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Abstract—The concept of a pointwise strict {or 1) diagonally dominant nonlinear func-
tion, first introduced by Moré. is generalized to the blockwise case. A sufficient con-
dition is obtained for the convergence of underrelaxed block Jacobi and block Gauss-
Seidel iterations for a nonlinear system of equations in terms of the strict (or 1) diagonal
dominance of an associated matrix. A new formulation for the determination of the
steady-state load flow in lossless electric power systems is described and it is shown
that this formulation leads to the solution of a system of quadratic equations in the
unknown (complex-valued) voltages. Under suitable assumptions on the power system
the sufficient condition is satisfied. Numerical examples, consisting of an illustrative
three bus system and a realistic thirty bus system. are presented. Results of our block
Gauss-Seidel iteration are compared with those of Newton-Raphson iteration.
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1. INTRODU" "1ION

The notions of strict diagonal dominance and irreducible diagonal dominance have long
been used in solving linear systems of equations via the iterative methods of Jacobi and
Gauss-Seidel. In the work of Moré [7] the notion of diagonal dominance of matrices is
generalized to systems of nonlinear equations. A (pointwise) diagonally dominant non-
linear mapping is defined for the real domain. and it is shown that this definition is equiv-
alent to diagonal dominance of matrices when the mapping is lincar. The notion of irre-
ducible diagonal dominance is also generalized to Q diagonal dominance. Sufficient
conditions are given for the convergence of pointwise nonlinear Jacobi or Gauss-Seidel
methods.

In this paper we extend the definition of a pointwise strictly (or €1) diagonally dominant
nonlinear mapping to a blockwise strictly (or 1) diagonally dominant nonlincar mapping.
We then derive sufficient conditions for a guadraric mapping to be a blockwise strictly
(or €) diagonally dominant mapping in terms of an associated blockwise strictly tor Q)
diagonally dominant matrix. A sufficient condition is also derived for more general non-
linear mappings, but in the nonquadratic case this condition is more difficult to verify in
practice.

Feingold and Varga [3] have studied block diagonal dominance for linear mappings and
their work has been applied in practice (for example. by Price in {8]). The condition that
we derive here is similar to that in {3] but it applies to quadratic mappings as well as
linear.

Our motivation for introducing blockwise diagonally dominant nonlinear mappings
comes from load flow studies in electric power systems. Every electric power system
consists of a set of hydre, thermal, and/or nuclear generating units. various types of loads.
and a transmission system connecting the generating units and the loads. For such a system
the desired performance is one in which. for known loads and available generating units,
the power balance at each instant is satisfied without violating any of the given constramnts
on produced and transmitted power.

Given the steady state value of the injections (outputs of generators. loads, etc.) at the
buses of a symmetrical three phase electric power system. the load flow problem is that
of determining the magnitudes and phase angles of the voltages at the buses. This problem
has a vast literature (see, for example. [1. 4, 11]) and is of considerable importance in
practice. The relations between the voltage and current in the transmission network are
mostly linear (strictly hnear. if only transmission lines are involved [9]): however. power
relations on the network are inherently nonlinear and some of the components of injec-
tions, loads for example, are nonlinear functions of the bus voitages. The load flow problem
is then the solution of a large number of nonlinear algebraic equations.

In [6] a new formulation of the load flow problem is presented. It is shown there that
solving the load flow problem is equivalent to solving a system of quadratic, nonanalytic
equations in €”. (The nonanalyticity occurs because of the presence of terms of the for
| E |, where E is complex, £ = E, + \/—1 E,). Because of the nonanalyticity. the
complex derivative does not exist, so that standard iterative procedures which use com-
plex derivatives do not apply. Instead we introduce (2 X 2) blocks on R*" via block Gauss-
Seidel or block Jacobi methods.

One could use the sufficient pointwise conditions given in [7]. applied to quadratic
mappings. in order to obtain 2n conditions for convergence. However. since each node
in the system has associated with it two real valued unknown voltages. it 1s more natural
to consider the nonlinear mapping from 4" into ‘€ as consisting of (2 x 2) blocks in R*"
and to introduce the blockwise diagonal dominance conditions. This results in n conditions
instead of 211, Morcover. since our sufficient conditions in this case involve only norms
of 2 x 2 matrices they are very easy to verify.
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In Sec. 2 of this paper we define a blockwise strictly (or () diagonally dominant function
F and we derive a sufficient condition for F to be a blockwise strictly tor Q) diagonally
domindnt function in terms of strict (or ) diagonal dominance of an associated matrix.
In Sec. 3. this condition is applied to obtain sufficient conditions for the convergence of
block Jacobi or Gauss-Seidel iterations. This application is straightforward once the results
in Sec. 2 have been established and follows the reasoning in Moré [7]. In Sec. 4 we give
a concise description of the S—E model of the load flow problem for electric power
systems. This model is new and contains several novel features {6]. In Sec. 5. we show
how the notion of Q block diagonal dominance is applied to solve the system of quadratic
equations which arise in the S—E model. Part of the application depends upon certain
physical assumptions, and we state clearly what these assumptions are. Finally. we con-
clude in Sec. 6 with numerical examples consisting of an illustrative. small. three-bus
electric power system. as well as a realistic 30 node system used as a standard IEEE test
by AEP (American Electric Power). Comparisons are made with the conventional New-
ton-Raphson iteration.

