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a b s t r a c t

In this paper we consider random block matrices which generalize the classical Laguerre
ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices
can be uniformly approximated by the zeros of matrix orthogonal polynomials and obtain
a rate for the maximum difference between the eigenvalues and the zeros. This relation
between the randomblockmatrices andmatrix orthogonal polynomials allows a derivation
of the asymptotic spectral distribution of the matrices.
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1. Introduction

The three classical ensembles of random matrix theory are the Hermite, Laguerre and Jacobi ensembles. Associated
with each ensemble there is a real positive parameter β which is usually considered for three values. The case β = 1
corresponds to realmatrices,while the ensembles forβ = 2 andβ = 4 arise fromcomplex andquaternion randommatrices,
respectively, according to Dyson [1] threefold classification. Dumitriu and Edelman [2] provided tridiagonal randommatrix
models for the general β-Hermite and β-Laguerre ensembles for all β > 0. The development of a tridiagonal matrix model
corresponding to the general β-Jacobi ensemble for all β > 0was an open problem, whichwas recently considered by Killip
and Nenciu [3]. The spectral distributions of large dimensional matrices of the three classical ensembles have been studied
extensively in the literature, see [4,5] or [6].
Several authors have extended the study of random matrices to the case of random block matrices and we refer

to the works of Girko [7] and Oraby [8,9], among others. Recently, Dette and Reuther [10] addressed random block
matrices which generalize the tridiagonal model of the Hermite ensemble constructed by Dumitriu and Edelman [2]
and obtained the asymptotic spectral distribution. It is the purpose of the present paper to investigate the asymptotic
properties of some random block tridiagonal matrices corresponding to the classical Laguerre and Jacobi ensembles. In
Section 2 we revisit the Jacobi ensemble and introduce the random block matrices considered in this paper. In Section 3
we will review some facts on matrix orthogonal polynomials and the limiting distribution of their zeros. In Section 4
we demonstrate that the eigenvalues of the random block matrices can be approximated uniformly (almost surely) by
the deterministic zeros of matrix orthogonal polynomials. Matrix polynomials have been studied by several authors, see
[11–19]. In particular, Duran [15] and Dette and Reuther [10] provided limit theorems for the empirical distribution of
the zeros of matrix orthogonal polynomials and these results are applied to obtain the asymptotic spectral distribution
of the random block matrices. In Section 5 we introduce a generalization of the Laguerre ensemble to block matrices
and study the corresponding limiting spectral distribution. Finally, the proofs of some technical results are deferred to an
Appendix.
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2. The Jacobi ensemble and the corresponding block matrices

The Jacobi ensemble is defined by its density

fβ,γ ,δ(λ) = cβ,γ ,δ
∏

1≤i<j≤n

|λi − λj|
β
n∏
j=1

(2− λj)γ (2+ λj)δ I(−2,2)(λj) (2.1)

of the unordered eigenvalues, where β > 0, γ , δ > −1, I(−2,2) denotes the indicator function of the interval (−2, 2) and
the normalization constant cβ,γ ,δ is given by

cβ,γ ,δ = 4
−n
(
γ+δ+ n−12 β+1

) n−1∏
j=0

Γ

(
1+ β

2

)
Γ

(
γ + δ + (n+ j− 1) β2 + 2

)
Γ

(
1+ β

2 +
β

2 j
)
Γ

(
γ +

β

2 j+ 1
)
Γ

(
δ +

β

2 j+ 1
) .

Killip and Nenciu [3] provided a tridiagonal randommatrixmodel of the Jacobi ensemble where the entries are composed of
independent random variables with beta distributions on the interval [−1, 1]. To be precise, note that the Beta distribution
Beta(a, b) on the interval [−1, 1] is defined by the density

f (x) = 21−a−b
Γ (a+ b)
Γ (a)Γ (b)

(1− x)a−1(1+ x)b−1I(−1,1)(x). (2.2)

Now let αk for k = 0, . . . , 2n− 1 be independent random variables with

αk ∼


Beta

(
2n− k− 2

4
β + γ + 1,

2n− k− 2
4

β + δ + 1
)
for k even,

Beta
(
2n− k− 3

4
β + γ + δ + 2,

2n− k− 1
4

β

)
for k odd,

then the joint density of the eigenvalues of the tridiagonal matrix

Jn = Jn(β, γ , δ) =


b1 a1

a1 b2
. . .

. . .
. . . an−1
an−1 bn

 ∈ Rn×n (2.3)

with entries

bk+1 = (1− α2k−1)α2k − (1+ α2k−1)α2k−2,

ak+1 =
{
(1− α2k−1)(1− α22k)(1+ α2k+1)

}1/2
(α2n−1 = α−1 = α−2 = −1) is given by the Jacobi ensemble (2.1). As a generalization of the matrix Jn, we consider random
tridiagonal block matrices of the form

J (p)n = J
(p)
n (β, γ , δ) :=



B(p)0,n A(p)1,n
A(p)1,n B(p)1,n A(p)2,n

A(p)2,n
. . .

. . .
. . .

. . .
. . .

. . . A(p)n
p−1,n

A(p)n
p−1,n

B(p)n
p−1,n


∈ Rn×n, (2.4)

where n = mpwithm, p ∈ N and the symmetric p× p blocks A(p)i,n and B
(p)
i,n are defined by

B(p)i,n :=



b(1,n)ip+1 a(1,n)ip+1 a(2,n)ip+2 · · · · · · a(p−1,n)(i+1)p−1

a(1,n)ip+1 b(1,n)ip+2 a(1,n)ip+2 · · · · · · a(p−2,n)(i+1)p−1

a(2,n)ip+2

...
...

