brought to you by CORE

Available online at www.sciencedirect.com

Discrete Applied Mathematics 154 (2006) 1309-1313

www.elsevier.com/locate/dam

MATHEMATICS

DISCRETE

APPLIED

Note

Sphericity, cubicity, and edge clique covers of graphs

T.S. Michael^a, Thomas Quint^b

^aMathematics Department, United States Naval Academy, Annapolis, MD 21402, USA ^bDepartment of Mathematics and Statistics, University of Nevada, Reno, NV 89557, USA

Received 1 January 2005; received in revised form 6 January 2006; accepted 10 January 2006 Available online 15 March 2006

Abstract

The sphericity sph(*G*) of a graph *G* is the minimum dimension *d* for which *G* is the intersection graph of a family of congruent spheres in \mathbb{R}^d . The edge clique cover number $\theta(G)$ is the minimum cardinality of a set of cliques (complete subgraphs) that covers all edges of *G*. We prove that if *G* has at least one edge, then sph(*G*) $\leq \theta(G)$. Our upper bound remains valid for intersection graphs defined by balls in the L_p -norm for $1 \leq p \leq \infty$.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Intersection graph; Sphericity; Edge clique cover; Cubicity

1. Introduction

Let \mathscr{F} be a family of subsets of a set S. The *intersection graph* of \mathscr{F} has vertex set \mathscr{F} with distinct vertices joined by an edge provided the intersection of the corresponding sets is non-empty. When the intersection graph is isomorphic to a graph G, we say that \mathscr{F} represents G.

We are interested in graphs that are represented by families of balls in *d*-dimensional space. The *sphericity* of the graph *G*, denoted by sph(G), is equal to the smallest dimension *d* for which *G* is represented by a family of open balls of the same radius in the Euclidean space \mathbb{R}^d . For example, complete graphs, paths, and cycles on *n* vertices satisfy $sph(K_n) = sph(P_n) = 1$ and $sph(C_n) = 2$ for $n \ge 4$. Graphs with sphericity 1 (unit interval graphs) possess a forbidden subgraph characterization [18]. However, the recognition problem for graphs with sphericity 2 (unit disk graphs [3,8]) is NP-hard [2]. Researchers have focused on computing the sphericity for special classes of graphs [5,6,10–12,14] and on discovering general bounds for the sphericity of a graph *G* in terms of the *clique number* $\omega(G)$, i.e., the largest number of vertices in a clique (complete subgraph) of *G*.

Maehara's inequality. If G is a non-complete graph with n vertices and clique number $\omega(G)$, then the sphericity of G satisfies

 $\operatorname{sph}(G) \leq n - \omega(G).$

E-mail address: tsm@usna.edu (T.S. Michael).

⁰¹⁶⁶⁻²¹⁸X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2006.01.004

The inequality cannot be substantially improved; for each m = 1, 2, ... Maehara exhibited a graph G_m satisfying $m = \operatorname{sph}(G_m) = |V(G_m)| - \omega(G_m) - 1$.

Our main theorem gives a new inequality that relates the sphericity to the cliques of a graph G. Briefly, the sphericity of G cannot exceed the minimum number of cliques needed to cover all edges of G. Our upper bound remains valid for intersection graphs defined by balls in the L_p -norm for $1 \le p \le \infty$.

We remark that using intersections of closed spheres instead of open spheres yields an equivalent notion of sphericity. For if ε is a sufficiently small positive number, then we may replace each open sphere of radius r by a closed sphere of radius $r - \varepsilon$ without destroying or creating any intersections; similarly a slight increase in the radii of a family of closed spheres yields a family of open spheres with the same intersection pattern.

2. Edge clique covers and sphericity

An *edge clique cover* of a graph G is a set of cliques $\mathcal{Q} = \{Q_1, \ldots, Q_t\}$ that covers the edges of G, i.e., every edge of G occurs among the cliques in \mathcal{Q} . The *edge clique cover number* $\theta(G)$ is the minimum number of cliques in an edge clique cover of G. The graph G satisfies $\theta(G) = 0$ if and only if G has no edges; we exclude this trivial case by assuming that $\theta(G)$ is positive throughout our work. See the surveys [15,20] for a variety of results about edge clique covers and their applications.

