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Abstract 

n In this paper we investigate the behaviour of the solutions of equations ~i=t  aix, = b, where 
~--~=~ ai = 0 and b # 0, with respect to colorings of the set N of positive integers. It tunas 
out that for any b # 0 there exists an 8-coloring of N, admitting no monochromatic solution 
of x3 -x2  = x2 - x l  + b. For this equation, for b odd and 2-colorings, only an odd-even col- 
oring prevents a monochromatic solution. For b even and 2-colorings, always monochromatic 
solutions can be found, and bounds for the corresponding Rado numbers are given. If one im- 
poses the ordering xj < x2 < x3, then there exists already a 4-coloring of ~1, which prevents a 
monochromatic solution of x3 - x2 = x2 - xl + b, where b E ~. 

I .  Introduction 

Let A x  = b be a finite system of  linear equations, where all entries of  A and b are 

integers. Rado [6] called a system A x  = b part i t ion regular over M if for every coloring 

of  the set M of  positive integers with a finite number of  colors there always exists a 

monochromatic solution of  A x  = b. He characterized in [6] all such partition regular 

systems of  equations in terms of  certain linear dependencies among the column vectors 
n of  A. For the special case of  one homogeneous equation, he proved that ~ i = l  aixi = 0 

is partition regular over ~ if and only if some of  the coefficients ai sum up tO zero. 

Moreover, Rado's results include van der Waerden's theorem on arithmetic progressions 

[8], i.e., one can always find monochromatic arithmetic progressions o f  arbitrary finite 

length under every coloring o f  l~ using a finite number o f  colors. 

In order to show that a system A x  = b is not partition regular, Rado used in his 

arguments that the number of  colors depends on the entries o f  the matrix A and 

of  b. Following [6], we call a system A x  = b t-regular if  for every coloring A : 

, {0, 1 . . . . .  t - 1 } there always exists a monochromatic solution of  A x  = b. If  the 
system A x  = b is not partition regular, then the degree o f  regularity dorN ( A x  = b)  
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of  this system is defined as the largest integer t such that Ax  = b is t-regular. Rado 

observed that the equation ax + by + e = 0 is either partition regular or has degree of  

regularity at most 1. For homogeneous equations in three variables only the following is 
known: 

Theorem 1.1 (Rado [6]). (i) I f  a E Q and a ¢ 2 k for every integer k E ~-, then 

dor~ (a.  (X 1 + X 2 ) : X 3 ) ~<~ 3. 

(ii) For every k E Y, 

either 2 k • (Xl  + x 2 )  = X3 is partition regular, 

or dort~ (2/~. (Xl + x 2 )  = x3) ~<5. 

(iii) Let p be a prime number and let al,a2,a3,0t E Z. I f  ~ ~ 0  and 

pXala2a3(ai + a2), then 

e i ther  alXl  + a2x2 -4- p~a3x3 = 0 is partition regular 

or dorN (alXl + a2x2 + paa3x3 = 0)~<5. 

(iv) Let p be a prime and let at,a2,a3 E ~-. where pXala2a3, f f  ct, fl, 7 E ~- are 
pairwise distinct, then 

dor~ (p~alxl + p#a2x2 + pYa3x3 = O) <~ 7. 

This lead him to conjecture in [6] that every system Ax  = b in n variables is either 

partition regular or has degree of  regularity at most t = t(n), where t only depends on 

n and not on the entries o f  A and b. This conjecture is still open. As indicated above, 

n = 3 is the smallest unknown case. 
In [6] Rado showed that it suffices to prove this conjecture for systems Ax = b 

consisting o f  one equation only. We observed in Section 2 that for an inhomogeneous 
equation n ~ i = 1  aixi = b with ~i"--l ai = 0 one can bound the degree of  regularity from 
above by a constant, which is independent of  b, but still depends on al,a2 . . . . .  an, 