2. DEFINITIONS AND BASIC RESULTS

We first review the motivation for the definition of a pointwise diagonally dominant
function {7]. For x € R". let || x . = max | x|

Lemma 1. Let v € R"; then the following statements are equivalent:

(@ [vi| > > |v;| forsome k€ N, N = {1.2.3 ... n}.

J=k

(b) > v;x; = 0 implies that | x, | < | x ||l for any x € R".
J=1

For a proof see [7]. If A is an n X n matrix. and for some k € N, v; = ay; j=1...n,
then (a) is equivalent to assuming *'strict diagonal dominance on the kth row'". Condition
(b). however, can be generalized to the nonlinear case.

Definition 1

(a) A functional f;: D C R” — R' is pointwise (strictly) diagonally dominant on D
with respect to the Ath variable if for every x # y in D

fix) = fily) implies that | xy — v | =[x = y |l (<)
(b} A function F: D C R" — R" is pointwise {strictly) diagonally dominant on D if for
each & € N the kth component function of F. f,. is pointwise (strictly) diagonally

dominant with respect to the Ath variable.

In order to define a blockwise strictly diagonally dominant function we first partition
a vector x € R” into subvectors. Let

x' = (x{.x3...x]), X, ER". x! = (... xu) (1)

.
> n o=n

i=1
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and let

II'x Ji= max %l =

8§

I

Il Ih

max | x;, |
ijJEN

S={l.2...5 (2)

2 hx;lh = 2 E fxgl= 2 [xyl (3)

i=1 i=1 =1

iJEN

Let A be an n X n matrix partitioned into n; X n; matrices A;,, 1 =i, j = s:

[ An A A ,.\]
A= AAZ' Ax A > ni = n. (4)
: : : o
A.\'l A.\Z A.\.\J
It follows easily that the operator norms || A | = sup || Ax |i/|| x || induced by the vector
=0
norms in (2) and (3) are
IA e = max 3 [ Ayl
ieS jES
| Al = max > 1AL
JES es

Lemma 2.

Ar = [An. Ar -

Let the matrix A be partitioned as in (4), let A, be the n, X n matrix

--Aks] kzl...S.

and assume that the (square) matrix A, is nonsingular. Then (a') = (b') where

@) 1> A I 2 1Ak =

d=k

b") Apx = AuiX, + ApXs + ...
x € R" partitioned as in (1).

+ Agx, = 0, x # 0 implies || xz |l.. < || x ||« for all

Proof: We have foreach k, 1 = k =5,
Auxi = = 3 Aux,
ik
L Axs e = 2 11 Akix;
il (5)
=2 1 Ax i 1l % |
JHk
=2 1Akl x .
J=k
Also.
hxudl> = | A[AI Al = || Al:kl e | Acaxs Il (6)
x|

A x| =

A
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Combining (5) and (6). we obtain
I E ATy
hAG - % '

or

e lle = AR e 20 Ak el X (7

J=Kk
(7) combined with the assumption (a’) above gives
Xl <)X e
whereas in the scalar case (n, = 1, s = n) it is also true that (b’) = (a'), see [7]. in the

matrix case in Lemma 2 in general (b") ;& (a’). However, the sufficiency of (a’) is enough
for our purposes later.

Counterexample: Take n = 4,5 = 2, n; = 2. n, = 2 and let
oy 1o
A= |10 Ap = - 40 40
0 40 10 10
Then

becomes
1y 11
10 ful - — a0 a0| "' =o0. (8)
0 40 X12 10 10 Xo2

Now, (b’) holds because if x, and x, satisfy (8) and they are both not zero, then they
satisfy (b’) since

1
IXHISEHXsz
%l <fix20= =l x{

1
| xi2 | =5l %2 [l

However, (a') does not hold because:

10 0
ARt = |y L. 4Rtk =10
40
| Avzlle = 20
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and
AL AL = (10) (205 = 200 > ]

Definition 2

An n X n matrix partitioned as in (4) is called blockwise (strictly) diagonally dominant
if its &th row-block A, is blockwise (strictly) diagonally dominant. i.c. if for each A = 1,
2.

. = 1. (<)

i: A/:/\l Hf E H A/\/E

g=h

The following examples show that neither of the two notions for matrices. pointwise or
blockwise strict diagonal dominance. implies the other.

Example (pointwise strict block diagonal dominance does not imply blockwise diagonal
dominance). The matrix

1
o)
A= L = 3o _3
01 8
TAxy .. = 7.
we have
21
[ Al Ay I = § > ]

so that A is not blockwise diagonally dominant.

Example (blockwise strict diagonal dominance does not imply pointwise diagonal dom-
inance). The matrix
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is not pointwise diagonally dominant. However. since

1
—1 _ h) 5 _ 11
TAG Al = 8 3 1 2—<]
25~ 25kl
1 1
Az I | Azr lle = 1 ';< 1

A is blockwise strictly diagonally dominant.

Although in the {vector) case the implication in Lemma 2 is in only one direction.
whereas in the scalar case there is an equivalence. we nevertheless adopt the following
definitions for block diagonal dominance for nonlinear mappings because they lead to
sufficient conditions for convergence of iterations.

Let x, y € R” be partitioned as in (1).

Definition 3
A function f; partitioned into

f.. DCR"—> R™

is blockwise strictly diagonally dominant on D with respect to the kth block if for every
x#yinD

f(x) = f,{y) implies that || xx — yi - < ||x — ¥ |

Definition 4
A function F partitioned into

FT' = (7.7 .. .t
F:DCR"— R"

9)

is blockwise strictly diagonally dominant on D if for each & = 1 ... s f,is blockwise
strictly diagonally dominant on D with respect to the kth block.

