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The notions of strict diagonal dominance and irreducible diagonal dominance have long 
been used in solving linear systems of equations via the iterative methods of Jacobi and 
Gauss-Seidel. In the work of More [7] the notion of diagonal dominance of matrices is 
generalized to systems of nonlinear equations. A (pointwise) diagonally dominant non- 
linear mapping is defined for the real domain. and it is shown that this definition is equiv- 
alent to diagonal dominance of matrices when the mapping is linear. The notion of irre- 
ducible diagonal dominance is also generalized to II diagonal dominance. Sufficient 
conditions are given for the convergence of pointvvise nonlinear Jacobi or Gauss-Seidel 
methods. 

In this paper we extend the definition of a point\c~i.sc~ strictly (or 0) diagonally dominant 
nonlinear mapping to a h/ocl\n*isc strictly (or 11) diagonally dominant nonlinear mapping. 
We then derive sufficient conditions for a qutrdrtrtic mapping to be a blockvvisc strictly, 
(or 0) diagonally dominant mapping in terms of an associated blockwise strictly. (or 1)) 
diagonally dominant matrix. A sufficient condition is also derived for more general non- 
linear mappings. but in the nonquadratic case this condition is more difficult to verify, in 
practice. 

Feingold and Varga ]3J have studied block diagonal dominance for linear mappings and 
their work has been applied in practice (for example. by Price in [g]). The condition that 
we derive here is similar to that in [3] but it applies to quadratic mappings as well as 
linear. 

Our motivation for introducing blockwise diagonally dominant nonlinear mappings 
comes from load flow studies in electric power systems. Every electric pow’er system 
consists of a set of hydro. thermal, and/or nuclear generating units. various types of loads. 
and a transmission system connecting the generating units and the loads. For such a system 
the desired performance is one in which, for known loads and available generating units. 
the power balance at each instant is satisfied without violating any of the given constraints 
on produced and transmitted power. 

Given the steady state value of the injections (outputs of generators. loads, etc.) at the 

buses of a symmetrical three phase electric power system. the load flow problem is that 
of determining the magnitudes and phase angles of the voltages at the buses. This problem 
has a vast literature (see. for example. [I. 4. 1 I]) and is of considerable importance in 
practice. The relations between the voltage and current in the transmission network are 
mostly linear (strictly linear, if only transmission lines are involved 191): however. power 
relations on the network are inherently nonlinear and some of the components of injec- 
tions, loads for example. are nonlinear functions of the bus voltages. The load flow problem 
is then the solution of a large number of nonlinear algebraic equations. 

In [6] a new formulation of the load tlow problem is presented. It is shown there that 
solving the load flow problem is equivalent to solving a system of qtrndr-uric,, rlotlrrtrrr/ytic 

equations in %“. (The nonanalyticity occurs because of the presence of terms of the for 
/ i? j’, where i? is complex, k = E, + V’? E?). Because of the nonanalyticity. the 
complex derivative does not exist. so that standard iterative procedures which use com- 
plex derivatives do not apply. lnstead we introduce (_ 7 x 2) blocks on K2” via block G~LISS- 

Seidel or block Jacobi methods. 
One could use the sufficient pointwise conditions given in 171. applied to quadratic 

mappings. in order to obtain 31 conditions for convergence. However. since each node 
in the system has associated with it two real valued unknown voltages. it is more natural 
to consider the nonlinear mapping from ‘4, ” into %” as consisting of (7 x 2) blocks in R’” 

and to introduce the blockwise diagonal dominance conditions. This results in II conditions 
instead of 31. Moreover. since our sufficient conditions in this case involve only norms 
of2 x 2 matrices they are very easy to verify. 
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In Sec. 2 of this paper we define a blockwise strictly rot- 0) diagonally. dominant function 
F and we derive a sufficient condition for F to be a blockwise strictly (or IIt diagonalI! 
dominant function in terms of strict (or fi) diagonal dominance of an associated matrix. 
In Sec. 3. this condition is applied to obtain sufficient conditions for the convergence of 
block Jacobi or Gauss-Seidel iterations. This application is straightforwlard once the results 
in Set . 2 have been established and follows the reasoning in More 171. In Sec. 3 we give 
a concise description of the 3-i model of the load flow problem for electric power 
systems. This model is new and contains several novel features 161. In Sec. 5. we show 
how the notion of s1 block diagonal dominance is applied to solve the system of quadratic 
equations which arise in the S-k model. Part of the application depends upon certain 
physical assumptions, and we state clearly what these assumptions are. Finally.. w’e con- 
clude in Sec. 6 with numerical examples consisting of an illustrative. small. three-bus 
electric power system. as well as a realistic 30 node system used as a standard IEEE test 
by AEP (American Electric Power). Comparisons are made with the conventional New,- 
ton-Raphson iteration. 

2. DEFINITIONS AND BASIC RESULTS 

We first review the motivation for the definition of a pointwise diagonally dominant 
function [7]. For x E R”. let // x III = max 1 x, 1. 

I 

Lemma 1. Let v E R” ; then the following statements are equil-alent: 

(a) / uk 1 > C 1 zlj / for some k E N, N = {I. 2. 3 . . . n}. 

j#k 

(b) x UiXj = 0 implies that ( xk 1 < I/ x [lx for any x E R”. 
_j=l 

For a proof see [7]. If A is an n x II matrix, and for some k E N, 11~ = uk., j = 1 . . n, 
then (a) is equivalent to assuming “strict diagonal dominance on the kth row”. Condition 
(b). however, can be generalized to the nonlinear case. 