n n 
i.e., dor~ ( ~ i = l  aixi = b) ~ 2 .  ~i=l lail - 1. In Section 3 we investigate in detail the 
equation x3 - x2 = x2 - xl + b arising from three-term arithmetic progressions. We 

show that if  b is odd, then there exists exactly one coloring A:tR ~ {0, 1 } (up to 
exchanging colors) admitting no monochromatic solution of  x3 - x 2  = x2 - x l  + b. 
For b even, this equation turns out to be 2-regular. Also, we show that the degree of  
regularity of  any equation of  the form x3 - x2 = x2 - xl + b, b ~ 0, is an integer 

between 3 and 7. Imposing the ordering restriction xl < x2 < x3 on the solutions, we 

obtain dor~ (x3 - x2 = x2 - xl + b) ~<3 for any b E /~. 
Finally, in Section 4 we will consider the canonical situation, arising from the 

theorem of  Erd6s and Graham [3] on arithmetic progressions. 
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2. Nonhomogeneous equations 

n In this section we consider equations of  the form ~--~=1 a~x~ = b, where b is not equal 
n 

to zero. For this case, Rado [6] showed that ~i=1 aixi = b is partition regular over 
n b is a positive integer or -. b is a if  and only if ~ i = t  ai 7 ~ 0 and either ~ , " ,  a, ~ : ,  a, 

n negative integer and the equation ~ i = l  aixi = 0 is partition regular over ~ .  

It is useful for our purposes to consider colorings of  the set Q of  rational numbers. 
For this situation, we adapt the notions t-regular, partition regular over Q and degree of  

regularity d o r a ( . )  over Q correspondingly. We will restrict our attention to equations 

~-~_~ agxi = b with ~=ln a~ = 0, as otherwise one always gets a singleton solution. In 
the following we will use an observation essentially made in [7]: 

Lemma 2.1. L e t  al ,a2 . . . . .  an be nonzero integers with y'~i~=l ai = O. L e t  b be any  

nonzero rat ional  number,  Then 

where  to is any  posi t ive  Otteoer with 

([ to >1 b[ + lai .max  1, • ai . 
i=1 

As our lower bound on t is slightly different from the one given in [7], we include 
a proof  of  Lemma 2.1 following [7]: 

n 1 Proof.  Take positive integers m'  and m" with m'/> Ibl + E i = I  Jail and m"  >~ T~" 
n ~"~i=1 Jail. Define a coloring A : Q  , {0,1 . . . . .  m ' - m " -  1} by 

A(x )  - Lm" . x] mod (m 'm" ) .  

n Now suppose that x1,x  2 . . . . .  x n is a monochromatic solution of  ~i=1 aixi = b. Then, 
for i = 1, 2 . . . . .  n, we have 

Lm"xiJ - [m"xlJ m o d ( m ' m " ) ,  

and hence there exist integers ki for i = 1,2 . . . .  , n with 

Lm"xi] - Lm"xlJ = kim' m ' .  

Dividing the last equation by m ' ,  we infer that 

Lo x,JJ Lm xJl:k,m 
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i.e.~ 

kx, J - kx,J =kEm' (1) 

for i : 1,2 . . . . .  n. 

Moreover,  for i = 1 ,2  . . . . .  n, there exist rational numbers ri with - 1  < r~ < 1, such 

that 

m"xi - m"xl = kim'm" + ri • 

tl 
According to the value o f  ~i=1 ai • [xiJ we distinguish two cases. 

I f  ~i~=l ai. [xi] ¢ O, then with Y'~i~t ai = 0 we infer that 

0 ¢  _~z a ~ ' _  Lx;J -- _ a , . (Lx,  J - LxlJ = ,Zaikim'i=l , >~m', 

and here we used that the ai's a r e  integers, hence, 

, ± Z a i  >/ ~ a i "  [xiJ - -  a i ' ( x i -  [xeJ > m ' -  la, l~>lbl. 
i = 1  i = 1  - -  i = 1  

n 
In the second case, where ~ i=1  ai" [xiJ = 0, we see with (1)  and (2)  that 

" .xi ~ )) y~a~ - -  a i ' ( ( x , - x l ) - ( L x ,  J - Lx,J 
i = 1  

= _ ~ < ~ ; "  