We now prove a result that gives a sufficient condition for a function to be blockwise
diagonally dominant in terms of its derivative. As in 7] the notion of differentiability used
is that of the Gateaux deirvative. We use the notation d,f; = af,/9x,. which is an n, X n;
matrix. and f/: = (alfk- ﬁgf/\ N a\-fk)-

THEOREM 2.1: Let F: D C R”" — R" be G-differentiable on the convex set Dy, C D.
Assume that for each x, y € Dy the matrix A(x,y) = [Ag,(x. ¥ I =k, j=3s

i
Agix,y) = ﬁ) a6 0x + iy — x)] ds (10)

is a blockwise strictly diagonally dominant matrix. Then F is a blockwise strictly diagonally
dominant function on Dy,
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Proof: Let kK € § be g :n and assume that fi(x) = f(¥) for some x = y in Dy.
Applying the integral form ¢ the Mean Value Theorem we have

I
f fiix + fy — )]y —x)dt =0
i
or

N
> f, afilx + 1ty = x)]dr(y, —x)) =0
1

S

that 1s

> Ay, —x) =0
1

!

Using Lemma 2 this implies that
by, = % <y ~ x| for j=1.2...5s
which is the criterion for F to be a blockwise strict diagonally dominant function on Dy.
The integral in (10) may be difficult to evaluate in practice. If F is a quadratic mapping.
however, (10) can be replaced by an expression which is simpler to evaluate.
THEOREM 2.2: Let F: D C R" — R" be a quadratic mapping on the convex set

Dy C D: that is, let f.; denote the ith component of f, then for | = A = 5.1 =1 = ny,

l=r.t=n

fox) = D arixx, + 2 b x, + M (1)

Suppose that the matrix F’(x) is a blockwise strictly diagonally dominant matrix for each
x € Dy,. Then F is a blockwise strictly diagonally dominant function on 3.

Proof: From (11) we havefor I = m = n
(X, ) kXY = D (ahi + dahi)x, + b

The (i. rm)th clement of the matrix Ay, in (10) is of the form

1
[) ('}/nfkilx + 1(x — })] d[
St

I

1
S b+ i s o, ot < 0

i

. l
> by, + any) [; (x, + ,\u-)] + bl

1
((”/("-\./n)fiiliz (x + y)] ‘
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Therefore in (10) we now have

[
A/\j = a,f; [; ix + y)] .

Therefore, the criterion for A (X, y) to be a blockwise strictly diagonally dominant matrix
for all x, y € D, becomes blockwise strict diagonally dominance for the matrix F'(x).

In many applications. including the load flow problem for electric power systems. the
matrices involved are block diagonally dominant but not strictly block diagonally domi-
nant. In such cases we introduce a generalization of the notion of block irreducibility
introduced in [3]:

Definition: An n X n matrix A partitioned as in (4) is block irreducible if the s x &
matrix B = (b;;) where b;; = || A, | is trreducible. i.e. if the graph of B is strongly
connected.

Following the development in [7] we first introduce a generalization of a block strictly
diagonally dominant matrix by stating a lemma. The proof is similar to that of Lemma 2.

Lemma 3. Let the matrix A be partitioned as in (4). Let A, be the n, %X »n matrix
AkZ[Akl.A/‘v:z...A/\,\-] A=1...5s
and assume that the square matrix A, is nonsingular. Then (a’) = (b') where

@) 1z=z[Ag > | Ak =

JHEk
(b’) Ax = A“xl + Ak2X2 + o+ Aksxs = 0, X # 0

implies that either || X Jl« < | X |l OF || Xk [« = || X [l= = || X; [}, whenever || Ay, |« # 0 for
any x € R”, partitioned as in (1).

In order to specify the counterpart of the condition || A; ||l # 0 for nonlinear mappings
we extend to the block case the definition of diagonal dominance with respect to a family
of networks which was introduced in [7]. A network 0 = (N, A) consists of a set of n
nodes N = {1, ..., n},and aset A C N x N of directed links which contain no loops;
thatis, (i, 7)) € Aif i € N. A node i is connected to a node j if there is a directed path in
A from / to j; that is, a sequence of links of the form (i, iy). (i1, i2) . . . (i, ).

Definition 5

Let x, y € R” be partitioned as in (1) and let F: D C R" — R" be partitioned as in (9).
The mapping F is blockwise diagonally dominant on D with respect to the family of net-
works {Q,.,: X,y € D, x # y} if for every x, y € D, x # y the network Q. , = (S, A,,)
is such that f; (y) = fi«(x) and k& € S implies that either || x; — yi|x < | x — y | or
I %« = yall= = lIx = yll= = | x; — y; |l whenever (&, j) € A, ,.

If follows from Lemma 3 that for F a linear mapping and A the associated matrix, if
A is a blockwise diagonally dominant matrix then F is a blockwise diagonally dominant
mapping on all of R™ with respect to the network 14, = (S, A,4). Here {2 is the same
for all x, ¥, and A4 is defined as

Aa ={i,)H)ES xS, Il Al = 0}
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The converse is, however. not true, as illustrated by the following counterexample;

Counterexample:letn = 4,5 = 2. ny = 2. n: = 2. Ay;. A2 be defined as in (8). and
1 0 20
A = Az =
0 1 0 2

We have already shown that f,(y) = fi(x) for some y # x implies that | x; — ¥, ix
<hx =yl Ffady) = fax)fory # xthen|x2 — ¥2l= = 3l x; = v <P x — ¥ u
so that F is a blockwise diagonally dominant mapping for all x. ¥y € R”, x # y with
respect to {1,. In this case A4 = {(1. 2), (2, )}. As we have shown. however, by con-
sidering the first row block A is not a blockwise diagonally dominant matrix.