Definition I 

(a) A functional fr : D C R” - R ’ is pointwise (strictly) diagonally dominant on D 
with respect to the kth variable if for every x f y in D 

fk(x) = f~(y) implies that / s/, - _va I 5 11 x - y I/_ (<) 

(b) A.firnction F: D C R” - R” is pointwise (strictly) diagonally dominant on D if for 
each k E N the kth component function of F. .fr. is pointwise (strictly) diagonally 
dominant with respect to the kth variable. 

In order to define a hlock~t-ise strictly diagonally dominant function we first partition 
a vector x E R” into subvectors. Let 

x7 = cx:. x2’ . . . x:,. x; E R”,. x,’ = (x;, . . . x,,~,) (11 



and let YJJYJJYJYYJYJYJYJYJJJ

Let A YJbe an n x n matrixYJ partiTYJYJYJJJYJYYioned into II, x II, matrices A,, , I i i. j 5 s: 

(3) YJ

(3) J

(4) YJJYJ

It folJYYJlows easily that the operator norms /I A /I = sup 11 Ax IJill x I/ induced by the vector 
\fO YY

normsJ inJ (2) and (3) are 

Lemma YJJ2. Let the matrix A be partitioned as in (41, let An be the tzh x tz matrix 

A,, = [AL,, AH . . . Aks] k= l...s. 

and assume that the (square) matrix Akk is nonsingular. Then (a’) 3 (b’) where 

(a’) 1 > II AC’ IL c II AA, IL 
I*!7 

(b’) Akx = Ax,x, 4 AA2x2 + . + Ak,,x, = 0, x # 0 implies /I xx 11% < I/ x 11% for all 

x E R” partitioned as in (1). 

Proof: We have for each k. I 5 /i 5 s, 

Also. 

(5) 

(6) 
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Combining (5) and (6). we obtain 

or 

(7) 

(7) combined with the assumption (a’) above gives 

II Xh /I= < II x IL 

whereas in the scalar case (n, = 1, s = n) it is also true that (b’) j (a’), see [7]. in the 
matrix case in Lemma 2 in general (b’) $ (a’). H owever. the sufficiency of (a’) is enough 
for our purposes later. 

Counterexample: Take n = 4. s = 2, n, = 2. II? = 2 and let 

Then 

A,,x, + A,?x2 = 0 

becomes 

(8) 

Now, (b’) holds because if xl and x2 satisfy (8) and they are both not zero, then they 
satisfy (b’) since 

I XII I 5 ; II x2 II= 

+ II Xl II= < II x;? II= = II x II= 

However, (a’) does not hold because: 

10 0 
All’ = 

I I 
Of’ 

II A 17’ /I= 

II A IZ II= = 20 

= 10 



An II x II matrix partitioned as in (3) is called blockwise (strictiS. diagonalI! dominant 

if its Lth row-block A,: is blockwise (strictly) diagonalI!, dominant. i.e. if for each X = I. 
3 _ .s 

The following examples show that neither of the two notions for matrice\. point\\ i\c or 
blockwise strict diagonal dominance, implies the other. 

Esrrtnplr (pointwise strict block diagonal dominance does not imply blockwise diagonal 
dominance). The matrix 

A= 

5 3 

5 8 H 0 1 
7 0 

is pointwise strictly diagonal dominant. However since 

we have 

= 

I -1 ii 24 1 =- 3 x -,. 
31 
X>l 

so that A is not blockwise diagonally dominant. 

E.I-O~IIII/C (blocks ise strict diagonal dominance does not imply pointuisc diagonal dom- 
inance). The matrix 
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is not pointwise diagonally dominant. However. since 

IlAG IJx /(A,:! Jlr = 
--- 

II AG’ Ilx II AZI II= = 1 . ; < 1 

A is blockwise strictly diagonally dominant. 
Although in the (vector) case the implication in Lemma 2 is in only one direction. 

whereas in the scalar case there is an equivalence. we nevertheless adopt the following 
definitions for block diagonal dominance for nonlinear mappings because they lead to 
sufficient conditions for convergence of iterations. 

Let x, y E R” be partitioned as in (I). 

Definitiotr 3 
A function fA partitioned into 

f: = (fx‘, 1 fIz . . K,,, A= 1.2....s 

fn: D C R” --, R”” 

is h/o&wise strictly diagonally dominant on D with respect to the kth block if for every 
x#yinD 

fk(x) = fk(y) implies that /I xk - yx /II < I/ x - y /Ix 

Definition 4 

A function F partitioned into 

F7 = (f:, f:. . ff) (9) 
F: D c R” - R” 

is hlockwise strictly diagonally dominant on D if for each IC = 1 . . . s fx is blockwise 
strictly diagonally dominant on D with respect to the kth block. 

We now prove a result that gives a sufficient condition for a function to be blockwise 
diagonally dominant in terms of its derivative. As in [7] the notion of differentiability used 
is that of the Gateaux deirvative. We use the notation difx = dfA/dx,. which is an 11~ x 11; 
matrix. and f; = (dtfk. dzfk . . . d,fx). 

THEOREM 2.1: Let F: D C R” -+ R” be G-differentiable on the convex set Do C D. 