The *intersection number* int(G) of the graph G is the minimum cardinality of a set S such that G has an intersection representation as a family of subsets of S. A fundamental theorem of Erdős et al. [4] asserts that $int(G) = \theta(G)$ for every graph G.

The sphericity sph(G) refers to an intersection representation of a graph that is minimal in a geometric sense, while the edge clique cover number $\theta(G)$ refers to an intersection representation that is minimal in a purely combinatorial or set-theoretic sense. Our main theorem establishes a simple inequality between these two parameters.

Theorem 1. Let G be a graph with positive edge clique cover number $\theta(G)$. Then

 $\operatorname{sph}(G) \leq \theta(G).$

Proof. Without loss of generality *G* has no isolated vertices. Let $\{v_1, \ldots, v_n\}$ be the vertex set of *G*, and let $\mathcal{Q} = \{Q_1, \ldots, Q_\theta\}$ be an edge clique cover of *G* with cardinality $\theta = \theta(G)$. Suppose that v_i occurs in exactly c_i cliques in \mathcal{Q} for $i = 1, \ldots, n$, and define the components of the vector $\mathbf{x}^{(i)} = (x_1^{(i)}, \ldots, x_{\theta}^{(i)})$ in \mathbf{R}^{θ} by

 $x_k^{(i)} = \begin{cases} (1/c_i)^{1/2} & \text{if vertex } v_i \text{ is in the clique } Q_k, \\ 0 & \text{if vertex } v_i \text{ is not in the clique } Q_k. \end{cases}$

If v_i and v_j are not adjacent in G, then $\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\| = 2^{1/2}$. On the other hand, if v_i and v_j are adjacent, then there is at least one index k such that $x_k^{(i)} > 0$ and $x_k^{(j)} > 0$, and it follows that the strict inequality $\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\| < 2^{1/2}$ holds. Therefore the family of open balls with centers $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ and radii $(\frac{1}{2}) 2^{1/2}$ represents G as an intersection graph in \mathbf{R}^{θ} . \Box

The complete graph K_n satisfies $sph(K_n) = \theta(K_n) = 1$, and thus equality sometimes holds in Theorem 1.

3. Examples, consequences, and other metric spaces

Suppose that $c_1 = \cdots = c_n = c > 1$ in the proof of Theorem 1. Then the components of the vector $\mathbf{x}^{(i)}$ sum to $c^{1/2}$ for $i = 1, \ldots, n$, and thus the sphere centers $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ all lie on a hyperplane in \mathbf{R}^{θ} . By projecting onto this hyperplane we may lower the dimension of the space by 1 and find that in this case

$$\operatorname{sph}(G) \leq \theta(G) - 1.$$
 (1)

One may show that the graph G_m constructed by Maehara satisfies $\operatorname{sph}(G_m) = m$ and $\theta(G_m) = m + 2$ for $m = 1, 2, \ldots$, and thus Theorem 1 performs essentially as well as Maehara's inequality for G_m . The following examples show that Theorem 1 is sometimes stronger than Maehara's inequality.

Example 1. Let K_a^d denote the *d*-fold Cartesian product of the complete graph K_a with itself. Thus K_a^d has vertex set equal to the *d*-tuples of integers chosen from the set $\{1, \ldots, a\}$, where two vertices are adjacent provided the corresponding *d*-tuples differ in exactly one component. Suppose that $a \ge 2$. Then K_a^d has a^d vertices and clique number *a*. Hence Maehara's inequality gives $\operatorname{sph}(K_a^d) \le a^d - a$. It is also not difficult to see that K_a^d has an edge clique cover with da^{d-1} cliques and that inequality (1) gives $\operatorname{sph}(K_a^d) \le da^{d-1} - 1$. Therefore, Theorem 1 gives a stronger upper bound for the sphericity of K_a^d than Maehara's inequality when *d* is much smaller than *a*.

