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In this paper, we consider an inverse problem for a time-fractional diffusion equation in
a one-dimensional semi-infinite domain. The temperature and heat flux are sought from
a measured temperature history at a fixed location inside the body. We show that such
problem is severely ill-posed and further apply a new regularization method to solve it
based on the solution given by the Fourier method. Convergence estimates are presented
under the a priori bound assumptions for the exact solution. Finally, numerical examples
are given to show that the proposed numerical method is effective.
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1. Introduction

The calculus of fractional derivatives and fractional differential equations has been used recently to solve a range of prob-
lems in physics, chemistry, biology, mechanical engineering, signal processing, systems identification, electrical engineering,
control theory, finance and fractional dynamics, see [10,14,17].

Time-fractional diffusion equation arises by replacing the standard time partial derivative in the diffusion equation with
a time-fractional partial derivative. It is usually used to describe anomalous diffusion (superdiffusion, non-Gaussian dif-
fusion, subdiffusion) which is not consistent with the classical Fick (or Fourier) law [2,10]. In [13], Oldham and Spanier
considered the solution of a time-dependent diffusion equation for semi-infinite planar, cylindrical, or spherical geometry
with common initial and asymptotic boundary conditions. It was shown that the boundary value problem may be described
by a simple equation which contains only a first order spatial derivative and a half-order time-fractional derivative (i.e.,
time-fractional derivative of order α = 1

2 ). For that model, Murio considered a corresponding half-fractional inverse heat
conduction problem in [11]:

ux(x, t) = −a− 1
2
(RL

0 D
1
2
t u(x, t)

) + u∞(πat)−
1
2 , x > 0, t > 0,

u(x1, t) = f (t), with approximate data function f δ(t), x1 > 0, t � 0,

u(0, t) = U (t), unknown, t � 0,

−ux(0, t) = q(t), unknown, t � 0,

✩ The work described in this paper was supported by the NSF of China (10971089), the Fundamental Research Funds for the Central Universities (lzujbky-
2010-k10) and the Funds for the Ph.D. academic newcomer award of Lanzhou University.

* Corresponding author.
E-mail address: tingwei@lzu.edu.cn (T. Wei).
0022-247X/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2011.01.067

https://core.ac.uk/display/82392292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jmaa.2011.01.067
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:tingwei@lzu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2011.01.067


G.H. Zheng, T. Wei / J. Math. Anal. Appl. 378 (2011) 418–431 419
where a is a constant diffusivity coefficient,

u∞ = u(x,0) = lim
x→∞ u(x, t) = const.

The time-fractional derivative RL
0 Dα

t u(x, t) is the Riemann–Liouville fractional derivative of order α (0 < α � 1) defined by

RL
0 Dα

t u(x, t) = 1

Γ (1 − α)

d

dt

t∫
0

u(x, s)

(t − s)α
ds, 0 < α < 1,

RL
0 Dα

t u(x, t) = ∂u(x, t)

∂t
, α = 1,

where Γ (·) is the Gamma function.
In this paper, we study a more general ill-posed problem for the time-fractional diffusion equation in a one-dimensional

semi-infinite domain as follows

−aux(x, t) =0 Dα
t u(x, t), x > 0, t > 0, α ∈ (0,1), (1.1)

u(1, t) = f (t), t � 0, (1.2)

u(x,0) = lim
x→∞ u(x, t) = 0, (1.3)

where the time-fractional derivative 0 Dα
t u(x, t) is the Caputo fractional derivative of order α (0 < α � 1) defined by [12]

0 Dα
t u(x, t) = 1

Γ (1 − α)

t∫
0

∂u(x, s)

∂s

ds

(t − s)α
, 0 < α < 1, (1.4)

0 Dα
t u(x, t) = ∂u(x, t)

∂t
, α = 1. (1.5)

If the function u(x, t) is continuously differentiable, the temperature field is smooth enough, and u(x,0) = 0 (i.e., the initial
state is an equilibrium state), applying integration by parts, the Riemann–Liouville fractional derivative will coincide with
the Caputo fractional derivative [12]. In addition, the initial–boundary value problem for fractional differential equations
with the Caputo derivatives takes on the same form as for integer order differential equations, so it is widely used in
engineering, physics, chemistry, biology, etc. In particular, such time-fractional equation like (1.1) can describe the anomalous
diffusion in complex systems such as random fractal media (see [1,6,15,16]). Moreover, applying the Laplace transform and
the inverse Laplace transform, we know the time-fractional diffusion equation (1.1) contains a large class of higher order
partial differential equations, which have a wide range of applications in flame front propagation, plasma instabilities, phase
turbulence in reaction–diffusion system, spatiotemporal chaos in one space dimension, the motion of a fluid going down a
vertical wall and the study of the water waves with surface tension [7,18], see Remark 5. For further details on fractional
derivatives and their application, see [14].