. . .
...

... b(1,n)(i+1)p−1 a(1,n)(i+1)p−1

a(p−1,n)(i+1)p−1 · · · · · · · · · a(1,n)(i+1)p−1 b(1,n)(i+1)p
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and

A(p)i,n :=



a(p,n)ip a(p−1,n)ip a(p−2,n)ip · · · · · · a(1,n)ip

a(p−1,n)ip a(p,n)ip+1 a(p−1,n)ip+1 · · · · · · a(2,n)ip+1

a(p−2,n)ip
. . .

...

... a(p,n)ip+p−2 a(p−1,n)ip+p−2

a(1,n)ip · · · · · · · · · a(p−1,n)ip+p−2 a(p,n)ip+p−1


,

respectively. The entries in these matrices are given by

b(1,n)k+1 =

(
1− α(1,n)2k−1

)
α
(1,n)
2k −

(
1+ α(1,n)2k−1

)
α
(1,n)
2k−2,

a(j,n)k+1 =

((
1− α(j,n)2k−1

) (
1− α(j,n)2k

2) (
1+ α(j,n)2k+1

)) 1
2
,

where the random variables

α
(j,n)
k ∼


Beta

(
2n− k− 2

4
β(j)n + γ

(j)
n + 1,

2n− k− 2
4

β(j)n + δ
(j)
n + 1

)
for k even,

Beta
(
2n− k− 3

4
β(j)n + γ

(j)
n + δ

(j)
n + 2,

2n− k− 1
4

β(j)n

)
for k odd,

are independent and for j = 1, . . . , p the parameters γ (j)n , δ
(j)
n , β

(j)
n ∈ R satisfy γ (j)n , δ

(j)
n > −1 and β(j)n > 0. Note that in

the case p = 1 the matrix J (p)n reduces to the Jacobi matrix Jn given in (2.3). A similar extension of the Laguerre ensemble to
block matrices will be defined in Section 5. In the following sections we investigate the limiting spectral behavior of block
matrices of the form as in (2.4).

3. Matrix orthogonal polynomials

Consider a sequence (Pn)n≥0 of p × pmatrix polynomials, i.e. of polynomials with matrix coefficients in Rp×p. A matrix
measureΣ is a p× pmatrix of signed Borel measures such that for each Borel set A ⊂ R the matrixΣ(A) is symmetric and
nonnegative definite. The sequence (Pn)n≥0 of matrix polynomials is orthonormal with respect to the matrix measureΣ if∫

Pn(x)dΣ(x)PTm(x) = δnmIp, (3.1)

where Ip denotes the p× p identity matrix. By Favard’s Theorem (see [20]) a sequence of matrix orthonormal polynomials
(Pn)n≥0 can be characterized by a three term recurrence

tPn(t) = An+1Pn+1(t)+ BnPn(t)+ ATnPn−1(t), n ≥ 0, (3.2)

with initial condition P−1(t) = 0p, P0(t) = A0. For example, the matrix Chebyshev polynomials of the first kind (T A,Bn )n≥0
are defined recursively by

tT A,B1 (t) = AT A,B2 (t)+ BT A,B1 (t)+
√
2AT A,B0 (t),

tT A,Bn (t) = AT A,Bn+1(t)+ BT
A,B
n (t)+ AT A,Bn−1(t), n ≥ 2,

(3.3)

where A and B are symmetric p × p matrices, A is non-singular and T A,B0 (t) = Ip, T
A,B
1 (t) = (

√
2A)−1(tIp − B). The matrix

Chebyshev polynomials (T A,Bn )n≥0 are orthonormal with respect to a measure that is absolutely continuous with respect to
the Lebesgue measure multiplied by the identity matrix. The corresponding density will be denoted by XA,B. The theory of
matrix orthogonal polynomials is substantially richer than the corresponding theory in the one-dimensional case and even
the matrix Chebyshev polynomials have not been studied in full detail, see for example [15]. In the following discussion we
consider sequences of matrix orthonormal polynomials (Rn,k)n≥0 for k ∈ N defined by the recursion

tRn,k(t) = An+1,kRn+1,k(t)+ Bn,kRn,k(t)+ ATn,kRn−1,k(t), n ≥ 0, (3.4)

where R−1,k(t) = 0p, R0,k(t) = Ip and Bi,k ∈ Rp×p are symmetric and Ai,k ∈ Rp×p non-singular matrices which depend on
the extra parameter k. The zeros of the matrix polynomial Rn,k are the zeros of the scalar polynomial

det Rn,k(t)

of degree np. It can be shown that the matrix polynomial Rn,k has precisely np real zeros, say xn,k,j (j = 1, . . . , np), where
each zero has at most multiplicity p. The empirical distribution of the zeros is defined by
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µn,k :=
1
np

np∑
j=1

δxn,k,j , n, k ≥ 1, (3.5)

where δz denotes the Dirac measure at the point z ∈ R. Of particular interest are the asymptotic properties of the empirical
distribution µn,k if n, k → ∞. For this purpose we consider sequences (nj)j≥0 and (kj)j≥0 of positive integers such that
limj→∞ nj/kj = u for some u ∈ R and we denote the corresponding limit as limn/k→u (if it exists). The following theorem
by Dette and Reuther [10] gives the limit distribution of the zeros and will be one main tool in the study of the asymptotic
eigenvalue distributions of the random block matrices defined in the previous section.