Example 2. With a latin square $[a_{ij}]$ of order $q \ge 3$ we associate a graph L_q with q^2 vertices as follows. The vertex set is $\{(i, j) : 1 \le i, j \le q\}$, and distinct vertices(i, j) and (i', j') are adjacent provided i = i', or j = j', or $a_{ij} = a_{i'j'}$. One readily shows that $\omega(L_q) = q$ and $\theta(L_q) = 3q$. Thus Maehara's inequality gives the quadratic bound sph $(L_q) \le q^2 - q$, while (1) gives the linear bound sph $(L_q) \le 3q - 1$.

Theorem 1 yields a bound on the sphericity of the complement \overline{G} of a bipartite graph G.

Corollary 2. Let G be a bipartite graph with n' and n'' vertices in the two vertex subsets, where $n' + n'' \ge 3$. Then $\operatorname{sph}(\overline{G}) \le \min\{n', n''\} + 2$.

Proof. Let the vertex subsets of G be V' and V'', where $V' = \{v_1, \ldots, v_{n'}\}$. For $i = 1, \ldots, n'$ let Q_i denote the clique of \overline{G} consisting of v_i and its neighbors in V''. Also, let Q' and Q'' be the cliques of \overline{G} induced by V' and V'', respectively. Then $\{Q_1, \ldots, Q_{n'}\} \cup \{Q', Q''\}$ is an edge clique cover of \overline{G} , and thus $\operatorname{sph}(\overline{G}) \leq n' + 2$ by Theorem 1. Similarly, $\operatorname{sph}(\overline{G}) \leq n'' + 2$. \Box

Let *G* be a graph with vertex set $\{v_1, \ldots, v_n\}$. The spherical dimension [16,17] of *G*, denoted by sd(*G*), is the smallest *d* for which there exists a set of unit vectors $\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}$ in \mathbf{R}^d with the following property: there is a real number τ such that vertices v_i and v_j are adjacent in *G* if and only if the dot product of $\mathbf{v}^{(i)}$ and $\mathbf{v}^{(j)}$ is at least τ . If we choose τ to be a sufficiently small positive number, then the same construction in our proof of Theorem 1 shows that sd(*G*) $\leq \theta(G)$, which is slightly stronger than our stated result, since it is known [16] that sd(*G*) $-1 \leq \operatorname{sph}(G) \leq \operatorname{sd}(G)$.

The proof of Theorem 1 makes scant use of the Euclidean distance function; a similar respresentation of a graph *G* as an intersection graph can be performed in $\mathbf{R}^{\theta(G)}$ equipped with other metrics.

Recall that the L_p -norm of the vector $\mathbf{x} = (x_1, \dots, x_d)$ in \mathbf{R}^d equals

$$\|\mathbf{x}\|_{p} = \begin{cases} (|x_{1}|^{p} + \dots + |x_{d}|^{p})^{1/p} & \text{if } 1 \leq p < \infty \\ \max\{|x_{1}|, \dots, |x_{d}|\} & \text{if } p = \infty. \end{cases}$$

In \mathbf{R}^d an *open p-ball* with center \mathbf{x}_0 and radius *r* is the set of all \mathbf{x} such that $\|\mathbf{x} - \mathbf{x}_0\|_p < r$. Note that *p*-balls are not rotationally symmetric except in the Euclidean case p = 2 (or d = 1). We define the *p*-sphericity of the graph *G* to be the smallest dimension *d* for which there is a family of translates of an open *p*-ball in \mathbf{R}^d that represents *G* as an intersection graph. We denote the *p*-sphericity of *G* by $\operatorname{sph}_p(G)$. Of course, $\operatorname{sph}_2(G) = \operatorname{sph}(G)$.

When $p < \infty$, the proof of Theorem 1 remains valid for the *p*-sphericity if we replace the exponent $\frac{1}{2}$ by 1/p throughout. Thus we have the following upper bound for the *p*-sphericity of a graph.

