A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor

Shin-ichi Tomınaga
Okinaka Memorıal Instıtute for Medıcal Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105, Japan

Received 19 October 1989
A cDNA clone, which represents a species of mRNA that is expressed in growth-stimulated BALB/c-3T3 cells but not in resting cells, was found to encode a protein remarkably simılar in sequence to the members of the immunoglobulin superfamily, especially to the extracellular portion of the mouse interleukin 1 receptor The immunoglobulin superfamily is believed to be involved in cell adhesion and cell-to-cell interaction The evidence that a member of this family is induced in the course of the initiation of cell proliferation is intriguing

Cell cycle, Cell growth, G_{0} / G_{1} transition, Immunoglobulin superfamıly, Interleukın 1 receptor

1. INTRODUCTION

The signal transduction for the intiation of the cell cycle, especially the early responses, has been investigated intensively [1-6]. On the other hand, the late response that is related to the $\mathrm{G}_{0} / \mathrm{G}_{1}$ transition has not been studied very extensively [7]. To elucidate the mechanisms of the G_{0} / G_{1} transition, I have been studying genes which are activated at 10 h after serum stimulation of resting BALB/c-3T3 cells. In the preceding paper I reported the isolation of a battery of growth-specific cDNAs from BALB/c-3T3 cells [8]. One of them encoded the β-subunit of integrin which plays a significant role in cell-to-cell and cell-to-matrix interactions $[8,9]$. Here I report about another cDNA clone (tentatively named ST2) which encodes a protein highly similar in sequence to the members of the immunoglobulin superfamily, especially to the extracellular portion of the mouse IL1-R.

2. MATERIALS AND METHODS

BALB/c-3T3 cells (clone A31) were provided by Dr C Stiles (Harvard Medical School) Poly(A) RNAs from various tissues of CD-1 (10-week-old) mice were purchased from Clontech Laboratories, Inc Exonuclease III, Mung bean nuclease and pUC 19 plasmıd were from Takara Shuzo A multıprıme DNA labeling

[^0]system was from Amersham $\left[\alpha^{-32} \mathrm{P}\right] \mathrm{dCTP}$ (specific activity, about $3000 \mathrm{Cl} / \mathrm{mmol}$) was from New England Nuclear

The total cytoplasmic RNAs and poly(A) RNAs were prepared from BALB/c-3T3 cells as described [8] Northern blottıng was performed using glyoxal, and dimethylsulfoxide [10] Probes for Northern hybridization were labeled with $\left[\alpha-{ }^{32} \mathrm{P}\right] \mathrm{dCTP}$ by the multiprime labeling method [11] Hybridization was carried out at $42^{\circ} \mathrm{C}$ and the filter (Zeta probe, Bio Rad) was washed at $50^{\circ} \mathrm{C}$ in $01 \times \mathrm{SSC}, 0.1 \% \mathrm{SDS}$ solution [10]. For nucleotıde sequence analysis, cDNA was subcloned into the pUC 19 plasmid. Using exonuclease III and Mung bean nuclease, plasmids containing inserts of various lengths were obtained [12], thereafter the nucleotide sequence was determined by the chain termination DNA sequencing method [13,14] Local homology search in translated protein sequence was performed using the IDEAS (Integrated Database and Extended Analysis System for Nucleic Acids and Proteins) program [15-17]

3. RESULTS AND DISCUSSION

As reported previously [8], 7 clones screened from 6.5×10^{5} plaques of the $\lambda \mathrm{gt} 10 \mathrm{cDNA}$ library showed remarkable differences in intensity of Northern hybridization when poly(A) RNAs from resting, growth-stimulated, or continuously growing cells were compared. One of them had been determined to be the β-subunit of integrin. Subsequently, another clone (clone 87) was examined by Northern hybridization (fig.1). The appearance of mRNA was almost all or none between the resting (Q) and growth-stimulated (S) state (fig. 1a). And moderate appearance of the mRNA in the continuously growing (G) state suggested that this gene is probably expressed in the G_{1} phase. The mRNA appeared as early as 2 h but the peak in the distribution of this mRNA among the total cellular RNAs was 10 h after serum addition (fig. 1b), just before the initiation of DNA synthesis [18,19]. Corresponding mRNA in various tissues of mouse was below detectable level even after intensified exposure (fig.2). This also indicates that the expression is not constitutive but growth specific.

