Note

Sphericity, cubicity, and edge clique covers of graphs

T.S. Michael ${ }^{\text {a }}$, Thomas Quint ${ }^{\text {b }}$
${ }^{\text {a }}$ Mathematics Department, United States Naval Academy, Annapolis, MD 21402, USA
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA
Received 1 January 2005; received in revised form 6 January 2006; accepted 10 January 2006
Available online 15 March 2006

Abstract

The sphericity $\operatorname{sph}(G)$ of a graph G is the minimum dimension d for which G is the intersection graph of a family of congruent spheres in \mathbf{R}^{d}. The edge clique cover number $\theta(G)$ is the minimum cardinality of a set of cliques (complete subgraphs) that covers all edges of G. We prove that if G has at least one edge, then $\operatorname{sph}(G) \leqslant \theta(G)$. Our upper bound remains valid for intersection graphs defined by balls in the L_{p}-norm for $1 \leqslant p \leqslant \infty$.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Intersection graph; Sphericity; Edge clique cover; Cubicity

1. Introduction

Let \mathscr{F} be a family of subsets of a set S. The intersection graph of \mathscr{F} has vertex set \mathscr{F} with distinct vertices joined by an edge provided the intersection of the corresponding sets is non-empty. When the intersection graph is isomorphic to a graph G, we say that \mathscr{F} represents G.

We are interested in graphs that are represented by families of balls in d-dimensional space. The sphericity of the graph G, denoted by $\operatorname{sph}(G)$, is equal to the smallest dimension d for which G is represented by a family of open balls of the same radius in the Euclidean space \mathbf{R}^{d}. For example, complete graphs, paths, and cycles on n vertices satisfy $\operatorname{sph}\left(K_{n}\right)=\operatorname{sph}\left(P_{n}\right)=1$ and $\operatorname{sph}\left(C_{n}\right)=2$ for $n \geqslant 4$. Graphs with sphericity 1 (unit interval graphs) possess a forbidden subgraph characterization [18]. However, the recognition problem for graphs with sphericity 2 (unit disk graphs [3,8]) is NP-hard [2]. Researchers have focused on computing the sphericity for special classes of graphs [5,6,10-12,14] and on discovering general bounds for the sphericity in terms of various graph parameters [7,13,16,17]. Maehara [9] obtained the following upper bound for the sphericity of a graph G in terms of the clique number $\omega(G)$, i.e., the largest number of vertices in a clique (complete subgraph) of G.

Maehara's inequality. If G is a non-complete graph with n vertices and clique number $\omega(G)$, then the sphericity of G satisfies

$$
\operatorname{sph}(G) \leqslant n-\omega(G) .
$$

[^0]The inequality cannot be substantially improved; for each $m=1,2, \ldots$ Maehara exhibited a graph G_{m} satisfying $m=\operatorname{sph}\left(G_{m}\right)=\left|V\left(G_{m}\right)\right|-\omega\left(G_{m}\right)-1$.

Our main theorem gives a new inequality that relates the sphericity to the cliques of a graph G. Briefly, the sphericity of G cannot exceed the minimum number of cliques needed to cover all edges of G. Our upper bound remains valid for intersection graphs defined by balls in the L_{p}-norm for $1 \leqslant p \leqslant \infty$.

We remark that using intersections of closed spheres instead of open spheres yields an equivalent notion of sphericity. For if ε is a sufficiently small positive number, then we may replace each open sphere of radius r by a closed sphere of radius $r-\varepsilon$ without destroying or creating any intersections; similarly a slight increase in the radii of a family of closed spheres yields a family of open spheres with the same intersection pattern.

2. Edge clique covers and sphericity

An edge clique cover of a graph G is a set of cliques $\mathscr{2}=\left\{Q_{1}, \ldots, Q_{t}\right\}$ that covers the edges of G, i.e., every edge of G occurs among the cliques in 2 . The edge clique cover number $\theta(G)$ is the minimum number of cliques in an edge clique cover of G. The graph G satisfies $\theta(G)=0$ if and only if G has no edges; we exclude this trivial case by assuming that $\theta(G)$ is positive throughout our work. See the surveys [15,20] for a variety of results about edge clique covers and their applications.