(2) 

Notice that the lower bound on t given in Lemma 2.1 yields for large values of  b, 

i.e., Ibl >/~i"--~ lail, that 

t>~ [lb, + ~-~lad] 

In particular, this shows that the equation x3 - x2 = x2 - Xl + b is not [4 + Ibl]-regular 
over Q for [bl 1>4. We will show next that the equation x3 - x2 = x2 - Xl + b is not 

8-regular over Q. 

First we will show the following stronger version of  Lemma 2.1: 

n 
T h e o r e m  2.2. Let al,az . . . . .  a, be nonzero inteoers with Y']~i=l ai = O. Then there ex- 
ists a least integer to E ~ with the followin9 property." For every b E Q, b ~ O, there 
exists a coloring A : Q , {0, 1 . . . . .  to - 1 } such that there is no monochromatic sol- 
ution o f  the equation 

n 

Z a i  " X i  ~ b .  

i = 1  
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We remark that to might be dependent on the values al ,  a2 . . . . .  a , ,  but it is indepen- 

dent of  b. 

n Proof. Let al,a2 . . . . .  an E 7/ with ~ = l  a, = 0 be given. Assume to the contrary that 

for each t E N there exists b(t) E Q, b(t) ~ O, such that for every coloring A : 

Q ~ {0, 1 . . . . .  t -  1 } there always exists a monochromatic solution of  the equation 
n ~-~.i=l aixi =b( t ) .  Take some t E I~1 and b0 E Q, b0 ~ 0, with 

t> . ( [ Ibo[+ ni~=l l a i l l ) . m a x { I ~ ,  ni~=l laill ,  1}. 

By Lemma 2.1 there exists a coloring A*:Q , {0, 1 . . . . .  t -  1 } admitting no mono- 
n 

chromatic solution of  ~--]-i=1 aixi = bo. Define a new coloring A : Q , {0, 1 . . . . .  t - 1 } 

by 

By our assumption at the beginning of  the proof, there exists a monochromatic sol- 
n 

ution of  ~-~i=laixi=b(t) with respect to A. Set y,.-- b(t)x' .b0 for i = 1 , 2  . . . . .  n. Then 
n 

d * ( y l ) =  A*(y2) . . . . .  A*(yn) and ~i=1 aiYi=bo, which contradicts the choice of  
the coloring A*. [] 

n 
Lemma 2.3. Let al,a2 . . . . .  an be nonzero integers with ~i=l  a i = O .  Then there exists 
a positive integer tl such that for  any nonzero rational number b it is 

dora a~ • xi =b =tl. 
\ i = 1  

Proof.  Let al, . . . ,an,  b be given as above. We show that 

dorQ ai • xi = b = dora ai • xi = 1 . 

Suppose first that there exists a coloring A 1 : ~ ~ {0, 1 . . . . .  t - 1 } admitting no mono- 
n 

chromatic solution of  Y~'~i=I aixi =b. Then the coloring A 2 : ~  - - ~  {0, 1 . . . . .  t -  1} with 
n AE(x)=A(x.  b) allows no monochromatic solution of  }-~i=1 aixi= 1. 

On the other hand, if  ~i~_~ aixi = b is t-regular, then using arguments similar to those 
n 

given above, one sees that Y'~i=l aixi = 1 is t-regular, too. [] 

By Theorem 2.2 and Lemma 2.3, we infer tl = to. Moreover, the degree of  regularity 
n n 

of  any equation Y'~i=l aixi =b, where b ¢ 0  and ~ i = t  ai = 0 ,  can be bounded from above 
n 

by 2 .  ~ i=1 [ai[ -- 1, as 

lad + Ibl -max  l, D • lail >~2- Jail, 
i = l  i=1 

n 
and equality holds for Ibl=E/=l [a,]. 