Fig.1. Growth specific appearance of ST2 mRNA . (a) Total cellular RNAs were extracted from quiescent BALB/c-373 cells (Q), cells at 10 h after serum stimulation (S), or continuously growing cells (G) as described [8]. RNAs $(5 \mu \mathrm{~g})$ were loaded on a 1.1% agarose gel for Northern blotting. Complementary DNA fragment of clone 87 was excised from the λ gt10 phage and labeled with $\left[\alpha^{-32}\right.$ PldCTP. Hybridization was carried out as described in section 2. The arrow and the open arrowhead correspond to the positions of 28 S and 185 ribosomal RNA, respectively, (b) Total cellular RNAs were extracted at the indicated hours after serum stimulation. Northern hybridization was performed as in (a).

Next, using a cDNA fragment of clone 87, the original cDNA library was rescreened and clone ST2 containing a 2.7 kb insert was obtained. Since the size of this mRNA was about 2.7 kb in Northern blot, ST2 cDNA was nearly full length. The entire nucleotide sequence was determined and shown in fig.3. This cDNA had an open reading frame of 337 amino acids. There were three candidates for initiating methionine residues at positions 1, 7 and 19. According to Kozak's rule, the second ATG codon seems to be the best candidate for initiation site [20]. However, it is difficult to exclude the possibility that the upstream ATG codon is also functional. For simplicity, the most upstream methionine residue was assumed as the translation initiation site. There were nine potential N -linked glycosylation sites. Computer searches of the March 1989 edition of GenBank revealed that this putative ST2 protein had significant similarity to the protein related to the immunoglobulin superfamily, including mouse neural cell adhesion molecule (percent match of 22.7%), mouse basement membrane proteoglycan (19.0%), HLA-6-2 20.8%), constant region of secreted form of chicken IgM heavy chain (16.5%). The highest similarity was found to be with mouse IL1-R (percent match of 25.1%). Detailed comparison between the ST2 protein and IL1-R revealed that ST2 protein was similar to the extracellular portion of the IL1-R (hatched area in fig.4A) and that it did not have a corresponding transmembrane (dotted area in fig. 4 A) or cytoplasmic domain [21]. Three loops could be constructed as in the case of the IL1-R and the amino acids

Fig.2. Absence of ST2 mRNA in various tissues of mouse. Poly(A) RNAs ($1 \mu \mathrm{~g}$) from various tissues of CD-1 mouse and quiescent (Q) or serum-stimulated (S) BALB/c-3T3 cells were loaded on an agarose gel and processed for Northern hybridization as in fig. 1. The blot was exposed overnight with (lower panel) or without (upper panel) intensifying screen. The arrow and the open arrowhead correspond to the positions of 28 S and 18 S ribosomal RNA, respectively.

2 residues upstream of cysteine at the N -termini of immunoglobulin-like domains (arrows in fig.4B) were valine, isoleucine, and isoleucine, all of which matched with the consensus amino acid residues [22]. Also, amino acids 2 residues upstream of cysteine at the C-termini of immunoglobulin-like domains (arrowheads in fig.4B) were all tyrosine, which again matched with the consensus residue. In conclusion, this putative protein of growth-specific cDNA is also a member of the immunoglobulin superfamily.
The immunoglobulin superfamily is one of the key groups not only in immunity but also in the mediation of cell surface recognition to control the behavior of cells in various tissues [22]. The unique properties of ST2 protein among the members of the immunoglobulin superfamily are lack of transmembrane domain and its growth-specific expression. It is intriguing to speculate that the protein is possibly secreted as a signal molecule and has something to do with the growth signal transduction. It is also possible, in this respect, that ST2 protein is one of the members of the growth-specific secreted proteins which had been reported earlier [23].

Further investigation of the native product using antibodies to synthetic polypeptides are in progress to understand the localization and the function of ST2 protein.