In the case when all the blocks are one by one (that is. n; = | for all /) and 1, . does
not depend upon v, then the definition reduces to that in [7] for a {pointwise) diagonally
dominant mapping on D with respect to a family of networks {1, : x € D}. In the pointwise
case (b’') also implies (a’). Also, there is then an equivalence for linear maps between a
diagonally dominant matrix A and a diagonally dominant mapping with respect to {1,.

Next we formulate the concept of a block irreducible matrix as a special case of a
broader definition for general maps.

Definition 6

Let x. y € R" be partitioned as in (1) and let F: D C R" — R" be partitioned as in (9).
The mapping F is blockwise weakly (-diagonally dominant on D if for every x, y € D.
x < y, there is a network Q.. = (5. A, ,) such that:

{a) F is blockwise diagonally dominant with respect to the family of networks {2, .}
and

(b) for every x, y € D, x # y there is a nonempty subset J, . of § such that for each
i € J,.. fly) = fi(x) implies that |y, — x; = <[y — x| and for each i & J,
there is a path in A, , from i to some j = j(i) € J, .. Sometimes the networks (1,
and the sets J, are independent of x € D.

Definition 7
Let x € R” be partitioned as in (1) and let F: D C R" — R" be partitioned as

in (9). The mapping F is blockwise (}-diagonally dominant on D if there is a network
Q = (5. A) such that

(a) F is blockwise diagonally dominant with respect to the network {} = (5. A}, and

{b) there is a nonempty subset J of § such that for each i € J. f; is a strictly diagonally
dominant mapping with respect to x; and for each i ¢ J there is a path in A from
itosomej = ji) € J.

In particular, if F is a linear mapping on all of R” and A 1s its associated matrix. then
A {weakly) blockwise Q-diagonally dominant on R” means that F is (weakly) blockwise
QO-diagonally dominant on R” with Q,, = Q4 for all x. y € R”. x # y. In this case the
following theorem is an immediate consequence of the definitions and Lemma 3.

THEOREM 2.3:  Let A be an (n X »n) matrix partitioned as in (4). Suppose that A is a
blockwise diagonally dominant matrix. Then A is blockwise weakly Q-diagonally dominant
if and only if A 1s blockwise £-diagonally dominant.
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The condition on J in (b) is a generalization of block irreducibility for a matrix. and
the definition of a blockwise Q-diagonally dominant mapping is a generalization of a
blockwise irreducibly diagonally dominant matrix (see [3]).

Now we prove the analogs of Theorems 2.1 and 2.2 for Q-blockwise diagonally dom-
inant matrices.

THeEOREM 2.4: Let F: D C R” — R” be continuously differentiable on the convex set
Do C D. Assume that for each x, y € Dy the matrix A(x. y) defined in (10) is an Q-
blockwise diagonally dominant matrix. Then F is a blockwise weakly Q-diagonally dom-
inant function on Dy.

Proof: Letx,y € Do, x # ybegiven, set A = A(X,y). Ay = i j i jE ST # ).
| Aijlle # 0}, Qey = (S, Axy) Joy = {it 1 > A7 " |« X I Aijllx}. Then for each i ¢
Wil
J...thereisapathin A, , fromito somej = j(i) € J, ,. We now show that F is blockwise
diagonally dominant on D, with respect to the family of networks {Q, .}. Suppose for &
€ Sfi(y) = fi(x),and ||y, — x| = |y — x |l.. Applying the integral form of the Mean
Value theorem as in the proof of Theorem 2.1, we again have

> Ay, — x) = 0.

J=1

Since by assumption A is an ) blockwise diagonally dominant matrix. it follows from
Lemma 3 that ||y, — x;}= = ||y — x|l= whenever (£, j) € Q. ,. It also follows from
Lemma 2 that if K € J,, then || yx — %z [l <[y — x [l.. This concludes the proof.

THeorREM 2.5: Let F: D C R" — R" be a quadratic mapping on the convex set D, C
D defined as in (11). Suppose that the matrix F'(x) is an -blockwise diagonally dominant
matrix for each x € D,. Then F(x) is a blockwise (} weakly diagonally dominant function
on Dy.

Proof: The proof closely paralleis that of Theorem 2.2.

3. UNDERRELAXED BLOCK JACOBI AND BLLOCK GAUSS-SEIDEL
ITERATIONS

Definition 8 (Underrelaxed Blockwise Jacobi Iterative method).

Let F: D C R" — R’ be partitioned as in (9), and let x € R" be partitioned as in (1).
Then the underrelaxed Block Jacobi iterative method is as follows: given an initial
guess x'" € R”, for each & € S, solve for x, from f,

fo(xP, x5 .. . xi X, X840 .. X)) =0

and take

n~

X2 = (1 - o)xf + wx, (12)
for a given under relaxation parameter

0<w=1, andfor p=20,1,2....
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Definition 9 (Underrelaxed Blc:kwise Gauss-Seidel Iterative Method).