Assume that for each x, y E Do the matrix Atx. y) = [AL,,(x. y)l. I 5 X..j 5 s 

AA.,(x, Y) = d.,fx[x + rty - x)1 dl (IO) 

is a blockwise strictly diagonally dominant matrix. Then F is a blockwise strictly diagonally 
dominant function on D,,. 
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Proof: Let k E 5 be g :n and assume that fr(x) = fn(y) for some x = y in Do. 
Applying the integral form t the Mean Value Theorem ~‘e hav,c 

I’ f; [x t 1( - x,] (y - x) dr = 0 
0 

or 

,g, J,’ d,fk[X + tcy - x)] dr (y, - x,) = 0 

that is 

c AL,(Y., - XI) = 0 
I~ I 

Using Lemma 2 this implies that 

// y, - x, /lx < 1) y - x I/_ for j = I. 2 . . s 

which is the criterion for F to be a blockwise strict diagonally dominant function on D,,. 
The integral in ( 10) may be difficult to evaluate in practice. If F is a quadratic mapping. 

however, (10) can be replaced by an expression which is simpler to evaluate. 

THEOREM 2.3: Let F: D C R” + R” be a quadratic mapping on the convex set 
Do C D: that is, let fkj denote the ith component of fx then for I r X 5 J. 1 5 i 5 JZA. 
1 25 I’. t 5 t1 

(II) 

Suppose that the matrix F’(x) is a blockwise strictly diagonally dominant matrix for each 
x E D,,. Then F is a blockwise strictly diagonally dominant function on I>,,. 

Pt~c?fY From (I I) we have for I 5 IPI 5 II 

The (i. Ilr)th element of the matrix AL, in (IO) is of the form 

ii,,,,fX;[x + t(x - y)] dr 

= (did.\-,,,)f‘,, 

[- 

1 (x 
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Therefore in (IO) we now have 

Therefore, the criterion for Aki(x, y) to be a blockwise strictly diagonally dominant matrix 
for all x, y E D,, becomes blockwise strict diagonally dominance for the matrix F’(x). 

In many applications. including the load flow problem for electric power systems. the 
matrices involved are block diagonally dominant but not strictly block diagonally domi- 
nant. In such cases we introduce a generalization of the notion of block irreducibility 
introduced in [3]: 

Definition: An n x n matrix A partitioned as in (4) is block irreducible if the s x s 
matrix B = (b;.,) where b,, = I( A,j 11 is irreducible. i.e. if the graph of B is strongly 
connected. 

Following the development in [7] we first introduce a generalization of a block strictly 
diagonally dominant matrix by stating a lemma. The proof is similar to that of Lemma 9. 

Lemma 3: Let the matrix A be partitioned as in (4). Let Ax be the ~1~ x II matrix 

AA = [AA,. AC . . . ALI !, = I . s 

and assume that the square matrix A kk is nonsingular. Then (a’) + (b’) where 

(a’) 1 2 II AL’ /Ix x (1 Akj 1(x 
j#k 

(b’) Ax = Aklx, + Ak>xz + a.- + Aksxs = 0, x # 0 

implies that either ]I xk I/_ < /I x /jJT or I/ xk II_ = II x /I= = II xj Ilcz, whenever /I Ak,j /Ix # 0 for 
any x E R”, partitioned as in (1). 

In order to specify the counterpart of the condition II Ak; /IX # 0 for nonlinear mappings 
we extend to the block case the definition of diagonal dominance with respect to a family 
of networks which was introduced in [7]. A network fl = (N, A) consists of a set of n 
nodesN = (1, . . . , n}, and a set A C N x N of directed links which contain no loops; 
that is, (i, i) E A if i E N. A node i is connected to a nodej if there is a directed path in 
A from i toj: that is, a sequence of links of the form (i, i,). (i,. i2) . . . (i,,j). 

Definition 5 
Let x, y E R” be partitioned as in (1) and let F: D C R” + R” be partitioned as in (9). 

The mapping F is blockwise diagonally dominant on D with respect to the family of net- 
works {a,,,.: x, y E D, x Z y} if for every x, y E D, x # y the network Cl,,,. = (S, A,,,) 
iS such that fk (y) = fk(X) and k E s implies that either )/ xx - yr II1 < 1) x - y II= or 
II xk - yk /Ix = 1) x - y II2 = I/ xj - yj ]I3 whenever (k,j) E Al,?. 

If follows from Lemma 3 that for F a linear mapping and A the associated matrix, if 
A is a blockwise diagonally dominant matrix then F is a blockwise diagonally dominant 
mapping on all of R” with respect to the network f2, = (S. ‘IA). Here II is the same 
for all X, y, and AA is defined as 

IA_, = {(i,j) E S x S. II A,, 11.x f 0) 
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The converse is, however. not true. as illustrated by the following counterexample: 

Coli~f~~e.~ut~?~~e: let 17 = il. s = 7. tlI = 9. tlz = 9,. A f1, A II be defined as in (8). and 

We have already shown that f,( yf = fl(x) for some y i x implies that 11 x I - y 1 :il 
</l~-y/),.Iff~(y)=f~(x)fory#xthenlix?-y,//,=~~/x,-p~ij,<~x-yj:, 
so that F is a blockwise diagonally dominant mapping for all x. y E R”. x # y with 
respect to fIA. In this case .AA = ((1. 2). (2, I)}. As we have shown. however, by con- 
sidering the first row block A is not a blockwise diagonally dominant matrix. 

In the case when all the blocks are one by one (that is. tt, = I for all i) and R,,, does 
not depend upon T. then the de~nition reduces to that in [7] for a (p~~intwise) diag~~n~~ll~ 
dominant mapping on D with respect to a family of networks {O, : x E D}, In the pointwise 
case (b’) also implies (a’). Also, there is then an equivalence for linear maps between a 
diagonally dominant matrix A and a diagonally dominant mapping with respect to (I,., . 