Theorem 3.1. Consider a sequence of matrix orthonormal polynomials defined by the three term recursion (3.4), where for all
` ∈ N0 and a given u > 0

lim
n
k→s
An−`,k = A(s) (3.6)

lim
n
k→s
Bn−`,k = B(s) (3.7)

for all s ∈ (0, u) with non-singular and symmetric matrices {A(s)|s ∈ (0, u)} and symmetric matrices {B(s)|s ∈ (0, u)}. If there
exists a number M > 0 such that

∞⋃
k=1

∞⋃
n=0

{
z ∈ R| det Rn,k(z) = 0

}
⊂ [−M,M], (3.8)

then the empirical measure µn,k defined by (3.5) converges weakly to a matrix measure which is absolutely continuous with
respect to the Lebesgue measure multiplied with the identity matrix. The density of the limiting distribution is given by

f (t) =
1
u

∫ u

0
tr
[
1
p
XA(s),B(s)(t)

]
ds, (3.9)

where XA(s),B(s) is the density of the matrix measure corresponding to the matrix Chebyshev polynomials of the first kind.

Remark 3.2. Note that the limiting distribution in Theorem 3.1 has always a density, but the support is not necessarily
connected. For example, if the limiting matrices {A(s)|s ∈ (0, u)} in Theorem 3.1 are positive definite, then the eigenvalues
of the density XA(s),B(s) can be expressed in terms of the eigenvalues of the matrix A−1(s)(B(s)− tIp) and the density takes a
simpler form, that is

tr
[
1
p
XA(s),B(s)(t)

]
=
1
p

p∑
j=1

−
d
dt λ

A(s),B(s)
j (t)

π

√
4−

(
λ
A(s),B(s)
j (t)

)2 I{−2<λA(s),B(s)j (t)<2}, (3.10)

where λA(s),B(s)j (t) for j = 1, . . . , p denote the eigenvalues of the matrix A−1(s)(B(s)− tIp). For details see [10], Section 4.

4. Spectral asymptotics for the generalized Jacobi ensemble

In this sectionwe study theweak asymptotics of the random eigenvalues λ(n,p)1 , . . . , λ
(n,p)
n of the blockmatrix J (p)n defined

in (2.4). The corresponding empirical distribution is given by the (random) measure

σ (p)n :=
1
n

n∑
j=1

δ
λ
(n,p)
j
. (4.1)

We first show that the eigenvalues of thematrix J (p)n can be approximated by the deterministic zeros of the orthogonalmatrix
polynomials (R(p)m,n(x))m>0 which are defined recursively by R

(p)
−1,n(x) = 0p, R

(p)
0,n(x) = Ip and

xR(p)m,n(x) = D
(p)
m+1,nR

(p)
m+1,n(x)+ C

(p)
m,nR

(p)
m,n(x)+ D

(p)
m,nR

(p)
m−1,n(x), m ≥ 0. (4.2)

The varying (matrix-valued) recursion coefficients in this recursion are given by

C (p)i,n :=



c(1,n)ip+1 d(1,n)ip+1 d(2,n)ip+2 · · · · · · d(p−1,n)(i+1)p−1

d(1,n)ip+1 c(1,n)ip+2 d(1,n)ip+2 · · · · · · d(p−2,n)(i+1)p−1

d(2,n)ip+2
. . .

...
...

...
...

... c(1,n)(i+1)p−1 d(1,n)(i+1)p−1

d(p−1,n)(i+1)p−1 · · · · · · · · · d(1,n)(i+1)p−1 c(1,n)(i+1)p
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and

D(p)i,n :=



d(p,n)ip d(p−1,n)ip d(p−2,n)ip · · · · · · d(1,n)ip

d(p−1,n)ip d(p,n)ip+1 d(p−1,n)ip+1 · · · · · · d(2,n)ip+1

d(p−2,n)ip
. . .

...
...

...
...

... d(p,n)ip+p−2 d(p−1,n)ip+p−2

d(1,n)ip · · · · · · · · · d(p−1,n)ip+p−2 d(p,n)ip+p−1


,

where the entries in these matrices are obtained from the entries of the matrix J (p)n by essentially replacing each random
variable by its expectation, that is

c(1,n)k+1 =

(
1− E

[
α
(1,n)
2k−1

])
E
[
α
(1,n)
2k

]
−

(
1+ E

[
α
(1,n)
2k−1

])
E
[
α
(1,n)
2k−2

]
,

d(j,n)k+1 =

((
1− E

[
α
(j,n)
2k−1

])(
1− E

[
α
(j,n)
2k

]2)(
1+ E

[
α
(j,n)
2k+1

])) 12
.

The expectation of a random variable X ∼ Beta(a, b) with density (2.2) is b−aa+b , which gives for the random variables under
consideration

E
[
α
(j,n)
k

]
=


b(j)n − γ

(j)
n

2n−k−2
2 β

(j)
n + γ

(j)
n + δ

(j)
n + 2

for k even,

β
(j)
n
2 − γ

(j)
n − δ

(j)
n − 2

2n−k−2
2 β

(j)
n + γ

(j)
n + δ

(j)
n + 2

for k odd,

(4.3)

for 0 ≤ k ≤ 2n − 2 and E[α−2] = E[α−1] = E[α2n−1] = −1. A straightforward calculation now yields that the entries of
the matrices C (p)i,n and D

(p)
i,n are given by

c(1,n)k+1 =
2(b(1)n − γ

(1)
n )(γ

(1)
n + δ

(1)
n + 2)