Our main purpose is to recover the temperature and heat flux for 0 � x < 1. In this article, we will present a new
regularization method to construct a stable approximate solution of the time-fractional inverse diffusion problem (TFIDP)
(1.1)–(1.3), which is a kind of modified equation method. Namely, we modify Eq. (1.1) as follows:

−aux(x, t) = Pμ(t) ∗ [
0 Dα

t u(x, t)
]
, x > 0, t > 0, (1.6)

where Pμ(t) = 1
2μ e− |t|

μ , μ ∈ (0,1) plays a role of regularization parameter, and “∗” denotes convolution operation.
Our paper is divided into five sections. In Section 2, we present the ill-posedness of the problem and propose our

new regularization method. In Section 3, convergence estimates for temperature u and heat flux ux are given based on
the a priori assumptions for the exact solution. Numerical results are shown in Section 4. Finally, we give a conclusion in
Section 5.

2. Ill-posedness of the problem and a new regularization method

In order to apply the Fourier transform, we extend all the functions to the whole line −∞ < t < ∞ by defining them to
be zero for t < 0.

Here, and in the following sections, ‖ · ‖ denotes the L2 norm, i.e.

‖ f ‖ =
(∫ ∣∣ f (t)

∣∣2
dt

) 1
2

.

R
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The Fourier transform of the function f (t) is written as

f̂ (ω) = 1√
2π

∞∫
−∞

f (t)e−iωt dt,

and ‖ · ‖p denotes the H p norm, i.e.

‖ f ‖p =
(∫

R

(
1 + ω2)p∣∣ f̂ (ω)

∣∣2
dω

) 1
2

.

Taking a Fourier transformation to (1.1) and (1.2) with respect to t , from [14], we have

ûx(x,ω) = −1

a
(iω)α û(x,ω), (2.1)

û(1,ω) = f̂ (ω), (2.2)

where

(iω)α =
{ |ω|α(cos απ

2 + i sin απ
2 ), ω � 0,

|ω|α(cos απ
2 − i sin απ

2 ), ω < 0.
(2.3)

The solution to the above problem and its derivative to variable x can easily be given by

û(x,ω) = e
1
a (iω)α(1−x) f̂ (ω), (2.4)

ûx(x,ω) = −1

a
(iω)αe

1
a (iω)α(1−x) f̂ (ω). (2.5)

It follows that

û(0,ω) = e
1
a (iω)α f̂ (ω), (2.6)

ûx(0,ω) = −1

a
(iω)αe

1
a (iω)α f̂ (ω). (2.7)

Note that (iω)α has a positive real part, the small error in the high frequency components will be amplified by the

factor e
1
a |ω|α(1−x) cos απ

2 for 0 � x < 1, so recovering temperature u and heat flux ux from a measured temperature at x = 1
are severely ill-posed. We must use some regularization methods to deal with this problem.

In this paper, in order to obtain a stable approximation solution of the TFIDP (1.1)–(1.3), we actually consider the follow-
ing problem:

−avx(x, t) = Pμ(t) ∗ [
0 Dα

t v(x, t)
]
, x > 0, t > 0, (2.8)

v(x,0) = 0, x � 0, (2.9)

v(1, t) = f δ(t), t � 0, v(x, t)|x→∞ bounded, (2.10)

where Pμ(t) = 1
2μ e− |t|

μ , μ ∈ (0,1) is a regularization parameter and the measured data f δ satisfies∥∥ f δ − f
∥∥ � δ, (2.11)

in which the constant δ > 0 is called an error level. We intend to recover the temperature u and heat flux ux for 0 � x < 1
from the measured data f δ(t).

Similarly, we can get the formal solution of problem (2.8)–(2.10) by the Fourier transform as follows:

v̂(x,ω) = e
1
a

(iω)α

1+μ2ω2 (1−x)
f̂ δ(ω), (2.12)

v̂x(x,ω) = −1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
f̂ δ(ω). (2.13)
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3. Convergence estimates

In order to obtain our main results, we first give a lemma.