54 A. Bialostocki et aL /Discrete Mathematics 150 (1996) 49~60 

n Now consider the equation ~ i = l  aixi = b. The proofs of  Lemmas 2.1 and 2.3 actually 

yield the coloring A: Q ~ {0, 1 . . . . .  2 .  E ~ I  lag[- 1} with 

[x'~-~in=Ilai]] m o d ( 2 . ~ - ~ l a i ] ) ,  
d(x) -- b i:1 

n 2 n which shows that ~ i : l  aixi : b is not ~ i = t  la/[-regular over Q. This one could have 
had from the beginning of  course, but the statements 2.1-2.3 are of  some interest by 
themselves. 

Clearly, the statements of  Lemma 2.1 carry over for b being a nonzero integer, i f  we 

consider colorings of  [~ only. As ~ is not closed under division, this does not apply 

immediately to Theorem 2.2 and Lemma 2.3, respectively. But as ~ C Q, it follows 

from the above considerations that, for example, 

dor~ (x3 - x2 = x2 - X l  + b) <<. 7 

for every b E Z \ {0}. 

3.  T h e  e q u a t i o n  x3 - x2  = x2 - -  x l  + b 

In this section we consider the equation x 3 - x  2 = X2 - - X l  + b .  For b = 0 and Xl # X2, 
this describes just 3-term arithmetic progressions. 

Given integers b and t with t/> 1, let Dt(b) be the least positive integer n -- Dt(b) 
such that for every coloring A : {1,2 . . . . .  n} , {0, 1 . . . . .  t - 1} there always exist 

integers Xl,X2,X3 with 1 ~<xl <x2 <x3 ~<n such that x 3 - -  X2 = X2 - -  Xl  -{- b and A(xl ) = 
A(x2) = d(x3). I f  such a least integer n = Dt(b) does not exist, we call Dt(b) undefined. 
For the corresponding Rado numbers, where one does not have the assumption on the 

ordering Xl <x2 <x3,  we refer to the paper of  Burr and Loo [1]. 
Observe that for b = 0 the numbers Dt(O) coincide with the van der Waerden num- 

bers vdWt(3) (cf. [8]), that is 

Dr(O) = vdWt(3 ). 

In general, the exact determination of  the van der Waerden numbers vdWt(3) for 
arbitrary positive integers t is a hard problem. For small values of  t the exact values 

known are vdW2(3) = 9 and vdW3(3) = 27, vdW4(3) = 76, of. [2], while vdWs(3) is 
not known. 

Recall that the degree of  regularity of  x3 - x2 = x2 - xl + b, b # 0 is at most 7, i.e. 
Ds(b)  is undefined. However, taking into account the ordering on the solutions, we 
will show in this section that dor~ (x3 - x2 = x2 - xl + b; xl < x2 < x3 ) ~< 3. 

Proposit ion 3.1. I f  b is an odd integer, then the equation x 3 - -  X 2  = X 2  - -  X l  + b is not 
2-regular. 
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Proof. Let b be an odd integer. Let A:N , {0,1} be a coloring defined by 
A(x) - xmod2.  If xl,x2,x3 were colored the same, then x 3 - x 2 = - 0 m o d 2  and 
x 2 - x t  + b  = 1 mod2, hence there is no monochromatic solution of x3 -x2  = 
x2 - x l  +b .  [] 

Next we consider the case, where b is an even integer. By using exhaustive search, 
we found the values given in the following table. 

b 0 I 2 I 4 I 6 [ 8 I 10 [ 12 I 14 I 16 I 18 I 20 
D2(b) 9 14 17 21 25 30 34 38 42 46 50 

For example, the string 0 0 1 l 1 0 0 0 0 1 1 1 1 gives the lower bound D2(2)~> 14. 
Thus the numbers DE(b) are well defined for all even values of b~<20. Indeed, the 

next result shows that for arbitrary even integers b, the numbers D2(b) always exist. 