The intersection number $\operatorname{int}(G)$ of the graph G is the minimum cardinality of a set S such that G has an intersection representation as a family of subsets of S. A fundamental theorem of Erdôs et al. [4] asserts that $\operatorname{int}(G)=\theta(G)$ for every graph G.

The sphericity $\operatorname{sph}(G)$ refers to an intersection representation of a graph that is minimal in a geometric sense, while the edge clique cover number $\theta(G)$ refers to an intersection representation that is minimal in a purely combinatorial or set-theoretic sense. Our main theorem establishes a simple inequality between these two parameters.

Theorem 1. Let G be a graph with positive edge clique cover number $\theta(G)$. Then

$$
\operatorname{sph}(G) \leqslant \theta(G) .
$$

Proof. Without loss of generality G has no isolated vertices. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertex set of G, and let $\mathscr{Q}=$ $\left\{Q_{1}, \ldots, Q_{\theta}\right\}$ be an edge clique cover of G with cardinality $\theta=\theta(G)$. Suppose that v_{i} occurs in exactly c_{i} cliques in 2 for $i=1, \ldots, n$, and define the components of the vector $\mathbf{x}^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{\theta}^{(i)}\right)$ in \mathbf{R}^{θ} by

$$
x_{k}^{(i)}= \begin{cases}\left(1 / c_{i}\right)^{1 / 2} & \text { if vertex } v_{i} \text { is in the clique } Q_{k}, \\ 0 & \text { if vertex } v_{i} \text { is not in the clique } Q_{k}\end{cases}
$$

If v_{i} and v_{j} are not adjacent in G, then $\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|=2^{1 / 2}$. On the other hand, if v_{i} and v_{j} are adjacent, then there is at least one index k such that $x_{k}^{(i)}>0$ and $x_{k}^{(j)}>0$, and it follows that the strict inequality $\left\|\mathbf{x}^{(i)}-\mathbf{x}^{(j)}\right\|<2^{1 / 2}$ holds. Therefore the family of open balls with centers $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ and radii $\left(\frac{1}{2}\right) 2^{1 / 2}$ represents G as an intersection graph in \mathbf{R}^{θ}.

The complete graph K_{n} satisfies $\operatorname{sph}\left(K_{n}\right)=\theta\left(K_{n}\right)=1$, and thus equality sometimes holds in Theorem 1.

3. Examples, consequences, and other metric spaces

Suppose that $c_{1}=\cdots=c_{n}=c>1$ in the proof of Theorem 1. Then the components of the vector $\mathbf{x}^{(i)}$ sum to $c^{1 / 2}$ for $i=1, \ldots, n$, and thus the sphere centers $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ all lie on a hyperplane in \mathbf{R}^{θ}. By projecting onto this hyperplane we may lower the dimension of the space by 1 and find that in this case

$$
\begin{equation*}
\operatorname{sph}(G) \leqslant \theta(G)-1 \tag{1}
\end{equation*}
$$

One may show that the graph G_{m} constructed by Maehara satisfies $\operatorname{sph}\left(G_{m}\right)=m$ and $\theta\left(G_{m}\right)=m+2$ for $m=1,2, \ldots$, and thus Theorem 1 performs essentially as well as Maehara's inequality for G_{m}. The following examples show that Theorem 1 is sometimes stronger than Maehara's inequality.

Example 1. Let K_{a}^{d} denote the d-fold Cartesian product of the complete graph K_{a} with itself. Thus K_{a}^{d} has vertex set equal to the d-tuples of integers chosen from the set $\{1, \ldots, a\}$, where two vertices are adjacent provided the corresponding d-tuples differ in exactly one component. Suppose that $a \geqslant 2$. Then K_{a}^{d} has a^{d} vertices and clique number a. Hence Maehara's inequality gives $\operatorname{sph}\left(K_{a}^{d}\right) \leqslant a^{d}-a$. It is also not difficult to see that K_{a}^{d} has an edge clique cover with $d a^{d-1}$ cliques and that inequality (1) gives $\operatorname{sph}\left(K_{a}^{d}\right) \leqslant d a^{d-1}-1$. Therefore, Theorem 1 gives a stronger upper bound for the sphericity of K_{a}^{d} than Maehara's inequality when d is much smaller than a.