Let F: D C R" — R” be partitioned as in (9) and let x € R” be partitioned as in (1).
Then the underrelaxed Block Gauss-Seidel iterative method is as follows: given initial

guesses x¢, k = 1,2 ... s solve successively forx, A = 1.2 ... s from
fxitox8T xR T X XK LX) =0
and take
X = (1 — wx{ + wx (13)

for a given under relaxation parameter 0 < w = l.andforp = 0. 1.2 .. ..
We now derive sufficient conditions for the underrelaxed Block Jacobi and Block
Gauss-Seidel iterations to converge. Our development parallels that of Moré [7].

Definition 10

A rectangle Q in R" is the Cartesian product of n intervals /,. each of which may be
either open. closed. or semi-open. (The form («;. + =) or [a,;. +*):a; = —* is permitted
in the first form: otherwise, «; 1s real.)

Q: HIA
i=1

THEOREM 3.1:  Let Q be a convex set in the case of Block Gauss-Seidel iterations or
let O be a rectangle in the case of Block Jacobi iterations. Let F: Q C R” — R" be
partitioned as in (9). suppose that F is a blockwise weakly diagonally dominant function
on (, and suppose that for each x € Q and A € S, then s, equations

filx). x> . . . Xpeoo X200 ...x) =0

have a unique solution t, = [}, tf2, . . . . t#.JE€ Q. Then the Block Gauss-Seidel and
Block Jacobi sequences defined as in (12) and (13) are well defined for any x" € Q and
for either method there is an iteration function H: Q C R” — R” such that:

a) The method is equivalent to x**!' = Hx* k = 0.1....
b) H(Q) C Q.
c) | Hx — Hyll. =[x — y |- forevery x.y € Q.

Moreover. if Fx = 0 has a unique solution x in Q, then

dy P H" 7V x - x* | <[ x — x*|l. for every x # x* where / denotes the number of
elements in J* .

Proof: The proof is exactly the same as that of Theorem 5.3 in [7] with || h(x) —
h;(v) |- replacing | hi(x) — hd{y)| and A, , replacing A, where appropriate. We do not
repeat the proof here. The next corollary can be proved in the same way.

Corollary 3.2: Let F: Q C R" — R" satisty the hypotheses of Theorem 3.1 on the
closed rectangle Q. Then Fx = 0 has a unique solution x* € Q if and only if for some x*
€ QO the Jacobi or Gauss-Seidel iterates in (12) and (13) with w € (0, 1] are bounded. In
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particular this occurs if Q is bounded: in any case. the iterates will converge to x* for
any x" € Q.

Our principal concern is the application of Corollary 3.2 to the solution of the load
flow problem for electric power systems. We now briefly describe a new formulation of
the load flow problem which leads to a system of nonlinear equations Fx = 0 where each
f«(x) is a quadratic function.

4. THE S-E MODEL OF THE LOAD FLOW PROBLEM FOR ELECTRIC
POWER SYSTEMS

Every electric power system consists of a set of

(i) buses,
(i1} generators,
(iii) loads,
(1v) transmission lines.

In {6] a new mathematical model is formulated for an electric power system. In this
model the unknowns are complex valued voltages (denoted by E). Complex valued power
flows (denoted by S) are described in terms of the voltages £ and a generalized Kirchhoff
power flow law is applied.

An S—E graph is used to represent the electric power system. In this graph the buses
are represented by nodes and E; is the voltage at bus i. Each generator is represented
by a single branch and associated with this branch is the (complex) value of an ideal
power flow source called an input or an injection. Each load is also represented by a
single branch and associated with this branch is the (complex) value of another ideal
power flow, again called an input or an injection. Each transmission line. however, is
represented by two branches: associated with one branch is the (complex) value of the
transmirted power flow from one end of the line to the other, i.e. from one bus to another
(the transmitted power flow is a known (quadratic) function of the voltages at both ends
of the line). and associated with the other branch is the (complex) value of power loss
flow from one end of the line to the other (the power loss flow is another known (quadratic)
function of the voltages at both ends of the line). The concept of representing transmission
lines by rwo branches of the graph is new and is an essential contribution to the formulation
in [6]. Each generaror i has a fixed injected active power P, into node i and a fixed known
magnitude V; of the complex voltage at node i (often called a PV bus). Each load i has
fixed known injected active power P, and reactive power (J; into node i (often called PQ
bus). Finally there is always at least one bus called the *‘slack bus’’. which has a fixed
known (complex) voltage. In the S—E graph a slack bus is always connected to a single
branch and associated with this branch is an ideal voltage source with the same value as
the voltage of the slack bus.

An example of a small electric power system is shown in Fig. | in the form of a one-
line diagram [2].

The simplest way of describing this system is that it consists of: one generator, the
branch connecting node 1 to the ground (node 1, in this case, is also taken to be the slack
bus): two loads between each of the nodes{ = 2, 3, and the ground; and three transmission
lines, from | to 2, from 2 to 3, and from 1 to 3. Each node { = 2, 3, has a known load
associated with it. This load (input) is denoted by S; = P; + \/ =1 Q,. The voltages E;
i = 2.3 are to be determined. The E; represent the steady-state voltage differences
belwegn the voltage at the ith node and the ground. A physical constraint is that for each
i,Re E; > 0.
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For our purposes we represent each complex number E; using rectangular coordinates:
E,=E.+N—-1E, E.,>0 i=123....
The voltage of the ground is considered to have magnitude zero.