Lemma 1.

(1) If s � 0, then we have

1 − e−s � s.

(2) If s � 0, γ > 0, 0 < x < 1 and α ∈ (0,1), then we obtain

sγ e−sx cos απ
2 �

(
γ

ex cos απ
2

)γ

.

Because (1) is obvious, we only prove (2).

Proof. (2) Consider the function

h(s) = sγ e−sx cos απ
2 , s � 0.

It is easy to check that

h′(s) =
(
γ − sx cos

απ

2

)
sγ −1e−sx.

Thus, h(s) attains its maximum at s = γ
x cos απ

2
, that is,

h(s) = sγ e−sx � h

(
γ

x cos απ
2

)
=

(
γ

ex cos απ
2

)γ

. �

Theorem 2. (Convergence estimate for temperature.) Suppose that u is the solution of problem (1.1)–(1.3), whose Fourier transform is
given by (2.4). v is the solution of problem (2.8)–(2.10), whose Fourier transform is given by (2.12), and the measured data f δ satisfies
(2.11).

(1) If the a priori bound ‖u(0, ·)‖ � E holds, and the regularization parameter μ is selected by

μ = 1

2a ln E
δ

, (3.1)

then for every x ∈ (0,1), we have a convergence estimate

∥∥u(x, ·) − v(x, ·)∥∥ � ε1 + C1 · E

(ln E
δ
)2

, (3.2)

where ε1 = max{e
1
a δ, E1−xδx}, C1 = C

2 a
2
α −2 , C = (

1+ 2
α

e cos απ
2 x

)1+ 2
α .

(2) If the a priori bound ‖u(0, ·)‖p � E holds, and the regularization parameter μ is selected by

μ = 1

2a ln(ln E
δ
)
, (3.3)

then for p > 0, x = 0, we have a convergence estimate∥∥u(0, ·) − v(0, ·)∥∥ � ε2 + ε3, (3.4)

where ε2 = max{e
1
a δ, δ ln E }, ε3 = max{2μ

2p
3 , 2 μ

2
3 (1+p−α), 2 μ2}.
δ a a
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Proof. (1) From (2.4), (2.6), (2.12) and applying the Parseval theorem, we obtain∥∥u(x, ·) − v(x, ·)∥∥ = ∥∥û(x, ·) − v̂(x, ·)∥∥ = ∥∥e
1
a (iω)α(1−x) f̂ (ω) − e

1
a

(iω)α

1+μ2ω2 (1−x)
f̂ δ(ω)

∥∥
�

∥∥(
e

1
a (iω)α(1−x) − e

1
a

(iω)α

1+μ2ω2 (1−x))
f̂
∥∥ + ∥∥e

1
a

(iω)α

1+μ2ω2 (1−x)(
f̂ − f̂ δ

)∥∥
= ∥∥(

e
1
a (iω)α(1−x) − e

1
a

(iω)α

1+μ2ω2 (1−x))
e− 1

a (iω)α û(0,ω)
∥∥ + ∥∥e

1
a

(iω)α

1+μ2ω2 (1−x)(
f̂ − f̂ δ

)∥∥
� sup

ω∈R

A(ω) · E + sup
ω∈R

B(ω) · δ,

where

A(ω) = ∣∣(e
1
a (iω)α(1−x) − e

1
a

(iω)α

1+μ2ω2 (1−x))
e− 1

a (iω)α
∣∣, B(ω) = ∣∣e 1

a
(iω)α

1+μ2ω2 (1−x)∣∣. (3.5)

For the second term of (3.5), it is easily seen that

B(ω) = e
1
a

|ω|α cos απ
2

1+μ2ω2 (1−x) �
{

e
1
a , |ω| � 1,

e
1−x
2aμ , |ω| > 1.