[^1]GCAGAAATGAGA -183
CGAAGGAGCGCCAAGTAGCCTCACGGCTCTGAGCTYATTCTCTCCAGCCCTTCATCTGGGTATCTACAGTGATTTCTCTTCTGGACCCTAC -92
CTCAGAGAGCACTTGTCAACCGCCTAGTGAACACACCATTACTATCCTGTGCCATTGCCATAGAGAGACCTCAGCCATCAATCACTAGCAC -1
atg att gac aga cag aga atg gga ctt tgg gct ttg gca att ctg aca ctt ccc atg tat ttg aca git Met Ile Asp Arg Gln Arg Met Gly Leu Trp Ala Leu Ala Ile Leu Thr Leu Pro Met Tyr Leu Thr Val69
23
acg gag ggc agt ana tcg tcc tgg ggt ctg gan ant gag get tta att gtg aga tge ccc cas aga gga 138Thr Glu Gly Ser lys Ser Ser Trp Gly Leu glu Asn glu Ala Leu Ile Val Arg Cys Pro Gln Arg GlyDCGC tCG act tat cct gig gat tgg tat tac tca gat aca ant gan agt att cct act can ana aga antArg Ser Thr Tyr Pro Val glu Trp Tyr Tyr Ser Asp Thr Asn glu Ser Ile Pro Thr gln Lys Arg AsnCGG ATC TTT GTC tCA AGA GAT CGT CTG AAG TTT CTA CCA GCC AGA GTG GAA GAC TCT GGG ATt tat gCtArg Ile Phe Val Ser Arg Asp Arg Leu Lys Phe Leu Pro Ala Arg Val glu Asp Ser Gly Ile Tyr Ala46
2076992
TGT GTT ATC aga agC ccc anc ttg ant ang act gga tac ttg aft gTC acc ata cat ana aag ccg cca Cys Val Ile Arg Ser Pro Asn Leu Asn Lys Thr Gly Tyr Leu Asn Val Thr Ile His Lys Lys Pro Pro 345
115
agC tgC ant atc cct gat tat ttg atg tac tcg aca gta cgt gga tca gat ana ant ttc ang ata acg 414Ser Cys Asn Ile pro Asp Tyr Leu Met Tyr Ser Thr Val Arg Gly Ser Asp Lys Asn phe Lys Ile ThrTGT CCA ACA ATT GAC CTG tat aft tgG aca gCa CCT GTT CAG tGG tTt aAG aAC tGC aAA gCt ctc caaCys Pro Thr Ile Asp Leu Tyr Asn Trp Thr Ala Pro Val Gln Trp Phe Lys Asn Cys Lys Ala Leu Gln
A
gag cca agg tre agg gca cac agg tcc tac ttg ttc att gac anc gtg act cat gat gat gaa ggt gacGlu Pro Arg Phe Arg Ala His Arg Ser Tyr Leu Phe Ile Asp Asn Val Thr his Asp Asp Glu Gly Asp184
 621Tyr Thr Cys gln phe Thr his Ala Glu Asn Gly Thr Asn Tyr Ile Val Thr Ala Thr Arg Ger phe Thr
gTt gai gat ana ggc tut tct atg tit cca gta att aca ant cct cca tac anc cac aca atg gat gtgVal Glu Glu Lys gly Phe Ser Met phe Pro Val Ile Thr Asn Pro Pro Tyr Asn His Thr Met glu ValAsn
gan ata gga ana cca gCa agt att gcc tgt tca gct tge tut ggc ana gGc tct cac ttc ttg gct gatGlu Ile Gly Lys Pro Ala Ser Ile Ala Cys Ser Ala Cys phe Gly Lys Gly Ser His fhe Leu Ala Asp253