Theorem 3.2. I f  b & an even positive integer, then 

2 b +  lO<~Dz(b)~l~32b+ 1, 

where the lower bound holds only for 6 >>. 10. 

We see from the table that the lower bound is sharp for b E {2, 10, 12, 14, 16, 18,20}. 

Proof. First we show the upper bound. From the table given above we have 
/)2(2) -- 14. Set b = 2b* and let A :{1,2 . . . . .  13b*+ 1} ~ {0,1} be an arbitrary 
coloring. Then A induces another coloring A*: {1,2 . . . . .  14} ~ {0,1} by A*(x) = 
A ( ( x -  1)b* + 1). As D2(2) = 14, there exist xj,x2,x 3 '  ~ ' with 1 ~<x'j <x~ <x~ ~< 14, where 
' ' = = (x~- 1 ) . b * +  1 for x 3 - x ~  - - x ~ -  x, + 2 and A*(x~) = d*(x~) A*(x~). Set xi 

i = 1,2,3. Then A(Xl) = A(x2) -- A(x3) and x3 - x 2  =x2 - x l  +b .  
(Indeed, we have for 6 = l • b*, l even, b* E ~, that D 2 ( b ) ~ < ~  • b + 1. In 

particular, for say b = 20. b*, b* E N, we obtain D2(6)~< ~0' b + 1.) 
Let b~> 10. Concerning the lower bound, consider the coloring A : { 1,2 . . . .  ,2b+10}---~ 

{0, 1 } defined by 

f 0  i f x E { 1 , 2 } U { 6 , 7  . . . . .  6 + 2 } U { b + 4 , b + 5 , . . . , b + 7 } ,  
A(x)= 

1 i f x E  { 3 , 4 , 5 } U { b + 3 } U { 6 + 8 , b + 9  . . . . .  2649} .  

Assume that xj,x2,x3 is a monochromatic solution of 

X3 --  X2 z X2 --  Xl + b (*) 

with 1 <~Xl < x2 < x3. If this solution is in color 0, then x2 ~ 2, as otherwise x3 -- 
2 X  2 - -  X 1 + b = 6 + 3. But, if x2 --- 6, then x3 >~b + 10, which is impossible. Also, if 
x2 >~ 7, then x3 ~> b + 8, which again is impossible. 

Assume now that we have a solution of (*) in color 1. If 4~<x2~<5, then 
b + 7 ~>x3 >~ b + 5, which is impossible. If xz = b + 3, then x3 >/3b + 1, again impos- 
sible for b > 8. Finally, x2 cannot be greater than b + 7, as then x3 >~2b + 10. [] 



56 A. Bialostocki et al./Discrete Mathematics 150 (1996) 4940 

Now we will show the typical structure o f  those colorings preventing a mono- 

chromatic solution of  the equation x3 - x2 = x2 - xl + b, where b is an odd integer. 

We call a two-coloring of  the set o f  positive integers an odd-even coloring if the odd 

numbers are colored all in one color and the even numbers are colored in the other 

color. 

Theorem 3.3. Let b be an odd integer. I f  the coloring A: ~ ~ {0, 1} is not an 

odd-even coloring, then there exist Xl,X2,X3 with l~<Xl <x~  < x3 such that 

A(Xl) -- A(x2) = d(x3) andx3 - x 2  : x 2  - X l  + b .  

Proof.  Let b be an odd positive integer, and let A:I%I , {0, 1} be not an odd-even 

coloring. Then there exist two consecutive integers colored the same. Suppose that 

there is no monochromatic solution o f  x3 - x 2  - - -x2-x~ + b  with Xl < x2 < x3. In our 

arguments we will use the following observation: 

Proposition 3.4, I f  (b+ 3) consecutive integers are colored the same, then there exists 

a monochromatic solution of  the equation x3 - x2 = x2 - xi + b, where xl <x2 <x3. 