(3.6)

Next, we estimate the first term of (3.5). By Lemma 3.1, we have

A(ω) = ∣∣e− x
a (iω)α

∣∣ · ∣∣1 − e
− 1−x

a
μ2ω2

1+μ2ω2 (iω)α ∣∣
= e− x

a |ω|α cos απ
2 · ∣∣1 − e

− 1−x
a

μ2ω2

1+μ2ω2 (|ω|α cos απ
2 ±|ω|α sin απ

2 i)∣∣
� e− x

a |ω|α cos απ
2 · (∣∣1 − e

∓i 1−x
a

μ2ω2

1+μ2ω2 |ω|α sin απ
2

∣∣ + ∣∣e∓i 1−x
a

μ2ω2

1+μ2ω2 |ω|α sin απ
2

∣∣ · ∣∣1 − e
− 1−x

a
μ2ω2

1+μ2ω2 |ω|α cos απ
2

∣∣)
= e− x

a |ω|α cos απ
2 ·

(
2

∣∣∣∣sin

(
1 − x

2a

μ2ω2

1 + μ2ω2
|ω|α sin

απ

2

)∣∣∣∣ + (
1 − e

− 1−x
a

μ2ω2

1+μ2ω2 |ω|α cos απ
2

))
� e− x

a |ω|α cos απ
2 ·

(
1 − x

a

μ2ω2

1 + μ2ω2
|ω|α sin

απ

2
+ 1 − x

a

μ2ω2

1 + μ2ω2
|ω|α cos

απ

2

)
� e− x

a |ω|α cos απ
2 · 2μ2|ω|2+α

a
� 2a

2
α Cμ2,

where C = (
1+ 2

α

e cos απ
2 x

)1+ 2
α .

According to the estimates of A(ω) and B(ω) above, it follows that∥∥u(x, ·) − v(x, ·)∥∥ � 2a
2
α Cμ2 · E + max

{
e

1
a · δ, e

1−x
2aμ · δ}.

Noticing that μ is given by (3.1), we get∥∥u(x, ·) − v(x, ·)∥∥ � max
{

e
1
a · δ, E1−xδx} + C

2
a

2
α −2 · E

(ln E
δ
)2

= ε1 + C

2
a

2
α −2 · E

(ln E
δ
)2

= ε1 + C1 · E

(ln E
δ
)2

.

(2) As in the proof of (1), and using the a priori assumption ‖u(0, ·)‖p � E , we obtain∥∥u(0, ·) − v(0, ·)∥∥ �
∥∥(

e
1
a (iω)α − e

1
a

(iω)α

1+μ2ω2
)

f̂
∥∥ + ∥∥e

1
a

(iω)α

1+μ2ω2
(

f̂ − f̂ δ
)∥∥

= ∥∥(
e

1
a (iω)α − e

1
a

(iω)α

1+μ2ω2
)
e− 1

a (iω)α
(
1 + ω2)− p

2
(
1 + ω2) p

2 û(0, ·)∥∥ + ∥∥e
1
a

(iω)α

1+μ2ω2
(

f̂ − f̂ δ
)∥∥

� sup
ω∈R

Ã(ω) · E + sup
ω∈R

B̃(ω) · δ,

where

Ã(ω) = ∣∣(e
1
a (iω)α − e

1
a

(iω)α

1+μ2ω2
)
e− 1

a (iω)α
(
1 + ω2)− p

2
∣∣, B̃(ω) = ∣∣e 1

a
(iω)α

1+μ2ω2
∣∣. (3.7)
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By (3.6), we have

B̃(ω) �
{

e
1
a , |ω| � 1,

e
1

2aμ , |ω| > 1.

(3.8)

In order to estimate the first term of (3.7), we rewrite

Ã(ω) = ∣∣1 − e
− 1

a
μ2ω2

1+μ2ω2 (iω)α ∣∣(1 + ω2)− p
2 . (3.9)

Next, we will distinguish three cases to estimate (3.9).

Case 1. |ω| � ω0 = μ− 2
3 , and noticing that p > 0, we obtain

Ã(ω) �
(
1 + ∣∣e− 1

a
μ2ω2

1+μ2ω2 (iω)α ∣∣)ω−p
0 = (

1 + e
− 1

a
μ2ω2

1+μ2ω2 |ω|α cos απ
2

)
μ

2p
3 � 2μ

2p
3 . (3.10)

Case 2. 1 < |ω| � ω0, similar to the proof of (1), we get

Ã(ω) �
∣∣1 − e

− 1
a

μ2ω2

1+μ2ω2 (iω)α ∣∣ · |ω|−p � 2

a
|ω|2+α−pμ2. (3.11)

If 0 < p � 2 + α, note that |ω| � ω0, (3.33) becomes

Ã(ω) � 2

a
μ

2
3 (1+p−α). (3.12)

If p > 2 + α, by |ω| > 1, we have

Ã(ω) � 2

a
μ2. (3.13)

Case 3. |ω| � 1, similar to estimating (3.33), we have

Ã(ω) �
∣∣1 − e

− 1
a

μ2ω2

1+μ2ω2 (iω)α ∣∣ · |ω|−p � 2

a
|ω|2+αμ2 � 2

a
μ2. (3.14)

Using (3.1), (3.8), (3.32)–(3.14), we obtain∥∥u(0, ·) − v(0, ·)∥∥ � max

{
e

1
a · δ, δ ln

E

δ

}
+ ε3 � ε2 + ε3.