Next we formulate the concept of a block irreducible matrix as a special case of a 
broader definition for general maps. 

Let x. y E R” be partitioned as in (I) and let F: D C R” + R” be partitioned as in (9). 
The mapping F is blockwise weakly S1-diagonally dominant on D if for every x, y E 11. 
x i y. there is a network R ,.,, = (S. A.,,,.) such that: 

(a) F is btockwise diagonally dominant with respect to the family of networks (ft,,, ). 
and 

(b) for every x, y E II, x # y there is a nonempty subset J,., of S such that for each 
i E J,,, . f,(y) = f,(x) implies that I/ y, - xi /lx <: I/ ,v - x j/, and for each i @ J,,, 

there is a path in A_,,,. from i to somej = j(i) E J,,,.. Sometimes the networks i1, 
and the sets J, are independent of x E D. 

Dqfinitiorr 7 
Let x E R” be partitioned as in (1) and let F: D C R” - R” be partitioned as 

in (9). The mapping F is blockwise R-diagonally dominant on D if there is a network 
R = (S. A) such that 

(a) F is blockwise diagonally dominant with respect to the network R = (S. A1), and 
(b) there is a nonempty subset J of S such that for each i E J. f, is a strictly diagonally 

dominant mapping with respect to xi and for each i @ .I there is a path in :I from 
i to somej = j(i) E J. 

In particular. if F is a linear mapping on all of R” and A is its associated matrix. then 
A (weakly) blockwise O-diagonally dominant on R” means that F is (weakly) blockwise 
R-diagonally dominant on R” with a,,, = 0, for all x. y E R”. x j. y, In this case the 
following theorem is an immediate consequence of the definitions and Lemma 3. 

THEOREM 2.3: Let A be an (/I x n) matrix partitioned as in (4). Suppose that A is a 
blockwise di~lgonally dominant matrix. Then A is blockwise weakly ~~-diagon~~lly domin~lnt 
if and only if A is blockwise G-diagonally dominant. 



The condition on .I in (b) is a generalization of block irreducibility for a matrix. and 
the definition of a blockwise a-diagonally dominant mapping is a generalization of a 
blockwise irreducibly diagonally dominant matrix (see [3]). 

Now we prove the analogs of Theorems 2.1 and 2.2 for 0-blockwise diagonally dom- 
inant matrices. 

THEOREM 2.4: Let F: D C R” + R” be continuously differentiable on the convex set 
Do C D. Assume that for each x. y E Do the matrix A(x. y) defined in (10) is an n- 
blockwise diagonally dominant matrix. Then F is a blockwise weakly R-diagonally dom- 
inant function on Do. 

Proof: Let x, y E Do, x # y be given, set A = A(x, y), :2,,,. = {(i,j): i. j f S. i Z j. 

II A;j I/z f 01, ax,,. = (S, lZx,y), J,,>. = {i: 1 > 11 Ai’ I/= 2 I/ A,, II=}. Then for each i $ 
J’l 

Jr,,., there is a path in A.,,,. from i to some j = j(i) E J,,,.. We now show that F is blockw,ise 
diagonally dominant on Do with respect to the family of networks {n,.,.}. Suppose for X 
E S fk(y) = fx(x), and II yA - XL I/= = 11 y - x I)_. Applying the integral form of the Mean 
Value theorem as in the proof of Theorem 2. I. we again have 

i Aki(y, - x,) = 0. 
i= I 

Since by assumption A is an fJ blockwise diagonally dominant matrix, it follows from 
Lemma 3 that II y,j - x.; /lx = 1) y - x llr whenever (/i, j) E II,,,.. It also follows from 
Lemma 2 that if k E J,,F then /( yk - XX (lx < II y - x /IX. This concludes the proof. 

THEOREM 2.5: Let F: D C R” --, R” be a quadratic mapping on the convex set Do C 

D defined as in (I I). Suppose that the matrix F’(x) is an R-blockwise diagonally dominant 
matrix for each x E D,,. Then F(x) is a blockwise 0 weakly diagonally dominant function 
on Do. 

Proqf: The proof closely parallels that of Theorem 2.2. 

3. UNDERRELAXED BLOCK JACOBI AND BLOCK GAUSS-SEIDEL 
ITERATIONS 

Defir~ifior~ 8 (Underrelaxed Blockwise Jacobi Iterative method) 

Let F: D C R” -+ R” be partitioned as in (9), and let x E R” be partitioned as in (I). 
Then the underrelaxed Block Jacobi iterative method is as follows: given an initial 

guess x “” f R”. for each k E S, solve for xx from fn 

fx(xS, xs’ . . . xc-, , x/,, xf+ , . x!‘, = 0 

and take 

x’x”l = (1 - o,x’x’ + wxx (12) 

for a given under relaxation parameter 

O<wSl, and for p = 0. I, 2 . . 
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Dc:finition 9 (Underrelaxed BIL:kwise Gauss-Seidel Iterative Method). 

Let F: D C R” --, R” be partitioned as in (9) and let x f R” be partitioned as in ( I). 
Then the underrelaxed Block Gauss-Seidel iterative method is as follows: given initial 

guesses x)(“. ,4 = I. 2 s solve successively for X~ X = I. 2 .s from 

and take 

fh(X’;+‘. x3-l xl;:;. XI. x’;_, . x!)) zz 0 

x’;.l = (1 - w)x5: + WXA (I?) 

for a given under relaxation parameter 0 < w 5 1. and for p = 0. I. 2 . 
We now derive sufficient conditions for the underrelaxed Block Jacobi and Block 

Gauss-Seidel iterations to converge. Our development parallels that of Mor6 171. 