Example 2. With a latin square $\left[a_{i j}\right]$ of order $q \geqslant 3$ we associate a graph L_{q} with q^{2} vertices as follows. The vertex set is $\{(i, j): 1 \leqslant i, j \leqslant q\}$, and distinct vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are adjacent provided $i=i^{\prime}$, or $j=j^{\prime}$, or $a_{i j}=a_{i^{\prime} j^{\prime}}$. One readily shows that $\omega\left(L_{q}\right)=q$ and $\theta\left(L_{q}\right)=3 q$. Thus Maehara's inequality gives the quadratic bound $\operatorname{sph}\left(L_{q}\right) \leqslant q^{2}-q$, while (1) gives the linear bound $\operatorname{sph}\left(L_{q}\right) \leqslant 3 q-1$.

Theorem 1 yields a bound on the sphericity of the complement \bar{G} of a bipartite graph G.
Corollary 2. Let G be a bipartite graph with n^{\prime} and $n^{\prime \prime}$ vertices in the two vertex subsets, where $n^{\prime}+n^{\prime \prime} \geqslant 3$. Then $\operatorname{sph}(\bar{G}) \leqslant \min \left\{n^{\prime}, n^{\prime \prime}\right\}+2$.

Proof. Let the vertex subsets of G be V^{\prime} and $V^{\prime \prime}$, where $V^{\prime}=\left\{v_{1}, \ldots, v_{n^{\prime}}\right\}$. For $i=1, \ldots, n^{\prime}$ let Q_{i} denote the clique of \bar{G} consisting of v_{i} and its neighbors in $V^{\prime \prime}$. Also, let Q^{\prime} and $Q^{\prime \prime}$ be the cliques of \bar{G} induced by V^{\prime} and $V^{\prime \prime}$, respectively. Then $\left\{Q_{1}, \ldots, Q_{n^{\prime}}\right\} \cup\left\{Q^{\prime}, Q^{\prime \prime}\right\}$ is an edge clique cover of \bar{G}, and thus $\operatorname{sph}(\bar{G}) \leqslant n^{\prime}+2$ by Theorem 1. Similarly, $\operatorname{sph}(\bar{G}) \leqslant n^{\prime \prime}+2$.

Let G be a graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$. The spherical dimension $[16,17]$ of G, denoted by $\operatorname{sd}(G)$, is the smallest d for which there exists a set of unit vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$ in \mathbf{R}^{d} with the following property: there is a real number τ such that vertices v_{i} and v_{j} are adjacent in G if and only if the dot product of $\mathbf{v}^{(i)}$ and $\mathbf{v}^{(j)}$ is at least τ. If we choose τ to be a sufficiently small positive number, then the same construction in our proof of Theorem 1 shows that $\operatorname{sd}(G) \leqslant \theta(G)$, which is slightly stronger than our stated result, since it is known [16] that $\operatorname{sd}(G)-1 \leqslant \operatorname{sph}(G) \leqslant \operatorname{sd}(G)$.

The proof of Theorem 1 makes scant use of the Euclidean distance function; a similar respresentation of a graph G as an intersection graph can be performed in $\mathbf{R}^{\theta(G)}$ equipped with other metrics.

Recall that the L_{p}-norm of the vector $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$ in \mathbf{R}^{d} equals

$$
\|\mathbf{x}\|_{p}= \begin{cases}\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{d}\right|^{p}\right)^{1 / p} & \text { if } 1 \leqslant p<\infty, \\ \max \left\{\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right\} & \text { if } p=\infty .\end{cases}
$$

In \mathbf{R}^{d} an open p-ball with center \mathbf{x}_{0} and radius r is the set of all \mathbf{x} such that $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{p}<r$. Note that p-balls are not rotationally symmetric except in the Euclidean case $p=2$ (or $d=1$). We define the p-sphericity of the graph G to be the smallest dimension d for which there is a family of translates of an open p-ball in \mathbf{R}^{d} that represents G as an intersection graph. We denote the p-sphericity of G by $\operatorname{sph}_{p}(G)$. Of course, $\operatorname{sph}_{2}(G)=\operatorname{sph}(G)$.

When $p<\infty$, the proof of Theorem 1 remains valid for the p-sphericity if we replace the exponent $\frac{1}{2}$ by $1 / p$ throughout. Thus we have the following upper bound for the p-sphericity of a graph.