Therefore, (3.4) holds. �
Theorem 3. (Convergence estimate for heat flux.) Suppose that u is the solution of problem (1.1)–(1.3), whose Fourier transform is
given by (2.4). v is the solution of problem (2.8)–(2.10), whose Fourier transform is given by (2.12), and the measured data f δ satisfies
(2.11).

(1) If the a priori bound ‖u(0, ·)‖ � E holds, and the regularization parameter μ is selected by (3.1), then for every x ∈ (0,1), we have
a convergence estimate∥∥ux(x, ·) − vx(x, ·)∥∥ � ε4 + C3 · E

(ln E
δ
)2

, (3.15)

where ε4 = max{ 1
a e

1
a δ, E1−xδx ln E

δ
}, C3 = C2

4 a
2
α −2 , C2 = (

1+ 2
α

e cos απ
2 x

)1+ 2
α + 2(

2+ 2
α

e cos απ
2 x

)2+ 2
α .

(2) If the a priori bound ‖u(0, ·)‖p � E holds, and the regularization parameter μ is selected by (3.3), then for p > α, x = 0, we have
a convergence estimate∥∥ux(0, ·) − vx(0, ·)∥∥ � ε5 + ε6, (3.16)

where ε5 = max{ 1
a e

1
a δ, δ ln E

δ
ln(ln E

δ
)}, ε6 = max{ 2

a μ
2
3 (p−α), 1

a μ
2
3 (1+p−α) + 2

a2 μ
2
3 (1+p−2α), 1

a μ2 + 2
a2 μ

2
3 (1+p−2α),

( 1
a + 2

a2 )μ2}.
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Proof. (1) By (2.5), (2.6), (2.13) and using the Parseval theorem, we obtain∥∥ux(x, ·) − vx(x, ·)∥∥ =
∥∥∥∥1

a
(iω)αe

1
a (iω)α(1−x) f̂ (ω) − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
f̂ δ(ω)

∥∥∥∥
�

∥∥∥∥(
1

a
(iω)αe

1
a (iω)α(1−x) − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
)

f̂

∥∥∥∥
+

∥∥∥∥1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)(
f̂ − f̂ δ

)∥∥∥∥
=

∥∥∥∥(
1

a
(iω)αe

1
a (iω)α(1−x) − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
)

e− 1
a (iω)α û(0,ω)

∥∥∥∥
+

∥∥∥∥1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)(
f̂ − f̂ δ

)∥∥∥∥
� sup

ω∈R

Ax(ω) · E + sup
ω∈R

Bx(ω) · δ,
where

Ax(ω) =
∣∣∣∣(1

a
(iω)αe

1
a (iω)α(1−x) − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
)

e− 1
a (iω)α

∣∣∣∣, (3.17)

Bx(ω) =
∣∣∣∣1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2 (1−x)
∣∣∣∣. (3.18)

For (3.20), we have

Bx(ω) = 1

a

|ω|α
1 + μ2ω2

e
1
a

|ω|α cos απ
2

1+μ2ω2 (1−x) �

⎧⎨⎩
1
a e

1
a , |ω| � 1,

1
2aμe

1−x
2aμ , |ω| > 1.