Definitim 10 
A rectangle Q in R” is the Cartesian product of tz intervals I,. each of which may be 

either open. closed, or semi-open. (The form (IX,. +x) or [a,. 4 3~): cy, = --x is permitted 
in the first form: otherwise, (Y, is real.) 

THEOREM 3.1: Let Q be a convex set in the case of Block Gauss-Seidel iterations or 
let Q be a rectangle in the case of Block Jacobi iterations. Let F: Q C R” - R” be 
partitioned as in (9). suppose that F is a blockwise weakly diagonally dominant function 
on Q. and suppose that for each x E Q and k E S, then tlh equations 

fA(X,. x2 . . XI,. , . t, Xl+, . x) = 0 

have a unique solution ti = [t$l, t%z, . . . , t,&,,]E Q. Then the Block Gauss-Seidel and 
Block Jacobi sequences defined as in (I 2) and (13) are well defined for uny x0 E Q and 
for either method there is an iteration function H: Q C R” - R” such that: 

a) The method is equivalent to xx +’ = Hx’. I\ = 0, I . 
b) H(L)) C Q. 
c) 1) Hx - Hy /II 5 /I x - y //_ for every x. y E Q. 

Moreover. if Fx = 0 has a unique solution x in Q, then 

d) // H” ~/- 1 x - x” 11,. < !I x - x* 11% for every x f xv where I denotes the number of 
elements in .I:,, 

Proc:f: The proof is exactly the same as that of Theorem S.3 in [7] with j/ hi(x) - 
hi(y) /II replacing / h;(x) - h,(y) 1 and A,,) replacing iI, where appropriate. We do not 
repeat the proof here. The next corollary can be proved in the same way. 

Corolltrr~. 3.2: Let F: Q C R” - R” satisfy the hypotheses of Theorem 3.1 on the 
closed rectangle Q. Then Fx = 0 has a unique solution x* E L, if and only if for some .P 
E Q the Jacobi or Gauss-Seidel iterates in (12) and (13) with w E (0. I] are bounded. In 
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particular this occurs if Q is bounded: in any case. the iterates will converge to .I-* for 
any .rO E Q. 

Our principal concern is the application of Corollary 3.2 to the solution of the load 
flow problem for electric power systems. We now briefly describe a new formulation of 
the load flow problem which leads to a system of nonlinear equations Fx = 0 where each 
fk(x) is a quadratic function. 

4. THE 3-E MODEL OF THE LOAD FLOW PROBLEM FOR ELECTRIC 
POWER SYSTEMS 

Every electric power system consists of a set of 

(i) buses, 
(ii) generators, 

(iii) loads. 
(iv) transmission lines. 

In [6] a new mathematical model is formulated for an electric power system. In this 
model the unknowns are complex valued voltages (denoted by E). Complex valued power 
flows (denoted by 3) are described in terms of the voltages k and a generalized Kirchhoff 
power flow law is applied. 

An S-L graph is used to represent the electric power system. In this graph the hrrscs 
are represented by nodes and ,!?; is the voltage at bus i. Each generafor- is represented 
by a single hranciz and associated with this branch is the (complex) value of an ideal 
power flow source called an input or an injection. Each loud is also represented by a 
single brunch and associated with this branch is the (complex) value of another ideal 
power flow. again called an input or an injection. Each transmission lint. however. is 
represented by trr’o brunches: associated with one branch is the (complex) value of the 
trammiffed power flow from one end of the line to the other, i.e. from one bus to another 
(the transmitted power flow is a known (quadratic) function of the voltages at both ends 
of the line). and associated with the other branch is the (complex) value of power loss 
flow from one end of the line to the other (the power loss flow is another known (quadratic) 
function of the voltages at both ends of the line). The concept of representing transmission 
lines by tn’o branches of the graph is new and is an essential contribution to the formulation 
in [6]. Each generator i has a fixed injected active power P, into node i and a fixed known 
magnitude V, of the complex voltage at node i (often called a PV bus). Each loud i has 
fixed known injected active power Pi and reactive power Q; into node i (often called PQ 
bus). Finally there is always at least one bus called the “slrrcli hers”. which has a fixed 
known (complex) voltage. In the 3-E graph a slack bus is always connected to a single 
branch and associated with this branch is an ideal voltage source with the same value as 
the voltage of the slack bus. 

An example of a small electric power system is shown in Fig. I in the form of a one- 
line diagram [2]. 

The simplest way of describing this system is that it consists of: one generator, the 
branch connecting node 1 to the ground (node 1, in this case. is also taken to be the slack 
bus): two loads between each of the nodes i = 2,3, and the ground; and three transmission 
lines, from 1 to 2. from 2 to 3, and from 1 to 3. Each node i = 2, 3, has a known load 
associated with it. This load (input) is denoted by Si = Pi + fl Qj. The voltages kj 
i = 2, 3 are to be determined. The _&; represent the steady-state voltage differences 
between the voltage at the ith node and the ground. A physical constraint is that for each 
i, Re &Ii > 0. 
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For our purposes we represent each complex number E, using rectangular coordinates: 

.6 = El., 4 \ -1 E,, Et, > 0 i= 1,7,3... 

The voltage of the ground is considered to have magnitude zero. 