Proof.  If  a + 1, a + 2 . . . . .  a + b + 3 are colored the same, then x~ = a + 1, x2 = a + 2 

and x3 = a + b + 3 provide a monochromatic solution. [] 

The following lemma together with Proposition 3.4 proves the theorem: 

Lemma 3.5. I f  at least two consecutive integers are colored the same, then there 

exist (b + 3) consecutive integers which are colored the same. 

Proof. We will distinguish three cases according to the number o f  consecutive integers 

which are colored the same. 

Case 3.1: Suppose that there exist four consecutive integers a , a  + 1, a + 2, a + 3 

which are colored the same in, say, color 0. Then a + b + 2, a + b + 3 , . . . ,  a + b + 6 are 

all colored by color 1, as otherwise we are done. Similarly, the numbers a + 2b + 4, 

a + 2b + 5 . . . . .  a + 2b + 10 are all colored in color 0. Finally, after at most c .  log2b 

steps, where c is a positive constant, we obtain a sequence of  (b + 3) consecutive 

integers, which are colored the same. Applying Proposition 3.4 yields the desired 

result. 
Case 3.2: Suppose now that there are three consecutive integers a,a+ 1 , a + 2  which 

are colored the same. By Case 3.1 it suffices to distinguish as follows: 
Case 3.2a: If  the set {a, a + 1,a + 2, a + 6} is monochromatic, then also the set 

{a + b + 2,a  + b + 3,a + b + 4,a  + b + 10,a + b + 11}. This implies that the set 

{ a + 2 b +  1 6 , a + 2 b +  1 7 , a + 2 b +  1 8 , a + 2 b +  19} is monochromatic, which is covered 

in Case 3.1. 
Case 3.2b: If  {a, a + 1, a + 2, a + 5} is monochromatic, then also the set {a + b + 2, 

a + b + 3 , a + b + 4 , a + b + 8 , a + b + 9 } .  We infer that { a + 2 b +  12, a + 2 b +  1 3 , a + 2 b +  14, 
a + 2b + 15} is monochromatic, again covered by Case 3.1. 
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Case 3.2c: If { a , a+  1 , a + 2 , a + 4 }  is monochromatic, then also { a + b + 2 , a + b + 3 ,  
a + b + 4 , a + b + 6 , a + b + 7 } ,  and hence { a + 2 b + 8 , a + 2 b + 9 , a + 2 b +  1 0 , a + 2 b +  11}, 
giving four consecutive integers, which are colored the same. 

Case 3.3: Now assume that a and a ÷ 1 are colored the same. We distinguish six 

cases: 
Case 3.3a If {a, a + 1, a + 4, a + 7} is monochromatic, then also {a + b + 2, a + b + 7, 

a + b + 8,a + b + 10}, and hence, too, {a + 2b + 12,a + 2b ÷ 13,a + 2b + 14}, and 

Case 3.2 applies. 
Case 3.3b: If {a,a + 1,a + 4,a + 6} is monochromatic then, also, {a + b + 7, 

a + b + 8 , a + b + l l , a + b + 1 2 } , h e n c e ,  too, { a + 2 b + 1 3 , a + 2 b + 1 4 , a + 2 b + 1 5 } ,  

and Case 3.2 applies. 
Case 3.3c: If {a,a+ 1 , a + 4 , a + 5 }  is monochromatic, then also { a + b + 8 , a + b + 9 ,  

a + b +  

~ s e  
a + b +  

~ s e  
a + b +  

~ s e  
a ÷ b + 7}, which is handled in Case 3.2. 

This finishes Me proof of Theorem 3.3. 

10} and we are again in Case 3.2. 
3.3d: If {a , a+  1 , a + 3 , a + 6 }  is monochromatic, then also { a + b + 5 , a + b + 6 ,  

9, a + b + 11 }, which is already covered by Case 3.3b. 
3.3e: If {a,a+ 1 , a + 3 , a + 5 }  is monochromatic, then also { a + b + 5 , a + b + 6 ,  

7}, which is covered by Case 3.2. 
3.3f: If {a , a+  1 , a + 3 , a + 4 }  is monochromatic, then also { a + b + 5 , a + b + 6 ,  

Next we consider colorings of the positive integers with three colors. 

