, where $n' + n'' \geq 3$. Then $\text{sph}(\overline{G}) \leq \text{min}(n', n'') + 2$.

Proof. Let the vertex subsets of G be V' and V'', where $V' = \{v_1, \ldots, v_{n'}\}$. For $i = 1, \ldots, n'$ let Q_i denote the clique of \overline{G} consisting of v_i and its neighbors in V''. Also, let Q' and Q'' be the cliques of \overline{G} induced by V' and V'', respectively. Then $\{Q_1, \ldots, Q_{n''}\} \cup \{Q', Q''\}$ is an edge clique cover of \overline{G}, and thus $\text{sph}(\overline{G}) \leq n' + 2$ by Theorem 1. Similarly, $\text{sph}(\overline{G}) \leq n'' + 2$. □

Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$. The spherical dimension [16,17] of G, denoted by $\text{sd}(G)$, is the smallest d for which there exists a set of unit vectors $v^{(1)}, \ldots, v^{(n)}$ in \mathbb{R}^d with the following property: there is a real number τ such that vertices v_i and v_j are adjacent in G if and only if the dot product of $v^{(i)}$ and $v^{(j)}$ is at least τ. If we choose τ to be a sufficiently small positive number, then the same construction in our proof of Theorem 1 shows that $\text{sd}(G) \leq \theta(G)$, which is slightly stronger than our stated result, since it is known [16] that $\text{sd}(G) - 1 \leq \text{sph}(G) \leq \text{sd}(G)$.

The proof of Theorem 1 makes scant use of the Euclidean distance function; a similar representation of a graph G as an intersection graph can be performed in $\mathbb{R}^{\theta(G)}$ equipped with other metrics. Recall that the L_p-norm of the vector $\mathbf{x} = (x_1, \ldots, x_d)$ in \mathbb{R}^d equals

$$
||\mathbf{x}||_p = \begin{cases}
(x_1^p + \cdots + x_d^p)^{1/p} & \text{if } 1 \leq p < \infty, \\
\max\{|x_1|, \ldots, |x_d|\} & \text{if } p = \infty.
\end{cases}
$$

In \mathbb{R}^d an open p-ball with center \mathbf{x}_0 and radius r is the set of all \mathbf{x} such that $||\mathbf{x} - \mathbf{x}_0||_p < r$. Note that p-balls are not rotationally symmetric except in the Euclidean case $p = 2$ (or $d = 1$). We define the p-sphericity of the graph G to be the smallest dimension d for which there is a family of translates of an open p-ball in \mathbb{R}^d that represents G as an intersection graph. We denote the p-sphericity of G by $\text{sph}_p(G)$. Of course, $\text{sph}_2(G) = \text{sph}(G)$.

When $p < \infty$, the proof of Theorem 1 remains valid for the p-sphericity if we replace the exponent $1/2$ by $1/p$ throughout. Thus we have the following upper bound for the p-sphericity of a graph.

Proposition 3. If G is a graph with positive edge clique cover number, then $\text{sph}_p(G) \leq \theta(G)$ for $1 \leq p < \infty$.

4. Cubicity

If $p = \infty$, then a p-ball of radius r in \mathbb{R}^d is a d-dimensional cube with edge length $2r$. (All cubes in our discussion are axis-aligned.) The parameter $\text{sph}_\infty(G)$ is known as the cubicity of G and is denoted by $\text{cub}(G)$. Roberts introduced cubicity in [19] and adopted the convention that the cubicity of a complete graph satisfies $\text{cub}(K_n) = 0$. A limit argument
with \(p \to \infty \) shows that Proposition 3 also holds for \(p = \infty \). Thus we have our first upper bound for the cubicity of a graph:

Theorem 4. Let \(G \) be a graph with positive edge clique cover number \(\theta(G) \). Then

\[
cub(G) \leq \theta(G).
\]