((n− k− 1)β(1)n + γ
(1)
n + δ

(1)
n + 2)((n− k)β

(1)
n + γ

(1)
n + δ

(1)
n + 2)

for k ≥ 1 and

c(1,n)1 =
2(δ(1)n − γ

(1)
n )

(2n− 2) β
(1)
n
2 + γ

(1)
n + δ

(1)
n + 2

and similarly for k ≥ 1

d(j,n)k+1 =

(
4((2n− 2k+ 2)β(j)n /2+ 2γ

(j)
n + 2δ

(j)
n + 4)((n− k+ 1)β

(j)
n /2+ γ

(j)
n + 1)

((2n− 2k+ 3)β(j)n /2+ γ
(j)
n + δ

(j)
n + 2)((2n− 2k+ 2)β

(j)
n /2+ γ

(j)
n + δ

(j)
n + 2)2

×
((n− k+ 1)β(j)n /2+ δ

(j)
n + 1)(n− k+ 1)β

(j)
n

((2n− 2k+ 1)β(j)n /2+ γ
(j)
n + δ

(j)
n + 2)

) 1
2

and

d(j,n)1 =

(
8
((n− 1)β(j)n /2+ γ

(j)
n + 1)((n− 1)β

(j)
n /2+ δ

(j)
n + 1)(n− 1)β

(j)
n

((n− 1)β(j)n + γ
(j)
n + δ

(j)
n + 2)2((2n− 3)β

(j)
n /2+ γ

(j)
n + δ

(j)
n + 2)

) 1
2

.

Now let n = mp for somem ∈ N and choose the parameters β(j)n , γ
(j)
n , δ

(j)
n such that the matrices D

(p)
i,n are non-singular. Then

the matrix polynomial R(p)n/p,n(x) of degree n/p ∈ N has (n/p)p = n real zeros. Our next theorem shows that the eigenvalues
of the matrix J (p)n can be approximated by the zeros of the matrix polynomial R

(p)
n/p,n(x)with high probability.

Theorem 4.1. Let λ(n,p)1 ≤ · · · ≤ λ
(n,p)
n be the ordered eigenvalues of the matrix J(p)n and denote by x(n,p)1 ≤ · · · ≤ x(n,p)n the

ordered zeros of the matrix polynomial R(p)n/p,n(x). Then for all ε ∈ (0, 1] and n ≥ 1 the inequality

P
(
max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ > ε

)
≤ 4p(2n− 1) exp

((
log

(
1+

ε2

648p2 + 2ε2

)
−

ε2

648p2 + 2ε2

)
(γn + δn + 2)

)
,(4.4)
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holds, where we define

γn := min
1≤j≤p

γ (j)n and δn := min
1≤j≤p

δ(j)n . (4.5)

Proof. The recursion (4.2) of the matrix polynomial R(p)n/p,n(x) implies that the zeros x
(n,p)
1 ≤ · · · ≤ x(n,p)n are the ordered

eigenvalues of the block tridiagonal matrix

E(p)n :=



C (p)0,n D(p)1,n
D(p)1,n C (p)1,n D(p)2,n

D(p)2,n
. . .

. . .

. . .
. . . D(p)n

p−1,n

D(p)n
p−1,n

C (p)n
p−1,n


,

which contains the recurrence coefficients of thematrix polynomials (R(p)m,n(x))m>0. NowWeyl’s inequality and Theorem5.6.9
in [21] yields

max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ ≤ max
1≤k≤n

n∑
j=1

∣∣∣{(J (p)n − E(p)n )}k,j∣∣∣ , (4.6)

which gives an upper bound for the difference between the eigenvalues of the matrices J (p)n and E
(p)
n . By using essentially the

same arguments as in Silverstein [22] and Dette and Nagel [23] we can show the inequality

max
1≤k≤n

n∑
j=1

∣∣∣{(J (p)n − E(p)n )}k,j∣∣∣ ≤ (3p− 1)√12Xn + 6Xn, (4.7)

where the random variable Xn is defined as

Xn := max
j=1,...,p

max
0≤k≤2n−2

∣∣∣α(j,n)k − E
[
α
(j,n)
k

]∣∣∣ . (4.8)

This implies for the probability under consideration

P
(
max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ > ε

)
≤ P

(
(3p− 1)

√
3Xn + 3Xn >

ε

2

)
≤ P

(
3p
√
3Xn >

ε

2

)
= P

(
Xn >

ε2

108p2

)
.

The second inequality holds because 3Xn ≤
√
3Xn if 3Xn ≤ 1 and 3Xn > ε

2 if 3Xn > 1 ≥ ε. Observing Lemma A.1 in [23] it
follows that

P
(
Xn >

ε2

108p2

)
≤

p∑
j=1

2n−2∑
k=0

P
(∣∣∣α(j,n)k − E

[
α
(j,n)
k

]∣∣∣ > ε2

108p2

)

≤

p∑
j=1

2n−2∑
k=0

4 exp
(
c
(
γ (j)n + δ

(j)
n + 2

))
≤ 4p(2n− 1) exp (c (γn + δn + 2)) ,

where the constant c is given by

c = log
(
1+

ε2

648p2 + 2ε2

)
−

ε2

648p2 + 2ε2
. (4.9)

This proves the assertion of the theorem. �

Note that the constant c given in (4.9) is negative and therefore the probability (4.4) decays exponentially fast. This indicated
that the random eigenvalues of the generalized Jacobi ensemble can be approximated uniformly by the zeros of the matrix
polynomials R(p)n/p,n(x) almost surely. The following theorem makes this statement more precise and provides a rate for the
convergence. The proof follows by similar arguments as the proof of Theorem 2.2 in [24] and is therefore omitted.
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Theorem 4.2. Let λ(n,p)1 ≤ · · · ≤ λ
(n,p)
n be the ordered eigenvalues of the matrix J(p)n and denote by x(n,p)1 ≤ · · · ≤ x(n,p)n the

ordered zeros of the matrix polynomial R(p)n/p,n. Suppose

lim
n→∞

(γn + δn)

log n
= ∞, (4.10)

where γn and δn are defined in (4.5), then there exists an a.s. finite random variable S such that the inequality

max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ ≤ ( log n
γn + δn

) 1
4

S (4.11)

holds for all n ≥ 2.