Proposition 3.6. I f  b c ~ and b ~ 0 mod 6, then there exists a coloring A : 

{0, 1,2} such that no solution of  x3 - x 2  = x2 - x l  + b is monochromatic. 

Proof. If b c N is an odd integer, then we take for A an odd-even coloring. If b is 

even, then define A :~  , {0, 1,2} by A(x)=_ x mod 3. [] 

For b = 0 mod 6 we have some positive results. Namely, by exhaustive search we 
found that 

D3(6) = 56. 

Indeed, there are exactly 13 nonisomorphic colorings showing D3(6)> 55. Now, using 
the argument from Theorem 3.2 we infer 

Proposition 3.7. For each b E ~, b ~ 0 mod 6, 

D3(b)<~5---~b+ 1. 

As D3(6) exists, we obtain by the techniques in Section 2 the following: 
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Corollary 3.8. Let  b be a nonzero rational number. Then the equation x 3 - -  X2 : 

x2 - xl + b is 3-regular over Q. Moreover, i f  b > O, then x3 - x2 = x2 - xt + b; 

xl <x2 <x3 is 3-regular over ~+. 

Corollary 3.9. Let  b E R + be a positive real number Then for  every coloring A : ~+ 

{0, 1,2} there always exists a monochromatic solution o f  x3 - x2 = x2 - xl + b 

with x~ <x2 <x3. 

On the other hand, the following holds: 

Lemma 3.10. There exists a coloring A : R 

x3 - x2 = x2 - xl + 2 is monochromatic. 

, {0, 1,2,3} such that no solution o f  

Proof.  Consider the coloring A : R , {0, 1,2,3} with A(x) - [xJ mod4.  Assume 

that xl,x2,x3 is a monochromatic solution of  x3 - x2 = x2 - x~ + 2. 

Notice that by the choice of  the coloring A, the difference [xjJ - [xiJ is always 

divisible by 4. 

I f  [x3J - [x2J ~< [x2J - [xlJ, then 

x3 - 2x2 + x ,  < [x3J - 2[xzJ + [x,J + 2 ~ < 2 .  

Otherwise, if [x3J - [x2J > [x2J - Ix,J, then we already have [x3J -2 [x2J  + [xlJ ~>4, 
hence 

x 3 - 2 x 2 + x l ~ > 4 - 2 x 2 + 2 [ x 2 J  > 2 .  

In each case we obtain that x 3 - 2 x 2  + x t  ¢ 2, hence A has the desired 

properties. [] 

We infer with Lemmas 2.3 and 3.10 and with Corollary 3.9 the following: 

Corollary 3.11. For every b E ~+, 

dorR (x3 - x2  : x2  - x1 -1- b; X1 < X2 < X3 ) -~- 3 .  

This implies immediately that D4(b) is undefined for every b E IN. In particular, 
summarizing Propositions 3.1, 3.6 and 3.7, as well as Theorem 3.2 we obtain 

Theorem 3.12. For every b c N, 

1 

dor~ (x3 - x2 -- x2 - xl + b; xl < x2 < X3 ) = 2 

3 

i f  b -  1 mod2,  

/ f b  -- 0 m o d 2  

and b 7~ 0 mod 6, 

i f b  - 0 mod 6. 
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4. The canonical case 

Erdfs  and Graham considered in [3] arbitrary colorings of  the positive integers. For 
arithmetic progressions they proved the following canonical partition result: 

Theorem 4.1 (Erdrs and Graham [3]). For every k E ~ there exists  a least integer 

n = E G ( k )  such that f o r  every coloring A:{1 ,2  . . . . .  n} ~ N there exists  a k- term 

arithmetic progression a,a + d . . . . .  a + (k - 1 )d which is either monochromatic or 

totally multicolored, i.e., A(a + id) = A(a + j d )  ¢=~ i = j .  