Proposition 3. If G is a graph with positive edge clique cover number, then $\operatorname{sph}_p(G) \leq \theta(G)$ for $1 \leq p < \infty$.

4. Cubicity

If $p = \infty$, then a *p*-ball of radius *r* in \mathbb{R}^d is a *d*-dimensional cube with edge length 2r. (All cubes in our discussion are axis-aligned.) The parameter sph_{∞}(*G*) is known as the *cubicity* of *G* and is denoted by cub(*G*). Roberts introduced cubicity in [19] and adopted the convention that the cubicity of a complete graph satisfies cub(K_n)=0. A limit argument

with $p \to \infty$ shows that Proposition 3 also holds for $p = \infty$. Thus we have our first upper bound for the cubicity of a graph:

Theorem 4. Let G be a graph with positive edge clique cover number $\theta(G)$. Then

 $\operatorname{cub}(G) \leq \theta(G).$

Proof. Without loss of generality *G* has no isolated vertices. Let **x** be a point in an open cube with center \mathbf{x}_0 and radius r (i.e., edge length 2r) in \mathbf{R}^d . If p is sufficiently large, then **x** is also in the open p-ball with the same center and radius. It follows that any representation of a graph *G* as an intersection graph of a family of translates of an open cube in \mathbf{R}^d yields a representation of *G* as an intersection graph of a family of translates of an open sufficiently large p (depending on *G*). Now Proposition 3 implies that for this value of p we have $\operatorname{cub}(G) \leq \operatorname{sph}_p(G) \leq \theta(G)$.

A *biclique* is a complete bipartite graph. An *edge biclique cover* of a graph G is a set of bicliques $\{B_1, \ldots, B_t\}$ that covers the edges of G. The *edge biclique cover number* $\eta(G)$ is the minimum number of bicliques in an edge biclique cover of G. See the survey [15] for a full treatment of edge biclique covers. We now use edge biclique covers to give another upper bound for the cubicity of a graph.

Theorem 5. Let G be a graph whose complement has edge biclique cover number $\eta(\overline{G})$. Then

 $\operatorname{cub}(G) \leq \eta(\overline{G}).$

Proof. First note that the inequality holds if *G* is a complete graph. Now suppose that *G* is not complete. We use a variant of a construction employed by Boyer et al. [1] for a different problem in intersection graph theory. Let $\{v_1, \ldots, v_n\}$ be the vertex set of *G*, and let $\{B_1, \ldots, B_{\overline{\eta}}\}$ be an edge biclique cover of \overline{G} with cardinality $\overline{\eta} = \eta(\overline{G})$. Let V_k^+ and V_k^- be the vertex subsets of the biclique B_k ($k = 1, \ldots, \overline{\eta}$). Now define the components of the vector $\mathbf{y}^{(i)} = (y_1^{(i)}, \ldots, y_{\overline{\eta}}^{(i)})$ in $\mathbf{R}^{\overline{\eta}}$ by

$$y_k^{(i)} = \begin{cases} 1 & \text{if vertex } v_i \text{ is in the set } V_k^+, \\ -1 & \text{if vertex } v_i \text{ is in the set } V_k^-, \\ 0 & \text{if vertex } v_i \text{ is not in the biclique } B_k. \end{cases}$$

On the one hand, if v_i and v_j are adjacent in G, then there is no index k such that $\{y_k^{(i)}, y_k^{(j)}\} = \{1, -1\}$, and it follows that $\|\mathbf{y}^{(i)} - \mathbf{y}^{(j)}\|_{\infty} \leq 1$. On the other hand, if v_i and v_j are not adjacent in G, then there is an index k such that $\{y_k^{(i)}, y_k^{(j)}\} = \{1, -1\}$, and it follows that $\|\mathbf{y}^{(i)} - \mathbf{y}^{(j)}\|_{\infty} = 2$. We now see that the family of open cubes with centers $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)}$ and edge lengths 2 represents G as an intersection graph in $\mathbf{R}^{\overline{\eta}}$. Therefore $\operatorname{cub}(G) \leq \overline{\eta}$.