Each transmission line connecting node i and node k is characterized by its complex
impedance Zi = Ry + V= 1X, where R is the resistance and X the reactance. or

equivalently by its complex admittance Yo = UZy = Gy — "— 1B, where G is the
conductance and B is the susceptance. Ry and Gy correspond to real power losses on
the line. In particular for lossless lines Zu =N —1Xu. Yo = =\ = 1By, By is always
positive.

The S—E graph corresponding to Fig. 1 is shown in Fig. 2. Completely transmitted
power from node i to node A. S,k, has the form

B EWE; — EQ*

Sh = = EdE; — E* Vi

ik
* denotes complex conjugation. Total power loss on this line because of the flow from

node i to node k., S%4. has the form

E,— E.
7 %
ik

- ‘E, - Ek lzf/ﬁ

%28
s
Il

A basic property of an S—E graph is that power flows (instead of currents) satisfy
Kirchhoff's flow law: the sum of power flows at each node is zero. For more details see
[6].

Assume that there are (n + 1) nodes in the S-E graph. The slack node is taken to
be the (n + Dst node. Let all the loads of a given system belong to a set {PQ} and all
the generators to a set {PV}. Then, given the values of the inputs §; at all PQ buses, the
active power injections P, and voltage magnitudes V; of all PV buses of an electric power

2
AT
SIZ
A
S = Power
"N
AT E = Voltage
S23
FaY
T
Si3
3
/\L /\L‘ P A o "\L
513" Stz T E= Y553
Fay A
IER ts,

Fig. 1. One-line diagram for a three-bus system
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G = Generator
L= Load

L3
Fig. 2. S—E graph for a three-bus system.

system, the load flow problem is to find the real and imaginary parts of the voltages at
the buses. The voltage at the slack bus is assumed to be known.

There is currently no closed form solution for this problem. All the algorithms are of
iterative type: a detailed overview is given in [10].

The algorithm whose convergence properties we analyze is given in detail in [6]. The
working equations of this algorithm depend on the choice of a minimal spanning tree for
a given S—£ graph. In general there are many choices for the minimal spanning tree.

We analyze the algorithm when the minimal spanning tree has a single root which is
taken to be the ground. For this choice the implicit equations describing voltages in terms
of injections have the same form as the conventional load flow equations [10].

For node j, let

{k;} be the set of all nodes connected to node j which have transmitted power branches
going towards j

{I.} be the set of all nodes connected to node j which have transmitted power going
away from j

It is always true that {k;} N {I;} = ¢.
Then the application of Kirchhoff’s flow law leads to the following equation for

l=j=n:

flow into node j — flow out of node j = 0
S SL- X Sh- 2 8h+8,=0

kE{k,} lell} 1E{l;}
S E(E - ENcvl, - S (E - EP+ E(E; - EN¥1YE + S, = 0.
ketk;} le{l;}

JEAPQ} U {PV}
This reduces to

S EfEc - ENi Yy - S EAE, - E)¥h+ S, =0, (14)

kELk;} le{y}
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For lossless transmission lines. we have
Yo, = =N =1By,. Y, = —\—-1B,,. with By, >0, B,>0
and (14) becomes for I = j = n

VET S EAEc— EN*By, — v =1 3 EAE, — En*B = S, =0
ke {k,t le{l}

(15)
€ {PQ} U {PV}.

For lossless systems in particular, (15) is a quadratic system of n complex valuedAequauons
f 0 in the 2n real valued unknowns. ertmgf, =0 =fi" «\v=1f2, =P, +

"—1Q,. we obtain 2L (L is the number of load buses) real valued equations for the load
nodes

i = E (E;jxEw + E;j Ep)By; — (E[;x -+ E,zx)Bk,
keE{k)}
+ S (EnEn + ELEB, — (EL + E}B, + Q= 0 (162)
te{l;}
}2) = 2 (Ej.\'Ekx - E‘/xEk_\-)Bkj + E (E,/’,\'Elx - EI\'E/\')B.II - PJ =0
AeE{k;} {4}

€ {PO}. (16b)

For the generator nodes. the voltage magnitudes instead of the injected reactive power
are known so we have 2(n — L) real valued equations:

f‘,l’
J
f‘-:’
iy

Ej. + E,-V;=0
2 (EJ-"EI‘"' - E’b"E"ﬂ")Bk»/‘ + 2 (E./\'E/\ - E/\'EI\‘)B;/I - P, =0

KE{k} iSHa

(16¢)

€ {PQ}. (16d)

Letf, = (f\", £ x, = (E;.. E;»)". Then (16) is partitioned in a natural way with cach
n; in (1) equal to 2, n in (1) replaced by (2n) and s in (1) equal to n. Similarly each &; in
(9isequalto2and F = (£, f1 ... )"

5. APPLICATION OF Q BLOCK DIAGONAL DOMINANCE TO THE LOAD
FLOW PROBLEM

We restrict the discussion in this section to a class of power systems which has the
lossless property and which has no more than one generator {with any number of loads).
We wish to use the block Jacobt and block Gauss-Seidel iterations (BGS) defined in (12)
and (13) to solve (16). By Corollary 3.2 the iterations converge if there is a closed rectangle
Q C R* such that the following conditions are satisfied:

1) Fis a blockwise  weakly diagonally dominant function on (),
2) either Q is bounded or for some x” in Q the iterates are all bounded,
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3) foreachk = 1.2 ... 1.
filxy X2, . . Xeo o b Xk . o X)) =0
has a unique solution tf = [1:. 1.2]" € 0.

We study each of these sufficient conditions when applied to the solution of Fx = 0
in (16) separately.