Each transmission line connecting node i and node k is characterized by its complex 
impedance 2, = R;k -C I, ?A’,, where RtA is the resistance and XiA the reactance. or 
equivalently by its complex admittance i/,~ = 

- 
lli,r = G,r - v - 1 B,k where G,i is the 

conductance and B,k is the susceptance. R,,: and Gix correspond to real power losses on 
the line. In particular for lossless lines i,k = \fq Xix. k,, = - \ - 1 B,i. B,n is al~avs 

positive. 
The 3-k graph corresponding to Fig. 1 is shown in Fig. ;1. Completely, transmitted 

power from node i to node X. .?fk. has the form 

* denotes complex conjugation. Total power loss on this line because of the flow from 
node i to node k. sfi. has the form 

A basic property of an 3-g graph is that power flows (instead of currents) satisfy 
Kirchhoff’s flow law: the sum of power flows at each node is zero. For more details see 

[61. 
Assume that there are (n + 1) nodes in the 3-b graph. The slack node is taken to 

be the 01 + 1)st node. Let all the loads of a given system belong to a set {PQ} and all 
the generators to a set {PV}. Then, given the values of the inputs S, at all PQ buses. the 
active power injections P, and voltage magnitudes Vi of all PV buses of an electric power 

2 

h 
S = Power 
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G = Generator 

L = Load 

3 

Fig. 2. S-E graph for a three-bus system 

system, the load flow problem is to find the real and imaginary parts of the voltages at 
the buses. The voltage at the slack bus is assumed to be known. 

There is currently no closed form solution for this problem. All the algorithms are of 
iterative type: a detailed overview is given in [lo]. 

The algorithm whose convergence properties we analyze is given in detail in 161. The 
working equations of this algorithm depend on the choice of a minimal spanning tree for 
a given 3-g graph. In general there are many choices for the minimal spanning tree. 

We analyze the algorithm when the minimal spanning tree has a single root which is 
taken to be the ground. For this choice the implicit equations describing voltages in terms 
of injections have the same form as the conventional load flow equations [IO]. 

It is always true that {kj} n {lj} = +. 

For nodej, let 

{X-;} be the set of all nodes connected to nodej which have transmitted power branches 
going ton~ards j 

{l,j} be the set of all nodes connected to nodej which have transmitted power going 
awx>’ from j 

Then the application of Kirchhoff s flow law leads to the following equation for 

flow into node j - flow out of node j = 0 

C ~,(~~ - ~,)*Y~j - ~ [) bj - ~, I2 + E,(Jtj - ~,)*I Y,T, + S, = 0. 
~C-E(k.,) (E{I,f 

This reduces to 



YA., = - \ 7 BA,. 1.,, = - \ - I B,,, with Bk, > 0. B,, > 0 

and (14) becomes for I 5 j 5 II 

For lossless systems in particular, (IS) is a quadratic system of fl complex valued equations - 
f, = 0 in the 2n real valued unknowns. Writing], = 0 = f)” -V - 1 ,f:“. 3, = P, + 

V’TQ,, we obtain 2L (L is the number of load buses) real valued equations for the load 
nodes 

L_ ;” = c (E,.,EM + E,,,Eky)Bx, - (Ef, t E;,)Bk, f 
hE(X,J 

+ 2 (E,.,&, + E,,.E,,)B,I - (E,;, + Ef,.)B,, + Q, = 0 
/Et/,) 

fj” = 2 (Ej,Exx - E.,xEky)Bk., + 2 (E,yE,.x - E,,E,,)B,, - P, = o 
hE’,b) (Et/,\ 

I. E {PQ). 

For the generator nodes. the voltage magnitudes instead of the injected reactive 
are known so we have 2(n - L) real valued equations: 

fj” = E;, + ,5,‘,. - V.f = 0 

f:” = 2 (E,,.Ek, - E,.v&)Bh, + c (E,,E,, - E,,E,,)B,, - P, = 0 
re_jr,1 JEii,l 

.i E {PC?}. 

(16a) 

(16b) 

power 

(16c) 

(16d) 

Let f, = (f:“, f:“)‘. x, = (Ej,. E,, j7. Then (16) is partitioned in a natural way with each 
II, in (I 1 equal to 2. n in (1) replaced by (In) and s in (1) equal to II. Similarly each A, in 
(9) is equal to 2 and F = (f:. fs . . fL)7. 

5. APPLICATION OF R BLOCK DIAGONAL DOMINANCE TO THE LOAD 
FLOW PROBLEM 

We restrict the discussion in this section to a class of power systems which has the 
lossless property and which has no more than one generator (with (II/J’ number of loads). 
We wish to use the block Jacobi and block Gauss-Seidcl iterations (BGS) defined in ( 12) 
and (13) to solve (16). By Corollary 3.2 the iterations converge if there is a closed rectangle 
Q C K’” such that the following conditions are satisfied: 

I ) F is a blockwise R weakly diagonally dominant function on Q. 
2) either Q is bounded or for some s” in Q the iterates arc all bounded. 
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3) for each li = I. 3 . . . II. 

fn(x,. x, . . XL&l, t. XL_, . . . x,,) = () 

has a unique solution tl = [rxl . /x1]7 E Q. 

We study each of these sufficient conditions when applied to the solution of Fx = 0 
in (16) separately. 

Condirions (I) and (2): 
By Theorem 2.5 since F is a quadratic function, a sufficient condition for F to be a 

blockwise R weakly diagonally dominant function is that F’(x) is an R blockwise diagonally 
dominant matrix for each x E Q. Let 

A,ji(X) = 

F’(x) is a blockwise diagonally dominant matrix if forj = 1 . . II we have (1 A,,; ’ 11% 2 
r-l 

II Aji II 2 1. 
It is generally assumed in electric power systems (and has been verified empirically) 

that one set of voltages called the flat start is close to the true (physical) solution to t 16) 
(in the case under discussion only (16a), (l6b) apply) which we denote by .!?‘. The flat 
start at each node is the voltage which has zero phase angle and magnitude 1; that is. 
denoting the flat start at node i by E?’ we have 

We now show that the 7n x 212 matrix F’(,!?) is blockwise diagonally dominant. It 
is easily calculated that at x = i?“. 