Theorem 4.3. Denote byλ(n,p)1 ≤ · · · ≤ λ
(n,p)
n the ordered eigenvalues of thematrix J(p)n , where the parametersβ

(j)
n , γ

(j)
n , δ

(j)
n , j =

1, . . . , p are chosen such that the matrices D(p)i , i = 1, . . . , n/p − 1 and the matrix D
(p)(s) defined below is non-singular for

0 < s < 1/p. Recall the notation (4.5), suppose that

lim
n→∞

(γn + δn)

log n
= ∞, (4.12)

and that the limits

lim
n→∞

γ
(j)
n

nβ(j)n
=: γ (j) <∞ and lim

n→∞

δ
(j)
n

nβ(j)n
=: δ(j) <∞ (4.13)

exist. Then, almost surely, the empirical distribution σ (p)n of the eigenvalues of the matrix J
(p)
n converges weakly towards a measure

that is absolutely continuous with respect to the Lebesgue measure. The density of this measure is given by

f (t) =
∫ 1

p

0
tr[XD(p)(s),C(p)(s)(t)]ds, (4.14)

where XD(p)(s),C(p)(s)(t) denotes the Lebesgue density of the matrix measure corresponding to the matrix Chebyshev polynomials of
the first kind defined in (3.3) with matrices

C (p)(s) :=



c(1)(s) d(1)(s) d(2)(s) · · · · · · d(p−1)(s)
d(1)(s) c(1)(s) d(1)(s) · · · · · · d(p−2)(s)

d(2)(s)
. . .

...
...

...
. . . c(1)(s) d(1)(s)

d(p−1)(s) · · · · · · · · · d(1)(s) c(1)(s)


and

D(p)(s) :=



d(p)(s) d(p−1)(s) d(p−2)(s) · · · · · · d(1)(s)
d(p−1)(s) d(p)(s) d(p−1)(s) · · · · · · d(2)(s)

d(p−2)(s)
. . .

...
...

...
. . . d(p)(s) d(p−1)(s)

d(1)(s) · · · · · · · · · d(p−1)(s) d(p)(s)


with entries

c(1)(s) =
2(δ(1)2 − γ (1)2)

(1− sp+ γ (1) + δ(1))2
,

d(j)(s) =

(
4(1− sp+ 2γ (j) + 2δ(j))

( 1−sp
2 + γ

(j)
) ( 1−sp

2 + δ
(j)
)
(1− sp)

(1− sp+ γ (j) + δ(j))4

) 1
2

.

Proof. Under the conditions (4.13) the recursion coefficients D(p)i and C
(p)
i of the matrix polynomial R(p)n/p,n(x) converge to

the limiting matrices given in the theorem, i.e. for all ` ∈ N and s ∈ (0, 1/p)

lim
i
n→s
C (p)i−l,n = C

(p)(s) and lim
i
n→s
D(p)i−l,n = D

(p)(s).
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Fig. 1. Simulated and limiting spectral density of the random blockmatrix J (p)n in the case p = 2, γ
(1)
n = 20n, δ

(1)
n = n, β

(1)
n = 1, γ

(2)
n = δ

(2)
n = n, β

(2)
n =

1. In the simulation the eigenvalues of a 5000× 5000 matrix were calculated.

Fig. 2. Simulated and limiting spectral density of the random block matrix J (p)n in the case p = 2, γ
(1)
n = δ

(1)
n = n, β

(1)
n = 1, γ

(2)
n = δ

(2)
n =

√
n, β(2)n = 1.

In the simulation the eigenvalues of a 5000× 5000 matrix were calculated.

ByGeršgorin’s Theorem (see [21]) the convergence implies the existence of anM > 0 such that the zeros x(n,p)1 ≤ · · · < x(n,p)n

of R(p)n/p,n(x) are elements of a compact interval [−M,M]. An application of Theorem 3.1 with u = limn→∞
n
p/n =

1
p yields

that the empirical distribution µ(p)n of the zeros converges weakly to a measure with density (4.14). Now consider the Lévy
distance L(σ (p)n , µ

(p)
n ) between the empirical measures, then [5] gives the inequality

L3(σ (p)n , µ(p)n ) ≤
1
n

n∑
j=1

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣2
and Theorem4.2 shows that the right-hand side converges almost surely to 0,which gives the almost sureweak convergence
of σ (p)n with the same limit as µ(p)n , that is the measure with density defined by (4.14). �

Remark 4.4. Note that condition (4.13) ensures the existence of the limiting matrices C (p)(s) and D(p)(s). The condition can
be relaxed for some j, as long as the limits of the matrix entries still exist and the matrix D(p)(s) is non-singular. In this case,
the conditions of Theorem 3.1 are satisfied and the arguments of the proof of Theorem 4.3 still apply.