Proposition 3. If G is a graph with positive edge clique cover number, then $\operatorname{sph}_{p}(G) \leqslant \theta(G)$ for $1 \leqslant p<\infty$.

4. Cubicity

If $p=\infty$, then a p-ball of radius r in \mathbf{R}^{d} is a d-dimensional cube with edge length $2 r$. (All cubes in our discussion are axis-aligned.) The parameter $\operatorname{sph}_{\infty}(G)$ is known as the cubicity of G and is denoted by $\operatorname{cub}(G)$. Roberts introduced cubicity in [19] and adopted the convention that the cubicity of a complete graph satisfies $\operatorname{cub}\left(K_{n}\right)=0$. A limit argument
with $p \longrightarrow \infty$ shows that Proposition 3 also holds for $p=\infty$. Thus we have our first upper bound for the cubicity of a graph:

Theorem 4. Let G be a graph with positive edge clique cover number $\theta(G)$. Then

$$
\operatorname{cub}(G) \leqslant \theta(G)
$$

Proof. Without loss of generality G has no isolated vertices. Let \mathbf{x} be a point in an open cube with center \mathbf{x}_{0} and radius r (i.e., edge length $2 r$) in \mathbf{R}^{d}. If p is sufficiently large, then \mathbf{x} is also in the open p-ball with the same center and radius. It follows that any representation of a graph G as an intersection graph of a family of translates of an open cube in \mathbf{R}^{d} yields a representation of G as an intersection graph of a family of translates of an open p-ball in \mathbf{R}^{d} for some sufficiently large p (depending on G). Now Proposition 3 implies that for this value of p we have $\operatorname{cub}(G) \leqslant \operatorname{sph}_{p}(G) \leqslant \theta(G)$.

A biclique is a complete bipartite graph. An edge biclique cover of a graph G is a set of bicliques $\left\{B_{1}, \ldots, B_{t}\right\}$ that covers the edges of G. The edge biclique cover number $\eta(G)$ is the minimum number of bicliques in an edge biclique cover of G. See the survey [15] for a full treatment of edge biclique covers. We now use edge biclique covers to give another upper bound for the cubicity of a graph.

Theorem 5. Let G be a graph whose complement has edge biclique cover number $\eta(\bar{G})$. Then

$$
\operatorname{cub}(G) \leqslant \eta(\bar{G}) .
$$

Proof. First note that the inequality holds if G is a complete graph. Now suppose that G is not complete. We use a variant of a construction employed by Boyer et al. [1] for a different problem in intersection graph theory. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the vertex set of G, and let $\left\{B_{1}, \ldots, B_{\bar{\eta}}\right\}$ be an edge biclique cover of \bar{G} with cardinality $\bar{\eta}=\eta(\bar{G})$. Let V_{k}^{+}and V_{k}^{-}be the vertex subsets of the biclique $B_{k}(k=1, \ldots, \bar{\eta})$. Now define the components of the vector $\mathbf{y}^{(i)}=\left(y_{1}^{(i)}, \ldots, y y_{\bar{\eta}}^{(i)}\right)$ in $\mathbf{R}^{\bar{\eta}}$ by

$$
y_{k}^{(i)}= \begin{cases}1 & \text { if vertex } v_{i} \text { is in the set } V_{k}^{+}, \\ -1 & \text { if vertex } v_{i} \text { is in the set } V_{k}^{-}, \\ 0 & \text { if vertex } v_{i} \text { is not in the biclique } B_{k}\end{cases}
$$

On the one hand, if v_{i} and v_{j} are adjacent in G, then there is no index k such that $\left\{y_{k}^{(i)}, y_{k}^{(j)}\right\}=\{1,-1\}$, and it follows that $\left\|\mathbf{y}^{(i)}-\mathbf{y}^{(j)}\right\|_{\infty} \leqslant 1$. On the other hand, if v_{i} and v_{j} are not adjacent in G, then there is an index k such that $\left\{y_{k}^{(i)}, y_{k}^{(j)}\right\}=\{1,-1\}$, and it follows that $\left\|\mathbf{y}^{(i)}-\mathbf{y}^{(j)}\right\|_{\infty}=2$. We now see that the family of open cubes with centers $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ and edge lengths 2 represents G as an intersection graph in $\mathbf{R}^{\bar{\eta}}$. Therefore $\operatorname{cub}(G) \leqslant \bar{\eta}$.