(17) 

/) A,k II? = Bk; if k E {kj}, k # II + I (18) 

11 A,/ II= = Bj/ if 1 E {/ii. I# II + I. (19) 

If thejth node is not connected to the (n + I)st node (slack node) then (n + 1) z {A,} 
and (n + 1) g {I,}. Therefore, 

II A,’ II= 2 II A.,, II= = 
i#J 

There is always at least one node connected to the slack node. Ifj is such a node, then 
(n + 1) E {ki} U {I,} SO that either B,+l,, or Bi.tz+l (or both) are missing from the sum 
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in the numerator in (20). B,,_ , , and B;.,,_ , are. lowever. both present in the sums in ( 17). 
Therefore. for any node connected to a slack 7 lde. strict inequality holds in (30): 

It is not difficult to show that for any’ x. the matrix A(x) = [~I,~(x)j is block irreducible. 
Therefore. we have shown that F’tp’..‘) is an I) blockwise diagonally dominant matrix, 

Since the physical solution Ff to t 16) is known to be close to L’-.‘. if is (IS,(.IIHIPL/ that 
there is a closed bounded rectangle Q containing I?’ such that F’(E) is an II blockwise 
diagonally dominant matrix for all i? E Q. Under this assumption. using Theorem 2.5. 
conditions (1) and (2) are satisfied. 

In order to satisfy condition (3). E, = (E,,. E,, 1’ must be solved for. in ( 16) for ,j = 
l.?... II. Define 

0, = c ELBA, + 
aeir,t 

,z) EI,B,I 

(31) 

Observe that c’, is constant and that ~1,~ and b, are independent of E,., and E,, . Then ( 16a) 
and ( I6b) become 

-(‘/Eft + cliE, 1 + 
(b,E 

I\ - c.;Ef, + 0, ) = () Fa) A_ 

cl,Ei, - b,E,, - P, = 0. t27b) 

Now define 

c, = _ k! p, + ,,p,’ _ Q,, 

(‘I 0; 

A,. B,, c‘i are independent of E,., and E,, 
Then 12(a) becomes 

A,Ef, - B,E,, + (., = 0 

so that 

E,, = 
B, + ]Bf - 4A,C;]” 

3.4, 

E,,. = 
h,E,, + I’, 

(I, 

(73) 

(Xa’) 

(14a) 

(24b) 
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In (24b) E,, is computed from (24a). The right hand sides of (24a) and (24b) are independent 
of E,,, and E,,. , and are uniquely defined once the algebraic sign in (27a) is determined. 
The algebraic sign is determined by using the physical constraint that E,, > 0. at the flat 
start i?‘. At x = EFs we have 

aj = c,i = 2 Bkj + C Bj/: b, = 0 
&{/Cl} IE(I, i 

Aj = Bj = cj > 0 

E_ = ci 2 [c; - 4(PjZ - cjQj)]1’2 
JX 

2Cj 

Ejy = 2. 

(35a) 

(‘Sb) 

We consider only the case when impedance and injections satisfy 

c,,’ - 4( P.7 - Cj Qj) 2 0. (26) 

In order for ZZj, > 0 to hold. the plus sign must be chosen in (25a) and it is therefore 
adopted in (24a) for all x. This defines tf = [tkl, fkz]’ = [E,, . EI,.]’ uniquely. It is 
assumed that tZ E Q so that condition (3) is fulfilled. 

Under the assumptions that have been made, the block Jacobi and block Gauss-Seidel 
iterations are defined and they converge for uny x0 E Q. We take x” to be i”. 

6. NUMERICAL EXAMPLES 

The use of block Jacobi and block Gauss-Seidel iterations to solve (16) is intended for 
large systems (n of the order of 500-1500). The load flows in typical practical cases. taken 
from a collection of IEEE studied systems [ 121 have been solved using the iterative scheme 
described here. In these cases /I is of the order of 150. The results, which corroborate 
the theory presented here, are reported in [5]. In order to illustrate the ideas presented 
here, however. we just consider the small, three bus system shown in Figs. I and 2 with 
the following parameters: 

6.1 An Illustrative three-bus system 

Impedunces Admittances Injections 

z,2 = .l $-i YlZ = - 10 m s, = -.5 + ,023 $-i 
213 = .I $-I Y,? = - 10 m sz = 1.5 + .057 V,=-l 
zz3 = .I m Y23 = - 10 V=-i SJ = - 1.0 + .036 VT 

Node 1 is taken as the slack bus with k:, = I + 0 G. The unknown complex voltages 
are i??. L3. 