We conclude this section with a few examples to illustrate the shape of the limit distribution of the eigenvalues. First
note that in the case p = 1 the eigenvalues of the matrix J (p)n are the eigenvalues of the classical Jacobi ensemble which have
been considered by Collins [25] and Dette and Nagel [23]. Now consider the case p = 2. In this case we have to choose the
parameters γ (i)n , δ

(i)
n , β

(i)
n for i = 1, 2 such that thematricesD(p)(s) defined in Theorem 4.3 are non-singular. In the examples

considered here the matrix D(p)(s) is also positive definite and we can calculate the density of the limit distribution using
formula (3.10).
The left part of Fig. 1 displays a simulated histogram of the eigenvalues of J (p)n for n = 5000 (i.e. m = n/p = 2500) and

parameters γ (1)n = 20n, δ
(1)
n = n, γ

(2)
n = δ

(2)
n = n and β

(1)
n = β

(2)
n = 1 while the right part shows the corresponding limit

distribution obtained from Theorem 4.3.
Fig. 2 displays the simulated histogram and the corresponding limit density for the parameters γ (1)n = δ

(1)
n = n, β

(1)
n =

1, γ (2)n = δ
(2)
n =

√
n, β(2)n = 1. In this case some of the limits in the condition (4.13) are equal to 0.

It was pointed out by a referee that the limit distributions derived here show a similar behavior as the asymptotic
distributions obtained by Helton et al. [26]. These authors also consider random matrices that are defined by blocks and
show that they have asymptotic freeness with amalgamation over some finite dimensional algebra. It would be of interest
to investigate if there is a relation between both results.
As stated in Remark 4.4 we can calculate the limit distribution even if some parameters converge to infinity at a rate

larger than n. Fig. 3 illustrates the convergence in this case for the parameters γ (1)n = 2n, δ
(1)
n = n3, β

(1)
n = 1, γ

(2)
n =

√
n, δ(2)n = n, β

(2)
n = 2.
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Fig. 3. Simulated and limiting spectral density of the random block matrix J (p)n in the case p = 2, γ (1)n = 2n, δ
(1)
n = n3, β

(1)
n = 1, γ

(2)
n =

√
n, δ(2)n =

n, β(2)n = 2. In the simulation the eigenvalues of a 5000× 5000 matrix were calculated.

5. Random block Laguerre ensembles

Following the idea of the previous section, we can define a generalization of the Laguerre ensemble. The tridiagonal
matrix model of the Laguerre ensemble is replaced by a block tridiagonal matrix while maintaining the general structure of
the entries. Recall that the density defining the Laguerre ensemble is defined by

fβ,α(λ) = cβ,α
∏

1≤i<j≤n

|λi − λj|
β
n∏
i=1

λ
α−(n−1) β2 −1
i e

−

n∑
i=1

λi
2
I(0,∞)(λj), (5.1)

where β > 0, α > (n− 1) β2 > 0 and the normalization constant cβ,α is given by

cβ,α = 2−nα
n∏
j=1

Γ

(
1+ β

2

)
Γ

(
1+ j β2

)
Γ

(
α − (n− j) β2

) .
Dumitriu and Edelman [2] provided a tridiagonal random matrix model of the Laguerre ensemble. For this purpose let
X2α, X2α−β , . . . , X2α−(n−1)β , Yβ , . . . , Y(n−1)β be independent random variables, where X2r , Y

2
r ∼ χ2(r) are chi-square

distributed. Then the joint density of the eigenvalues λ1 ≤ · · · ≤ λn of the matrix

Ln = Ln(α, β) =


b0 a1
a1 b1 a2

. . .
. . . an−1
an−1 bn−1

 ∈ Rn×n (5.2)

is given by (5.1), where the entries in the matrix Ln are defined by

b0 =
1
2α
X22α,

bi−1 =
1
2α

(
X22α−(i−1)β + Y

2
(n+1−i)β

)
, i = 2, . . . , n,

ai =
1
2α
X2α−(i−1)βY(n−i)β , i = 1, . . . , n− 1.

Next we consider random tridiagonal block matrices of the form

L(p)n = L
(p)
n (α, β) :=



B(p)0,n A(p)1,n
A(p)1,n B(p)1,n A(p)2,n

A(p)2,n
. . .

. . .

. . .
. . . A(p)n

p−1,n

A(p)n
p−1,n

B(p)n
p−1,n


∈ Rn×n, (5.3)
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where n = mpwithm, p ∈ N and the symmetric p× p blocks A(p)i,n and B
(p)
i,n are given by

B(p)i,n :=



b(1,n)ip a(1,n)ip+1 a(2,n)ip+2 · · · a(p−1,n)(i+1)p−1

a(1,n)ip+1 b(1,n)ip+1 a(1,n)ip+2 · · · a(p−2,n)(i+1)p−1

a(2,n)ip+2
. . .

...

... b(1,n)(i+1)p−2 a(1,n)(i+1)p−1

a(p−1,n)(i+1)p−1 · · · · · · a(1,n)(i+1)p−1 b(1,n)(i+1)p−1


and

A(p)i,n :=



a(p,n)ip a(p−1,n)ip a(p−2,n)ip · · · a(1,n)ip

a(p−1,n)ip a(p,n)ip+1 a(p−1,n)ip+1 · · · a(2,n)ip+1

a(p−2,n)ip
. . .

...

... a(p,n)ip+p−2 a(p−1,n)ip+p−2

a(1,n)ip · · · · · · a(p−1,n)ip+p−2 a(p,n)ip+p−1


.