(3.19)

Next, we estimate (3.17). As in the proof of Theorem 3.2, we get

Ax(ω) = ∣∣e− x
a (iω)α

∣∣ ·
∣∣∣∣1

a
(iω)α − 1

a

(iω)α

1 + μ2ω2
e
− 1−x

a
μ2ω2

1+μ2ω2 (iω)α
∣∣∣∣

� e− x
a |ω|α cos απ

2 ·
(∣∣∣∣ (iω)α

a

∣∣∣∣ · ∣∣1 − e
∓i 1−x

a
μ2ω2

1+μ2ω2 |ω|α sin απ
2

∣∣ + μ2ω2

1 + μ2ω2

∣∣∣∣ (iω)α

a

∣∣∣∣ · ∣∣e∓i 1−x
a

μ2ω2

1+μ2ω2 |ω|α sin απ
2

∣∣
+

∣∣∣∣1

a

(iω)α

1 + μ2ω2

∣∣∣∣ · ∣∣e∓i 1−x
a

μ2ω2

1+μ2ω2 |ω|α sin απ
2 − e

− 1−x
a

μ2ω2

1+μ2ω2 (|ω|α cos απ
2 ±|ω|α sin απ

2 i)∣∣)
� e− x

a |ω|α cos απ
2

( |ω|α
a

1 − x

a

μ2ω2

1 + μ2ω2
|ω|α sin

απ

2
+ |ω|α

a

μ2ω2

1 + μ2ω2

+ 1

a

|ω|α
1 + μ2ω2

1 − x

a

μ2ω2

1 + μ2ω2
|ω|α cos

απ

2

)
� e− x

a |ω|α cos απ
2 ·

( |ω|2+α

a
+ 2|ω|2+2α

a2

)
μ2

� a
2
α C2 · μ2,

where C2 = (
1+ 2

α

e cos απ
2 x

)1+ 2
α + 2(

2+ 2
α

e cos απ
2 x

)2+ 2
α .

According to the above analysis, and from (3.1), it follows that∥∥u(x, ·) − v(x, ·)∥∥ � a
2
α C2 · μ2 · E + max

{
1

a
e

1
a · δ, 1

2aμ
e

1−x
2aμ · δ

}
� max

{
1

a
e

1
a · δ, E1−xδx · ln

E

δ

}
+ C2

4
a

2
α −2 · E

(ln E
δ
)2

= ε4 + C2

4
a

2
α −2 · E

(ln E
δ
)2

= ε4 + C3 · E

(ln E )2
.

δ
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(2) Similar to the proof of (1), and applying the a priori assumption ‖u(0, ·)‖p � E , we have∥∥u(0, ·) − v(0, ·)∥∥ = ∥∥û(0,ω) − v̂(0,ω)
∥∥

�
∥∥∥∥(

1

a
(iω)αe

1
a (iω)α − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2

)
f̂

∥∥∥∥ +
∥∥∥∥1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2
(

f̂ − f̂ δ
)∥∥∥∥

=
∥∥∥∥(

1

a
(iω)αe

1
a (iω)α − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2

)
e− 1

a (iω)α
(
1 + ω2)− p

2
(
1 + ω2) p

2 û(0, ·)
∥∥∥∥

+
∥∥∥∥1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2
(

f̂ − f̂ δ
)∥∥∥∥

� sup
ω∈R

Ãx(ω) · E + sup
ω∈R

B̃x(ω) · δ,

where

Ãx(ω) =
∣∣∣∣(1

a
(iω)αe

1
a (iω)α − 1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2

)
e− 1

a (iω)α
(
1 + ω2)− p

2

∣∣∣∣, (3.20)

B̃x(ω) =
∣∣∣∣1

a

(iω)α

1 + μ2ω2
e

1
a

(iω)α

1+μ2ω2

∣∣∣∣. (3.21)

By (3.21), we have

B̃x(ω) �

⎧⎨⎩
1
a e

1
a , |ω| � 1,

1
2aμe

1
2aμ , |ω| > 1.

(3.22)

In order to estimate (3.20), we rewrite

Ãx(ω) =
∣∣∣∣1

a
(iω)α − 1

a

(iω)α

1 + μ2ω2
e
− 1

a
μ2ω2

1+μ2ω2 (iω)α
∣∣∣∣(1 + ω2)− p

2 . (3.23)

Next, we also distinguish three cases to estimate (3.23).