The sets {k,} and {/,} are: 

IA,] = {11 {k3] = (1, 21 

(1,) = (31 11,) = 0 
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From (2 1) we obtain 

u-1 = 10E3, + 10 LJ3 = IOEz, + 10 

62 = lOEi> b3 = IO&, 

c-2 = 20 (‘7 = 20 

Equation (16a). (16b) can now be written in the form of (2%) and (2Zb) 

f;” = -2OE;,, + (10E3., + lO)E:, + IOE3,.E2, - 20E;, - ,057 = 0 

f$" = 10E3rE2,. - IOE-r,E,, - 1.5 = 0 

f:” = -2OE$,, + (IOE?, i IO)E 3, + 10E2,E3y - 2OE;, + .036 = 0 

f? = (lOE?, -t 10)E3y - IOE-, Eq, + I.0 = 0 

The matrices Ajx which are different from zero are: 

(IO - 40E2.1 + 10E3,) (-40E3 + IOEs,.) 
AII = 

- lOE3, IO + IOE_r, I 

I OEzy IOEz, 
A,2 = 

lOE2, - lOE_, I 

A = 22 

A-, = 

(10 - 40E3, + lOE?,) ( - 40EJ, + IOE?,) 

- lOE2, I(1 + IOE?, I 

lOEj, 10E3, 

IOEj, - lOE3, 1. 

Both nodes 2 and 3 are connected to the slack node 1. Therefore at EFs there is strict 
block diagonal dominance in row blocks 2 and 3: that is at E’” we have 

I[ A,' 11% 11 A,- 11x = $ . 10 = .5 < 1 

The following table shows the assumption (26) is satisfied 
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Underrelaxed (0 < o 5 1) as well as overrelaxed (w > 1) block Gauss-Seidel iterations 
were tested for various values of w. x” was taken to be Et.'. The iteration was terminated 
when) xp" - x"/ 5 IO-". All iterations except w = I .3 converged to the solution E” : 

k:;=l+O\T 

ri;; = 0.99776 + 0.06671 v - I 

i:; = 0.99985 - 0.01671 \;‘-I 

For w = 1.3, the iteration failed to converge. 

The following tables show the number 
4, 5. On the second line of each table 
starting at x0 = kPks is shown 

d=3 

of iterations as a function of w. for each tl = 3. 
the number of Newton-Raphson (NR) iterations 

W 

Number of 
BGS 
Iterations 

.I .2 .3 .4 .5 .6 .7 .8 .9 I.0 I.1 I.2 

17 I2 9 8 7 6 6 5 5 7 10 30 

Number of NR = 2 
Iterations 

d=4 

w 

Number of BGS 

Iterations 

.I .2 .3 .4 .5 .6 .7 .8 .9 1.0 I.1 I.2 

50 31 23 18 15 13 II 10 9 IO 16 30 

Number of NR = 3 
Iterations 

d=5 

w 

Number of 
BGS 

Iterations 

.I .2 .3 .4 .5 .6 .7 .8 .9 1.0 I.1 1.2 

95 53 37 28 23 19 16 14 I2 19 21 41 

Number of NR = 3 
Iterations 

Finally, as a heuristic check on the existence of the closed rectangle Q which contains 
I?‘.’ and k’, which maps into itself under the iteration map, and on which F’(i) is a 
blockwise Sr diagonally dominant matrix for ,!? E Q, F’(&‘) can be calculated. Substi- 
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tuting ,r? = F’ in the expressions for Air we obtain 

Therefore at Ef, the matrix A is. in this case. blockwise strictly diagonally dominant 

Very similar conclusions to the above were drawn for the standard IEEE test iZEP 
system consisting of 30 nodes. Three types of simulations were performed. The system 
was treated as: 

I.) A lossless system consisting of 29 PQ buses and one slack bus. 
2.) A lossless system consisting of 2 PV buses and 28 fQ buses. 

Some typical results comparing BGS iterations with NR iterations are: 

I .) Initial guess = flat start, d = 3 

0 .I .2 .3 .4 .S .6 .7 .X .9 I.0 1.05 I.! 

Number of BGS 34 33 57 78 102 109 II! 110 107 10.5 104 * 
Iterations 

Number of NR = 3 
Iterations 

* failed to converge 

2.) Initial guess = flat start. d = 3 

w .! .2 .3 .4 .5 .6 .7 .x .9 1.0 I.05 1.1 

Number of BGS 36 51 70 IO8 120 I21 119 116 I13 109 118 * 

Iterations 

Number of NR = 3 
Iterations 

* failed to converge 

Notice that the number of iterations in I .) and 3.) is approximately the same. From I .) 
and 2. ) it follows that w = 0.1 is w”~‘. Using smaller increments (0. I) around w = 0.1 
confirmed that wDpt is indeed approximately 0.1. For this w we have studied the effects 
of varying the initial conditions from the flat start. although this is not covered by our 
theory. The initial voltage was always taken to be realEP, = ET. real for all i, E.t = 0. 
d = 4, w = 0. I. We also tested the Newton-Raphson method starting at each initial guess. 
The results are as follows: 



29’ Block diagonal dominance 

EP .9 .8 .7 .6 .5 .4 .3 .2 

Ntrmber of BGS 35 54 86 116 142 162 * * 

Iterations 

Number of NR 4 4 5 7 * * * * 

Iterations 

E’: .9 .8 .7 .6 .5 .4 .3 .2 

Number of BGS 56 85 118 189 238 292 * * 

Iterations 

Number of NR 4 4 5 7 * * * * 

Iterations 

* failed to converge 

It is clear that when NR converges it requires fewer iterations to achieve the desired 
accuracy (10P3) than BGS. The cost per iteration for NR is. of course, much greater. On 
the other hand, BGS converges for initial guesses that are considerably further from the 
flat start than NR. 

When making the sample runs, it was observed that the nonconverging cases were 
discovered much faster in the BGS method than in the NR method. In the BGS method 
the nonconverging cases are determined easily via the nonexistence of of a real solution 
in (24a), because of a negative value under the square root. In using the NR method one 
has to actually allow a large number of NR steps before concluding that the iteration 
diverges. 

1. 

2. 
3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
I I. 

12. 
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