For a detailed proof we refer to [4]. As with the van der Waerden numbers not 

much is known about the growth of  E G ( k )  (exponential lower bound, F4 upper bound). 

The canonical case for arbitrary partition regular systems of  equations was given in 
[5]. There it was shown that, in general, two cases (monochromatic respective totally 
multicolored) do not suffice to describe the behaviour of  the solutions of  such systems, 

three cases are needed and sufficient. On the other hand, there are systems, whose 

canonical behaviour can be described by two cases: 

Theorem 4.2 (Frankl et ai. [4]). Let  A be a f ini te matr ix  with integer entries such 

that A(1 . . . . .  1 ) -- 0. Assume that A x  = 0 admits a solution with xi = xj  i f  and only 

i f  i = j .  
Then f o r  every coloring A : ~ ~ ~ there exists  a solution xl,x2 . . . . .  xn with 

pairwise distinct xi 's o f  A x  = 0 such that {xl,x2 . . . . .  xn} is either monochromatic or 

totally multicolored. 

For the canonical situation we consider next the equation x3 - x2 = x2 - xt + b. For 
this case, some interesting phenomena occur: 

Proposit ion 4.3. I f  b E ~ and b ~ 0 mod 6, then there exists  a coloring A : ~ , 

{0, 1,2} such that any solution o f  x3 - x2 = x2 - xl + b is neither monochromatic nor 

totally multicolored. 

Proof.  By Proposition 3.6, it suffices to consider the case b even. Then the color- 

ing A : ~J ~ {0,1,2} with A(x)  - x m o d 3  gives no monochromatic solution of  

x 3 - x 2  = x 2 - x l  + b. Suppose that some xj,x2,x3 are totally multicolored. Then 
x l + x 2 + x 3 - - - - 0 m o d 3 ,  thus x 3 = 2 x 2 - x l + b  becomes x l + x 2 + x 3 = 3 x 2 + b  or 
3x2 + b = 0 mod 3, which is impossible. [] 

We remark that one can show by exhaustive search that for every coloring 

A :{1 ,2  . . . . .  21} ~ {0, 1,2} there always exists a solution of  x 3 - x 2  = x 2 - x l  + 6 ,  
with xl < x2 < x3, which is either monochromatic or totally multicolored. Indeed, this 
is not true if we replace 21 by 20. 

As D3(6) exists, one possibly would expect now that for every coloring A : N  
{0, 1,2, 3} there exists a solution of  x3 - x2 = x2 - Xl + 6 which is either monochromatic 



60 A. Bialostocki et al./Discrete Mathematics 150 (1996) 4940  

or totally multicolored. Somewhat surprisingly, this is not the case. To see this take 

the modulo coloring A : M  , {0, 1,2,3} with A ( x )  = - x  mod4.  Clearly, there is no 

monochromatic solution of  x 3 - x 2  = x 2 -  Xl + 6. Assume that there exists a totally 

multicolored solution. I f  x2 -= 0 mod 4 or x2 =- 2 mod 4, then xl + x3 = 2 mod 4, which 

is a contradiction to the assumption that the solution is totally multicolored. I f  x2 - :  

1 mod 4 or x2 -= 3 mod 4, then xl + x3 = 0 mod 4, again a contradiction. Indeed, 

using Proposition 3.6, it is easy to see that for every b ~ 0 mod 12 there exists a 

coloring A : ~  ~ {0, 1,2, 3} such that any solution of  x3 - x 2  ---x2 - X l  + b is neither 

monochromatic nor totally multicolored. 

We also found that for every coloring A : { 1 , 2  . . . . .  34} ~ {0, 1,2,3} there always 

exists a solution o f  x3 - x 2  = x2 - x l  + 12, which is either monochromatic or totally 

multicolored, and the number 34 is the best possible. It might be interesting to know 
n 

the behaviour o f  the solutions of  general equations ~ i=1  aixi = b, where b ~ 0, with 

respect to arbitrary colorings A : ~  , C. 
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