We exhibit a family of graphs for which equality holds in Theorem 5.

Example 3. A formula of Roberts [19] gives the cubicity of a complete multipartite graph:

$$\operatorname{cub}(K_{n_1,\dots,n_q}) = \sum_{i=1}^q \lceil \log_2(n_i) \rceil.$$
⁽²⁾

Now it is not difficult to show that the edge biclique cover number of the complete graph K_n is $\eta(K_n) = \lceil \log_2(n) \rceil$. It follows that the edge biclique cover number of the complement of $K_{n_1,...,n_q}$ is given by the sum in (2). Therefore $\operatorname{cub}(G) = \eta(\overline{G})$ if G is a complete multipartite graph.

References

- [1] E. Boyer, L. Lister, B.L. Shader, Sphere-of-influence graphs using the sup-norm, Math. Comput. Modelling 32 (2000) 1071–1082.
- [2] H. Breu, D.G. Kirkpatrick, Unit disk graph recognition is NP-hard, Comput. Geom. 9 (1998) 3-24.
- [3] B.N. Clark, C.J. Colbourn, D.S. Johnson, Unit disk graphs, Discrete Math. 86 (1990) 165-177.

- [4] P. Erdős, A.W. Goodman, L. Pósa, The representation of a graph by set intersections, Canad. J. Math. 18 (1966) 106-112.
- [5] P.C. Fishburn, On the sphericity and cubicity of graphs, J. Combin. Theory Ser. B 35 (1983) 309-318.
- [6] P. Frankl, H. Maehara, Embedding the *n*-cube in lower dimensions, European J. Combin. 7 (1986) 221–225.
- [7] P. Frankl, H. Maehara, The Johnson-Lindenstrauss lemma and the sphericity of some graphs, J. Combin. Theory Ser. B 44 (1988) 355–362.
- [8] P. Hliněný, J. Kratochvíl, Representing graphs by disk and balls (a survey of recognition-complexity results), Discrete Applied Math. 229 (2001) 101–124.
- [9] H. Maehara, Space graphs and sphericity, Discrete Applied Math. 7 (1984) 55-64.
- [10] H. Maehara, On the sphericity for the join of many graphs, Discrete Math. 49 (1984) 311–313.
- [11] H. Maehara, Sphericity exceeds cubicity for almost all complete bipartite graphs, J. Combin. Theory Ser. B 40 (1986) 231-235.
- [12] H. Maehara, On the sphericity of the graphs of semi-regular polyhedra, Discrete Math. 58 (1986) 311-315.
- [13] H. Maehara, Independent balls and unit neighborhood graphs, Ryukyu Math. J. 1 (1988) 38-55.
- [14] H. Maehara, J. Reiterman, V. Rödl, E. Šiňajová, Embedding of trees in Euclidean spaces, Graphs Combin. 4 (1988) 43-47.
- [15] S.D. Monson, N.J. Pullman, R. Rees, A survey of clique and biclique coverings and factorizations of (0,1)-matrices, Bull. Inst. Combin. Appl. 14 (1995) 17–86.
- [16] J. Reiterman, V. Rödl, E. Šiňajová, Geometrical embeddings of graphs, Discrete Math. 74 (1989) 291–319.
- [17] J. Reiterman, V. Rödl, E. Šiňajová, Embeddings of graphs in Euclidean spaces, Discrete Comput. Geom. 4 (1989) 349-364.
- [18] F.S. Roberts, Indifference graphs, in: F. Harary (Ed.), Proof Techniques in Graph Theory, Academic Press, New York, 1969, pp. 139–146.
- [19] F.S. Roberts, On the boxicity and cubicity of a graph, Recent Progress in Combinatorics, Proc. Third Waterloo Conf. on Combinatorics, 1968, Academic Press, New York, 1969, pp. 301–310.
- [20] F.S. Roberts, Applications of edge coverings by cliques, Discrete Appl. Math. 10 (1985) 93-109.