The entries are defined by

b(1,n)0 =
1

2α(1)n
X2
2α(1)n

,

b(1,n)k−1 =
1

2α(1)n

(
X2
2α(1)n −(k−1)β

(1)
n
+ Y 2

(n+1−k)β(1)n

)
, k = 2, . . . , n,

a(j,n)k =
1

2α(j)n
X2α(j)n −(k−1)β(j)n Y(n−k)β(j)n , k = 1, . . . , n− 1,

where for j = 1, . . . , p the parameters α(j)n , β
(j)
n ∈ R satisfy α(j)n >

β
(j)
n
2 (n − 1). For p = 1, the matrix L

(p)
n reduces to the

matrix Ln defined in (5.2) and the eigenvalues are distributed according to the density (5.1).Wewill show in this section that
the eigenvalues of the random block matrix L(p)n can be almost surely approximated by the zeros of the matrix polynomial
R(p)m,n(x)which is defined by the recurrence relation

xR(p)m,n(x) = D
(p)
m+1,nR

(p)
m+1,n(x)+ C

(p)
m,nR

(p)
m,n(x)+ D

(p)
m,nR

(p)
m−1,n(x), m ≥ 0, (5.4)

where we define the varying (matrix-valued) coefficients in the recursion by

C (p)i,n :=



c(1,n)ip d(1,n)ip+1 d(2,n)ip+2 · · · · · · d(p−1,n)(i+1)p−1

d(1,n)ip+1 c(1,n)ip+1 d(1,n)ip+2 · · · · · · d(p−2,n)(i+1)p−1

d(2,n)ip+2
. . .

...
...

...
. . . c(1,n)(i+1)p−2 d(1,n)(i+1)p−1

d(p−1,n)(i+1)p−1 · · · · · · · · · d(1,n)(i+1)p−1 c(1,n)(i+1)p−1


and

D(p)i,n :=



d(p,n)ip d(p−1,n)ip d(p−2,n)ip · · · · · · d(1,n)ip

d(p−1,n)ip d(p,n)ip+1 d(p−1,n)ip+1 · · · · · · d(2,n)ip+1

d(p−2,n)ip
. . .

...
...

...
. . . d(p,n)ip+p−2 d(p−1,n)ip+p−2

d(1,n)ip · · · · · · · · · d(p−1,n)ip+p−2 d(p,n)ip+p−1


.

The entries in these matrices are given by

c(1,n)0 = 1,

c(1,n)k−1 =
2α(1)n + (n+ 2− 2k)β

(1)
n

2α(1)n
,

d(j,n)k =
1

2α(j)n

√
(2α(j)n − (k− 1)β

(j)
n )(n− k)β

(j)
n .
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The following results extend the results of Chapter 4 to the generalized Laguerre ensemble. The proofs are similar to those
given in Section 4 and omitted for the sake of brevity.

Theorem 5.1. Let λ(n,p)1 , . . . , λ
(n,p)
n denote the ordered eigenvalues of the matrix L(p)n defined in (5.3) and x

(n,p)
1 < · · · < x(n,p)n

the ordered zeros of the matrix polynomial R(p)n/p,n(x) Then for any ε ∈ (0, 1] the inequality

P
(
max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ > ε

)
≤ 2p(2n− 1) exp

(
−

ε4αn

4(6p− 1)4

)
(5.5)

holds for n ≥ 1, where αn := min1≤j≤p α
(j)
n .

Theorem 5.2. Let λ(n,p)1 ≤ · · · ≤ λ
(n,p)
n be the ordered eigenvalues of the matrix L(p)n and denote by x

(n,p)
1 ≤ · · · ≤ x(n,p)n the

ordered zeros of the matrix polynomial R(p)n/p,n. Suppose that

lim
n→∞

αn

log n
= ∞ (5.6)

with αn := min1≤j≤p α
(j)
n , then there exists an almost sure finite random variable S such that

max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ ≤ ( log n
αn

) 1
4

S (5.7)

holds for all n ≥ 2.

The rate given in (5.7) can be improved if we impose additional conditions of the parameters of the generalized Laguerre
ensemble. The following theorem makes this statement more precise and is a generalization of Theorem 2.5 of [24] to the
matrix case. We outline the proof in the Appendix.

Theorem 5.3. Let λ(n,p)1 ≤ · · · ≤ λ
(n,p)
n be the ordered eigenvalues of the matrix L(p)n and denote by x

(n,p)
1 ≤ · · · ≤ x(n,p)n the

ordered zeros of the matrix polynomial R(p)n/p,n(x). Suppose that there exists a K > 0 such that

n+ K ≥
2α(j)n
β
(j)
n
≥ n− 1+

1

β
(j)
n

(5.8)

holds for all n ≥ 2. Then there exists an almost sure finite random variable S such that the inequality

max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ ≤ ( log n
n

) 1
2

S

holds for all n ≥ 2.

Theorems 5.1 and 5.2 show that as n tends to infinity, the eigenvalues of the matrix L(p)n can be almost surely approximated
by the zeros of the matrix polynomial R(p)n/p,n(x). Using the same arguments as in the proof of Theorem 4.3 we can show that
the limit distribution of the zeros given by Theorem 3.1 can be transferred to the random eigenvalues.