Proof. Without loss of generality \(G \) has no isolated vertices. Let \(x \) be a point in an open cube with center \(x_0 \) and radius \(r \) (i.e., edge length \(2r \)) in \(\mathbb{R}^d \). If \(p \) is sufficiently large, then \(x \) is also in the open \(p \)-ball with the same center and radius. It follows that any representation of a graph \(G \) as an intersection graph of a family of translates of an open cube in \(\mathbb{R}^d \) yields a representation of \(G \) as an intersection graph of a family of translates of an open \(p \)-ball in \(\mathbb{R}^d \) for some sufficiently large \(p \) (depending on \(G \)). Now Proposition 3 implies that for this value of \(p \) we have \(\cub(G) \leq \sph_p(G) \leq \theta(G) \). □

A biclique is a complete bipartite graph. An edge biclique cover of a graph \(G \) is a set of bicliques \(\{B_1, \ldots, B_t\} \) that covers the edges of \(G \). The edge biclique cover number \(\eta(G) \) is the minimum number of bicliques in an edge biclique cover of \(G \). See the survey [15] for a full treatment of edge biclique covers. We now use edge biclique covers to give another upper bound for the cubicity of a graph.

Theorem 5. Let \(G \) be a graph whose complement has edge biclique cover number \(\eta(G) \). Then

\[
cub(G) \leq \eta(G).
\]

Proof. First note that the inequality holds if \(G \) is a complete graph. Now suppose that \(G \) is not complete. We use a variant of a construction employed by Boyer et al. [1] for a different problem in intersection graph theory. Let \(\{v_1, \ldots, v_n\} \) be the vertex set of \(G \), and let \(\{B_1, \ldots, B_\eta\} \) be an edge biclique cover of \(\overline{G} \) with cardinality \(\eta = \eta(G) \). Let \(V_k^+ \) and \(V_k^- \) be the vertex subsets of the biclique \(B_k \) \((k = 1, \ldots, \eta)\). Now define the components of the vector \(\mathbf{y}(i) = (y_1^{(i)}, \ldots, y_\eta^{(i)}) \) in \(\mathbb{R}^\eta \) by

\[
y_k^{(i)} = \begin{cases}
1 & \text{if vertex } v_i \text{ is in the set } V_k^+,
-1 & \text{if vertex } v_i \text{ is in the set } V_k^-,
0 & \text{if vertex } v_i \text{ is not in the biclique } B_k.
\end{cases}
\]

On the one hand, if \(v_i \) and \(v_j \) are adjacent in \(G \), then there is no index \(k \) such that \(\{y_k^{(i)}, y_k^{(j)}\} = \{1, -1\} \), and it follows that \(\|\mathbf{y}(i) - \mathbf{y}(j)\|_\infty \leq 1 \). On the other hand, if \(v_i \) and \(v_j \) are not adjacent in \(G \), then there is an index \(k \) such that \(\{y_k^{(i)}, y_k^{(j)}\} = \{1, -1\} \), and it follows that \(\|\mathbf{y}(i) - \mathbf{y}(j)\|_\infty = 2 \). We now see that the family of open cubes with centers \(y^{(1)}, \ldots, y^{(n)} \) and edge lengths 2 represents \(G \) as an intersection graph in \(\mathbb{R}^\eta \). Therefore \(\cub(G) \leq \eta \). □

We exhibit a family of graphs for which equality holds in Theorem 5.

Example 3. A formula of Roberts [19] gives the cubicity of a complete multipartite graph:

\[
cub(K_{n_1, \ldots, n_q}) = \sum_{i=1}^{q} [\log_2(n_i)].
\]

Now it is not difficult to show that the edge biclique cover number of the complete graph \(K_n \) is \(\eta(K_n) = [\log_2(n)] \). It follows that the edge biclique cover number of the complement of \(K_{n_1, \ldots, n_q} \) is given by the sum in (2). Therefore \(\cub(G) = \eta(G) \) if \(G \) is a complete multipartite graph.

References