We exhibit a family of graphs for which equality holds in Theorem 5.
Example 3. A formula of Roberts [19] gives the cubicity of a complete multipartite graph:

$$
\begin{equation*}
\operatorname{cub}\left(K_{n_{1}, \ldots, n_{q}}\right)=\sum_{i=1}^{q}\left\lceil\log _{2}\left(n_{i}\right)\right\rceil . \tag{2}
\end{equation*}
$$

Now it is not difficult to show that the edge biclique cover number of the complete graph K_{n} is $\eta\left(K_{n}\right)=\left\lceil\log _{2}(n)\right\rceil$. It follows that the edge biclique cover number of the complement of $K_{n_{1}, \ldots, n_{q}}$ is given by the sum in (2). Therefore $\operatorname{cub}(G)=\eta(\bar{G})$ if G is a complete multipartite graph.

References

[1] E. Boyer, L. Lister, B.L. Shader, Sphere-of-influence graphs using the sup-norm, Math. Comput. Modelling 32 (2000) 1071-1082.
[2] H. Breu, D.G. Kirkpatrick, Unit disk graph recognition is NP-hard, Comput. Geom. 9 (1998) 3-24.
[3] B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graphs, Discrete Math. 86 (1990) 165-177.
[4] P. Erdős, A.W. Goodman, L. Pósa, The representation of a graph by set intersections, Canad. J. Math. 18 (1966) 106-112.
[5] P.C. Fishburn, On the sphericity and cubicity of graphs, J. Combin. Theory Ser. B 35 (1983) 309-318.
[6] P. Frankl, H. Maehara, Embedding the n-cube in lower dimensions, European J. Combin. 7 (1986) 221-225.
[7] P. Frankl, H. Maehara, The Johnson-Lindenstrauss lemma and the sphericity of some graphs, J. Combin. Theory Ser. B 44 (1988) $355-362$.
[8] P. Hlinĕný, J. Kratochvíl, Representing graphs by disk and balls (a survey of recognition-complexity results), Discrete Applied Math. 229 (2001) 101-124.
[9] H. Maehara, Space graphs and sphericity, Discrete Applied Math. 7 (1984) 55-64.
[10] H. Maehara, On the sphericity for the join of many graphs, Discrete Math. 49 (1984) 311-313.
[11] H. Maehara, Sphericity exceeds cubicity for almost all complete bipartite graphs, J. Combin. Theory Ser. B 40 (1986) $231-235$.
[12] H. Maehara, On the sphericity of the graphs of semi-regular polyhedra, Discrete Math. 58 (1986) 311-315.
[13] H. Maehara, Independent balls and unit neighborhood graphs, Ryukyu Math. J. 1 (1988) 38-55.
[14] H. Maehara, J. Reiterman, V. Rödl, E. Šin̆ajová, Embedding of trees in Euclidean spaces, Graphs Combin. 4 (1988) 43-47.
[15] S.D. Monson, N.J. Pullman, R. Rees, A survey of clique and biclique coverings and factorizations of (0,1)-matrices, Bull. Inst. Combin. Appl. 14 (1995) 17-86.
[16] J. Reiterman, V. Rödl, E. S̆in̆ajová, Geometrical embeddings of graphs, Discrete Math. 74 (1989) 291-319.
[17] J. Reiterman, V. Rödl, E. S̆in̆ajová, Embeddings of graphs in Euclidean spaces, Discrete Comput. Geom. 4 (1989) $349-364$.
[18] F.S. Roberts, Indifference graphs, in: F. Harary (Ed.), Proof Techniques in Graph Theory, Academic Press, New York, 1969 , pp. $139-146$.
[19] F.S. Roberts, On the boxicity and cubicity of a graph, Recent Progress in Combinatorics, Proc. Third Waterloo Conf. on Combinatorics, 1968, Academic Press, New York, 1969, pp. 301-310.
[20] F.S. Roberts, Applications of edge coverings by cliques, Discrete Appl. Math. 10 (1985) 93-109.

[^0]: E-mail address: tsm@usna.edu (T.S. Michael).