Theorem 5.4. Denote by λ(n,p)1 ≤ · · · ≤ λ
(n,p)
n the ordered eigenvalues of the matrix L(p)n , where the parameters β

(j)
n , α

(j)
n , j =

1, . . . , p are chosen such that the matrices D(p)i,n , i = 1, . . . , n/p − 1 and the matrix D
(p)(s) defined below are non-singular for

0 < s < 1/p. Suppose that

lim
n→∞

αn

log n
= ∞, (5.9)

where we use the notation αn := min1≤j≤p α
(j)
n and that the limits

lim
n→∞

α
(j)
n

nβ(j)n
=: α(j) <∞ (j = 1, . . . , p) (5.10)

exist. Then, almost surely, the empirical distribution of the eigenvalues of the matrix L(p)n converges weakly to a measure which is
absolutely continuous with respect to the Lebesgue measure. The density of this measure is given by

f (t) =
∫ 1

p

0
tr[XD(p)(s),C(p)(s)(t)]ds, (5.11)
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Fig. 4. Simulated and limiting spectral density of the matrix L(p)n for p = 2, α
(1)
n = 2n, β

(1)
n = 1, α

(2)
n = n, β

(2)
n = 1. In the simulation the eigenvalues of

a 5000× 5000 matrix were calculated.

Fig. 5. Simulated and limiting spectral density of the matrix L(p)n for p = 2, α
(1)
n = 10n, β

(1)
n = 1, α

(2)
n = n, β

(2)
n = 1. In the simulation the eigenvalues

of a 5000× 5000 matrix were calculated.

where XD(p)(s),C(p)(s)(t) denotes the Lebesgue density of the matrix measure corresponding to the matrix Chebyshev polynomials of
the first kind defined in (3.3) with matrices

C (p)(s) :=



c(1)(s) d(1)(s) d(2)(s) · · · · · · d(p−1)(s)
d(1)(s) c(1)(s) d(1)(s) · · · · · · d(p−2)(s)

d(2)(s)
. . .

...
... c(1)(s) d(1)(s)

d(p−1)(s) · · · · · · · · · d(1)(s) c(1)(s)



D(p)(s) :=



d(p)(s) d(p−1)(s) d(p−2)(s) · · · · · · d(1)(s)
d(p−1)(s) d(p)(s) d(p−1)(s) · · · · · · d(2)(s)

d(p−2)(s)
. . .

...
... d(p)(s) d(p−1)(s)

d(1)(s) · · · · · · · · · d(p−1)(s) d(p)(s)


and entries

c(1)(s) =
2α(1) + 1− 2sp

2α(1)
,

d(j)(s) =
1
2α(j)

√
2α(j) − 2α(j)sp− sp+ (sp)2.

Weconclude this sectionwith some examples for the case p = 2. Figs. 4 and 5 showa simulated histogramof the eigenvalues
of L(p)n for n = 5000 (left panels) and the corresponding limiting density (right panels). Note that the parameters are chosen
such that the matrix C (p)(u) defined in Theorem 5.4 is positive definite and the limiting density can be obtained according
to formula (3.10).
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Appendix. Proof of Theorem 5.3

The assertion of Theorem 5.3 follows from a sharper upper bound for the probability in (5.5). First we define the random
variables

Z (1,j)n = max
0≤i≤n−1

∣∣∣X2α(j)n −iβ(j)n − (2α(j)n − iβ(j)n )∣∣∣
2α(j)n

,

Z (2,j)n = max
1≤i≤n−1

∣∣∣Yiβ(j)n − iβ(j)n ∣∣∣
2α(j)n

,

Z (3,j)n = max
1≤i≤n−1

∣∣∣∣X2α(j)n −(i−1)β(j)n Y(n−i)β(j)n −
√
(2α(j)n − (i− 1)β

(j)
n )(n− i)β

(j)
n

∣∣∣∣
2α(j)n

,

Z (1)n = max1≤j≤p
{Z (1,j)n }, Z (2)n = max1≤j≤p

{Z (2,j)n }, Z (3)n = max1≤j≤p
{Z (3,j)n },

Zn = max{Z (1)n , Z
(2)
n , Z

(3)
n }.

Similar to the proof of Theorem 4.1 we can show for the maximum difference between the eigenvalues λ(n,p)j and the zeros

x(n,p)j the inequality

max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ ≤ 4pZn
and therefore

P
(
max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ > ε

)
≤ P

(
max{Z (1)n , Z

(2)
n } >

ε

4p

)
+ P

(
Z (3)n >

ε

4p

)
. (A.1)

Now the two probabilities in (A.1) can be considered separately and the arguments in Dette and Imhof [24] show that

P
(
max{Z (1)n , Z

(2)
n } >

ε

4p

)
≤

p∑
j=1

(2n− 1)p1(j)

and

P
(
Z (3)n >

ε

4p

)
≤

p∑
j=1

(n− 1)(p1(j)+ p2(j)),

where

p1(j) = 2
((
1+

ε

4p
√
K + 2

)
exp

(
−

ε

4p
√
K + 2

))α(j)n
,

p2(j) = 2 exp

(
(K + 1)2β(j)n

8

)(
1−

ε

4p

)(n−1)β(j)n
exp

(
α
(j)
n ε

2p

)
.

This gives the upper bound

P
(
max
1≤j≤n

∣∣∣λ(n,p)j − x(n,p)j

∣∣∣ > ε

)
≤

p∑
j=1

(3n− 2)p1(j)+ (n− 1)p2(j)

which is a sharper inequality than (5.5). The arguments presented in Dette and Imhof [24] now show that the difference
between the eigenvalues λ(n,p)j and the zeros x(n,p)j satisfies the inequality in Theorem 5.3 and conclude the proof. �
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