Conditions (1) and (2):

By Theorem 2.5 since F is a quadratic function, a sufficient condition for F to be a
blockwise  weakly diagonally dominant function is that £7(x) is an {2 blockwise diagonally
dominant matrix for each x € Q. Let

A g
aEi.\' 8Ei\‘
Ajilx) = . .
oo ofp
8E‘i.\' (:)Ei)‘
F'(x) is a blockwise diagonally dominant matrix if forj = 1 ... n we have || A;;' . >

lA = 1.

It 1s generally assumed in electric power systems (and has been verified empirically)
that one set of voltages called the flat start is close to the true (physical) solution to {16)
(in the case under discussion only (16a), (16b) apply) which we denote by E'. The flat
start at each node 1s the voltage which has zero phase angle and magnitude 1: that is.
denoting the flat start at node i by Ef® we have

EL> = 1. EES =0 i=1...n.

We now show that the 2n X 2n matrix F'(EFS) is blockwise diagonally dominant. It
is easily calculated that at x = Ef5,

FAz - = 1/( > By+ X B,,-/) (17)

= =i
| A ll- = By if k& {k;}, k#n+ 1 (18)
H A_// ||’x = B_// if 1€ {1/}, l#n+ 1. (19)

If the jth node is not connected to the (n + 1)st node (slack node) then (# + 1) e {&;}
and (n + 1) ¢ {{;}. Therefore,

TAG = 221 Ajill= =

i)

(2 By + S B,,)/< S B+ S B,,,) — 1. Q)

kEk;) = KE{k;} =D

There is always at least one node connected to the slack node. If j is such a node, then
(n + 1) € {k;} U {l,} so that either B, ., ; or Bj .. (or both) are missing from the sum
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in the numerator in (20). B, ., ;and B, ,,_, are. iowever, both present in the sums in (17).
Therefore. for any node connected to a slack 7 ,de. strict inequality holds in (20):

AT DAL <
It is not difficult to show that for any x. the matrix A(x) = |A;.(x)] is block irreducible.
Therefore. we have shown that F'(E*®) is an Q blockwise diagonally dominant matrix.
Since the physical solution £’ to (16) is known to be close to EX*_ ir is assumed that
there is a closed bounded rectangle  containing E’ such that F'(E) is an ) blockwise
diagonally dominant matrix for all £ € Q. Under this assumption. using Theorem 2.5.
conditions (1) and (2) are satisfied.

Condition (3):
In order to satisfy condition (3). E, = (£,.. E,.}' must be solved for. in {16) for ; =
1.2 ... n. Define

(l»,‘ = E Ek\Bk_/ + E E/.\'B//

keEik,} le{l}

b_/' = E E/\\~B/\_/ + E E/\-B,/ (2])
ISt el

C; = E BA/+ E B,/>0.
keE{k,} =1

Observe that ¢; is constant and that a; and b, are independent of £,, and E,, . Then (16a)
and (16b) become

~Ef + wE + (hE; — GEF+ Q) =0 (22a)

(I»,‘E,'V\ - IZ,‘E,‘_\ - P, = 0. (22b)

Now define

A

b
A,‘-_—(",'<l + — > ()
: a;
h: 2 ',’l ,'P,'
By = a, + L - T (23)
d; a;
b; o P7
Ci= P +—-5"-0,.
’ a; a;i Q
A;. B,, C; are independent of E;, and E,, .
Then 22(a) becomes
AEL — BJE,, + C, =0 (22a")
so that
B, = B} — 4A,C;]"" ,
E/'\ = ZA, (24d)

_ Dk AP (24b)

a;
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In (24b) E; . is computed from (24a). The right hand sides of (24a) and (24b) are independent
of E,, and E;,, and are uniquely defined once the algebraic sign in (27a) is determined.
The algebraic sign is determined by using the physical constraint that £,, > 0. at the flat
start EFS. At x = EFS we have

a =¢; = 2 Bkj+ Elel bj=0
kelk)} 1€{l;}

Aj = B_,' = Cj >0
¢ = - - Q)

Cj

2Cj
P;
a;

We consider only the case when impedance and injections satisfy

In order for E;, > 0 to hold. the plus sign must be chosen in (25a) and it is therefore
adopted in (24a) for all x. This defines tf = (141, tx2]” = [Exc. Ex]? uniquely. It is
assumed that t¥ € Q so that condition (3) is fulfilled.

Under the assumptions that have been made, the block Jacobi and block Gauss-Seidel
iterations are defined and they converge for any x° € Q. We take x" to be Ef%.

6. NUMERICAL EXAMPLES

The use of block Jacobi and block Gauss-Seidel iterations to solve (16) is intended for
large systems (» of the order of 500—1500). The load flows in typical practical cases. taken
from a collection of IEEE studied systems [12] have been solved using the iterative scheme
described here. In these cases » is of the order of 150. The results. which corroborate
the theory presented here, are reported in [5]. In order to illustrate the ideas presented
here, however, we just consider the small, three bus system shown in Figs. I and 2 with
the following parameters:

6.1 An Hlustrative three-bus system

Impedances Admittances Injections

Zyp = 1 V-1 Y= -10/~-1 Si= =54+ .023Vv-1

213":.1\/—-—1 Y= —-10/-1 S, = 1.5 + .057 v—1

Zy = 1NV Y3 = =10V =1 S3 = —10 +.036 V=1
Node 1 is taken as the slack bus with E, =1 + 0/=1. The unknown complex voltages
are E£-. Es.