GTC CTG TGG CAG ATt AAC AAA ACA GTA GTT GGA AAT TTT GGT GAA GCA AGA att caA gai gag gan ggt 828
Val Leu Trp Gln tle Asn lys Thr Val Val gly Asn Phe gly glu Ala arg Ile gin glu glu glu gly 276
Cga at gat agt tcc agc aft gac atg gat tgt tta acc tca gtg tta agg ata act ggt gtg aca gan 897Arg Asn Glu Ser Ser Ser Asn Asp Met Asp Cys Leu Thr Ser Val Leu Arg Ile Thr Gly Val Thr Glu299
afg gac ctg tcc ctg gat tat gac tgt ctg gcc ctg anc ctt cat gGc atg ata agg cac acc ata agg 966Lys Asp Leu Ser Leu glu Tyr Asp cys Leu ala Leu asn leu has gly Met ile arg has thr ata agg
Lle arg322
CTG AGA AGG AAA CAA CCA AGT AAG GAG TGT CCC TCA CAC ATT GCT TGA ATAAATTGGCTGAATCAGCTGTGCACT 041Leu Arg Arg Lys Gln Pro Ser Lys Glu Cys Pro Ser His Ile Ala End
GCATCCGTTTTCTCCGAGGACTGTGTGTTGTAGCTTGGTCCCAGGGAATCCATCATGATCAAGGGAATAGTTGGCCTGTTTCATCAAGTGT 1132
TCTYCTCACGTTGAGGAAGCTCCTTAAATCTGGTCTTTCCAGAATGTTTCTGTCTTCCAACAGGAATCTCTGTCATTGTATCCTTCCCCTC 1223
 1314
TCTCTGAGCTCCTTCTCACCCAATAGTGGCTTTTGCAGTCATCCTTTGTACCGACTACAAGGGACATTGGTATTGGTAGTGGGTTCAGAGC 1405
AGTAATAACTCTGCTGTGTCTCTTTGTATAACCTTGTCATGGAAAACAACTTACAAACTTTCATTCTGAGCAGTTATTAATTCCCTTGCTT 1496
GGTCCTTGGGTTGACAGGTGCAGCCATCATGATAGATAGATGACCAACCTGATCCGATTTTAAAAGAGTAAACATCTTTTTTACCCTTATC 1587
ACTCTCTTATGATACTGACCACTGCCTTACTGGCAATACAACTAATATGAAAACATTTTTAATTTCTTTTCAAATATCAAGAGGGCATGGGA 1678
gGGAGAGAGACACTAACTCTAAGATCATAGCAATATGTGGGGCATTTATTTGGATGAATATATTGATTAAAAGGGTAGGGTGGAGGTACCT 1769
ATTAGATTCAGTCATGCTGTGTCTCTGCCTGAAGTGGTATTTGGGATTTTTGTTGATTCTGTTTGTCTPCTTTTGMTTGTTTTTACTATAG 1860
AAACTATTCTGCCCTTGTACTCCTAGAGTCACCTGTCTTTGCCTCCAGTTACTGGGACTAAAGCTATGTGTCACCTTACTGAGCCAGGGTG 1951TTTCTTGTTTTGGTTTTGATTTTAGAGCCTCTGGCTTGTAACATTTTTATAAAACAGAATTTTGATTCCTAGGTGGCCAGAGTTGTGACTC2042
ATAGAGGGATTTTTGTGCTGTTGTGATCAGTGAGGTCTTGGGGATCTGCCCCTGATAATGGTGTTACTCCGGGTGACTGTGGACCACAGCA 2133
CTGTGTTCCCAGATGGTGGTGGTCACTGCACATTCTGCAGGAAAAGAGAATCCAAACCCCTATTCTCACCCAGTTTGACCTTGATTCCACA 2224
ATGCCTTCCTCTGTAACAGGATCTTTTGTCTAGATTTCTGAGTGTACTTTAGTTCACGTTTGTATTAGAATTATATTTTTTAATCAGTAAT 2315
tTTGTATTTGTTTTGTTTGTGTGTGATTTCTTTGTTTTCCAGTTTATTTTTAATTCACTTGTTGCTATTCAAATCAATGTGTTCATACTGT 2406
tTGAACAACACAGCGTATTAAATAAAATTCGTGTCTATTGTTCTTG 2452