The sets {k;} and {/,} are:
{ka} = {1} {ks} = {1, 2}

{12} = {3} {3} = 0
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From (21) we obtain

a» = 10E;, + 10 az = 10E,, + 10
b: = IOEz\ b} = IOE_}_\-
c2 =20 cx = 20

Equation (16a). (16b) can now be written in the form of (25a) and (25b)

U = =20E3, + (10E3, + 10)Es, + 10E5 Ea — 20E3, + 057 = 0
& = 10E5,Esy — 10E5,Ex — 1.5 = 0
i = =20F3% + (10Ex, + 10)Es, + 10E5 Ex — 20E3, + .036 = 0

£ = (10E2, + 10)Es, — 10E3, Exy +~ 1.0 = 0

The matrices A which are different from zero are:

(10 — 40E», + 10E+.) (—40E>, + 10E.,)
A =
| —10E;, 10 + 10K,
[ 10E,, 10E,,
Ap =
_IOEZA\' ——IOEl\'
[(10 — 40E+, + 10E-y) (—40E., + 10Ea)
A =
—10E >, 10 + 10Ea,
[ 10E . 10E;,
Ao =
10E, — 10E s,

Both nodes 2 and 3 are connected to the slack node 1. Thqrefore at EFS there is strict
block diagonal dominance in row blocks 2 and 3: that is at E* we have

]
AT 1l Az Il '.)_0" 10 =5<1

1
10 = 5<1

||A1~2I = il Az Il = 56

The following table shows the assumption (26) is satisfied

3 | 484.04
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Underrelaxed (0 < w < 1) as well as overrelaxed (w > 1) block Gauss-Seidel iterations
were tested for various values of w. x" was taken to be EX®. The iteration was terminated

when | x”*' — x” | = 10~ “. All iterations except w = 1.3 converged to the solution E:
Ei=1+0V=1
EL = 0.99776 + 0.06671 \/—1

E; = 0.99985 — 0.01671 v —1

i

For w = 1.3, the iteration failed to converge.

The following tables show the number of iterations as a function of w. for each d =
4, 5. On the second line of each table the number of Newton-Raphson {NR) iterations
starting at x° = E’¥ is shown

Number of
BGS
Iterations

17| 12 9 8 7 6 6 5

LN
~
<

20

Number of NR = 2
Iterations

Number of
BGS 50 | 31 23 18 15 13 11 10 9 10 16 | 30

Iterations B | |

Number of NR = 3
Iterations

Number of
BGS
Iterations

Number of NR =
Iterations

Finally, as a heuristic check on the existence of the closed rectangle Q which contains
E' and E’, which maps into itself under the iteration map, and on which F’ (E)is a
blockwise Q diagonally dominant matrix for Ee Q, F' (E') can be calculated. Substi-
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wuting E = E' in the expressions for A;; we obtain

[AG = A fl = .66 <1

AR L | A2 fie = .65 <

it

Therefore at £'. the matrix A is. in this case. blockwise strictly diagonally dominant.

6.2 A realistic thirty node system

Very similar conclusions to the above were drawn for the standard IEEE test AEP
system consisting of 30 nodes. Three types of simulations were performed. The system
was treated as:

1.) A lossless system consisting of 29 PQ buses and one slack bus.
2.) A lossless system consisting of 2 PV buses and 28 PQ buses.

Some typical results comparing BGS iterations with NR iterations are:

1.) Initial guess = flat start. d = 3

o) 1 020 3 4 5 .6 i 8 S 10] 1.05)1.1

Number of BGS | 34| 33| 57| 78 102 109 111} 110} 107 | 105 104 | =
Iterations

Number of NR = 3
[terations

* failed to converge

2.) Initial guess = flat start. d = 3

© a1 2] 3] 4] sl 6| 7 .8[ 9l 10l 105011
Number of BGS | 36| 51| 70| 108] 120 121] 119] 116] 113 ] 109| 118] =
Iterations l

Number of NR = 3
Iterations

* failed to converge

Notice that the number of iterations in 1.) and 2.) is approximately the same. From 1.)
and 2.) it follows that @ = 0.1 is w°P'. Using smaller increments (0.1) around w = 0.1
confirmed that w°® is indeed approximately 0.1. For this ® we have studied the effects
of varying the initial conditions from the flat start. although this is not covered by our
theory. The initial voltage was always taken to be real E{, = EZ. real for all i, EY = 0,
d = 4,0 = 0.1. We also tested the Newton-Raphson method starting at each initial guess.
The results are as follows:
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E? .9 .8 7 .6 .5 4 3 2
Nuinber of BGS 35 54 86 116 142 162 * *
fterations
Number of NR 4 4 5 7 % ® * "
Iterations
EZ 9 8 7 .6 5 4 3 2
Number of BGS 56 85 118 189 | 238 | 292 * *
Iterations
Number of NR 4 4 5 7 * * * *
Iterations

* failed to converge

It is clear that when NR converges it requires fewer iterations to achieve the desired

accuracy (10 %) than BGS. The cost per iteration for NR is. of course, much greater. On
the other hand, BGS converges for initial guesses that are considerably further from the
flat start than NR.

When making the sample runs, it was observed that the nonconverging cases were

discovered much faster in the BGS method than in the NR method. In the BGS method
the nonconverging cases are determined easily via the nonexistence of of a real solution
in (24a), because of a negative value under the square root. In using the NR method one
has to actually allow a large number of NR steps before concluding that the iteration
diverges.

1.
2
3.

4.
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