Fig 3 Complementary DNA sequence and deduced amino acid sequence of ST2 The nucleotide sequence of ST2 cDNA was determined as described in section 2 The putative signal peptide cleavage site is designated by an arrow [24]. The poly(A) signal is underlined The potential sites for N -inked glycosylation are shown by arrowheads The cysteme residues involved in the formation of immunoglobulin-like domain are boxed

Fig 4 Comparison between the ST2 protein and ILL1-R (A) The regions of high simılarity are shown by the hatched area Triangles are the potentıal sites for N -linked glycosylation Disulfide bridges involved in the formation of immunoglobulin-like domains are shown by the broken lines The dotted area of IL1-R corresponds to the transmembrane domain. Numbers in the figure represent amino acid residue numbers (B) Boxed areas are the portions of high simılarity * represents the identical amıno acid residues represents similar amino acid residues according to Dayhoff's mutation data [25]. The N-termınus and C-termınus of each immunoglobulin-like domain are indicated by the arrow and arrowhead, respectively

REFERENCES

[1] Linzer, D I H and Nathans, D (1983) Proc. Natl Acad Scı USA 80, 4271-4275
[2] Linzer, D I H and Nathans, D. (1984) Proc Natl Acad Sci USA 81, 4255-4259
[3] Hirschhorn, R R., Aller, P., Yuan, Z -A., Gıbson, C W and Baserga, R (1984) Proc. Natl Acad. Sci USA 81, 6004-6008.
[4] Lau, L F and Nathans, D (1985) EMBO J 4, 3145-3151
[5] Lau, L.F. and Nathans, D (1987) Proc Natl Acad Sci USA 84, 1182-1186
[6] Chavrıer, P , Zerıal, M , Lemaıre, P , Almendral, J , Bravo, R and Charnay, P (1988) EMBO J. 7, 29-35
[7] Tominaga, S. (1987) FEBS Lett. 226, 53-57
[8] Tominaga, S. (1988) FEBS Lett 238, 315-319
[9] Hynes, R O (1987) Cell 48, 549-555
[10] Maniatis, T , Fitsch, E F and Sambrook, J (1982) in Molecular Clonıng A Laboratory Manual Cold Sprıng Harbor Laboratory Press, New York
[11] Feinberg, A P and Vogelstein, B (1983) Anal Biochem 132, 6-13.
[12] Henkoff, S (1984) Gene 28, 351-359
[13] Sanger, F , Nicklen, S and Coulson, A R (1977) Proc Natl Acad Sci USA 74, 5463-5467
[14] Tabor, S and Richardson, C C (1987) Proc Natl Acad Scı USA 84, 4767-4771
[15] Kanehisa, M. (1982) Nucleic Acids Res 10, 183-196
[16] Needleman, S B and Wunsch, C D (1970) J Mol Biol 48, 443-453
[17] Wilbur, W J and Lipman, D J (1983) Proc Natl Acad Sci USA 80, 726-730
[18] Sokawa, Y, Watanabe, Y, Watanabe, Y and Kawade, Y (1977) Nature 268, 236-238
[19] Balkwill, F and Taylor-Papadımitriou, J (1978) Nature 274, 798-800
[20] Kozak, M (1987) Nucleic Acıds Res. 15, 8125-8148
[21] Sims, J E , March, C J , Cosman, D , Widmer, M.B., MacDonald, H R , McMahan, C.J , Grubin, C E., Wignall, J.M , Jackson, J L , Call, S M , Friend, D , Alpert, A R , Gilhs, S , Urdal, D and Dower, S K (1988) Science 241, 585-589
[22] Williams, A F and Barclay, A N (1988) Annu Rev Immunol 6, 381-405
[23] Tominaga, S and Lengyel, P (1985) J Biol Chem 260, 1975-1978
[24] Von Heıjne, G (1986) Nucleıc Acıds Res 14, 4683-4690
[25] Dayhoff, M.O., Schwartz, R.M and Orcutt, B C (1979) in Atlas of Protein Sequence and Structure, vol 5, suppl. 3 (Dayhoff, M.O ed), pp 345-352, National Biomedıcal Research Foundation, Washington, DC

[^0]: Correspondence address. S Tomınaga, Okınaka Memorıal Instıtute for Medical Research, 2-2-2 Toranomon, Minato-ku, Tokyo 105, Japan

 Abbreviatıons. IL1-R, interleukin 1 receptor, poly(A), polyadenyhic acid, dCTP, deoxycytıdine 5^{\prime}-triphosphate

 The nucleotide sequence(s) presented here has (have) been submitted to the EMBL/GenBank database under the accession number no Y07519

[^1]: Acknowledgements: I thank Drs Masato Nakafuku and Yoshito Kaziro for helpful discussions, and Dr Reiko Takemura for reading the manuscript. This work was supported in part by a research grant from the Japanese Ministry of Education, Science and Culture.