Case 1. |ω| � ω0 = μ− 2
3 , and noticing that p > α, we obtain

Ã(ω) �
(∣∣∣∣1

a
(iω)α

∣∣∣∣ +
∣∣∣∣1

a

(iω)α

1 + μ2ω2
e
− 1

a
μ2ω2

1+μ2ω2 (iω)α
∣∣∣∣)|ω|−p

= |ω|α
a

(
1 + 1

1 + μ2ω2
e
− 1

a
μ2ω2

1+μ2ω2 |ω|α cos απ
2

)
|ω|−p

� 2

a
|ω|α−p

� 2

a
μ

2
3 (p−α). (3.24)

Case 2. 1 < |ω| � ω0, as in the proof of (1), we get

Ã(ω) �
∣∣∣∣1

a
(iω)α − 1

a

(iω)α

1 + μ2ω2
e
− 1

a
μ2ω2

1+μ2ω2 (iω)α
∣∣∣∣ · |ω|−p �

( |ω|2+α−p

a
+ 2|ω|2+2α−p

a2

)
μ2. (3.25)

If α < p � 2 + α, note that |ω| � ω0, (3.25) becomes

Ã(ω) � 1

a
μ

2
3 (1+p−α) + 2

a2
μ

2
3 (1+p−2α). (3.26)

If 2 + α < p � 2 + 2α, by 1 < |ω| � ω0, we have

Ã(ω) � 1

a
μ2 + 2

a2
μ

2
3 (1+p−2α). (3.27)

If p > 2 + 2α, by |ω| > 1, we obtain

Ã(ω) �
(

1

a
+ 2

a2

)
μ2. (3.28)
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Case 3. |ω| � 1, similar to estimating (3.25), we have

Ã(ω) �
∣∣∣∣1

a
(iω)α − 1

a

(iω)α

1 + μ2ω2
e
− 1

a
μ2ω2

1+μ2ω2 (iω)α
∣∣∣∣ �

( |ω|2+α

a
+ 2|ω|2+2α

a2

)
μ2 �

(
1

a
+ 2

a2

)
μ2. (3.29)

From (3.3), (3.22), (3.24)–(3.29), we obtain∥∥ux(0, ·) − vx(0, ·)∥∥ � max

{
1

a
e

1
a δ, δ ln

E

δ
ln

(
ln

E

δ

)}
+ ε6,� ε5 + ε6. �

Remark 4. If α = 1 in (1.1), we obtain the kinematic (i.e., first order) wave equation:

ut(x, t) + aux(x, t) = 0.

However, for (3.2) and (3.15), note that C2 → ∞, C3 → ∞ as α → 1. Therefore, the convergence of temperature and heat
flux for 0 < x < 1 may not be valid.

Remark 5. Set α = 1
n in (1.1), where n is a positive integer and n > 1. Laplace transforming (1.1) with respect to t (see

Appendix A), and noting (1.3), we obtain

−ãux(x, s) = s
1
n ũ(x, s), (3.30)

and it follows

ũ(x, s) = c(s)e− s
1
n
a x, (3.31)

where c(s) is a function of s. Thus

∂n

∂xn
ũ(x, s) = (−1)n

an
s̃u(x, s). (3.32)

Taking inverse Laplace transform of (3.32), we get

(−1)n ∂

∂t
u(x, t) = an ∂n

∂xn
u(x, t). (3.33)

Thus if α = 1
n (n > 1), the solution of (1.1) will also be the solution of (3.33). In other words, our results are suitable

for (3.33), which is a large class of higher order partial differential equations. For example:

• If n = 2, (3.33) is the heat conduct equation: ∂
∂t u(x, t) = a2 ∂2

∂x2 u(x, t). The corresponding problem for the heat conduct
equation has been considered in many papers, such as [3,4].

• If n = 3, (3.33) is Airy’s equation [5]: ∂
∂t u(x, t) + a3 ∂3

∂x3 u(x, t) = 0.

• If n = 4, (3.33) is the simple Kuramoto–Sivashinsky equation [18]: ∂
∂t u(x, t) = a4 ∂4

∂x4 u(x, t).

• If n = 5, (3.33) is the simple Kawahara equation or Kaup–Kupershmidt equation [7]: ∂
∂t u(x, t) + a5 ∂5

∂x5 u(x, t) = 0.

4. Numerical examples

In this section, we show some numerical results obtained by the new regularization method for an example. The con-
vergence and stability of the algorithm when using noisy data can be verified.

We use the following formulae to generate the noisy data

f δ(tn) = f (tn) + ε · rand(n), (4.1)

where tn = nk (n = 1,2, . . . , s), k is a time step size, and f (tn) is the exact data, rand(n) is a random number uniformly
distributed in [−1,1] and the magnitude ε indicates a noise level.

In the following numerical example, we set a = 1 in (1.1), and choose k = 1
101 , s = 100, ε = 0.01 in (4.1).

Example. From Theorem 6 in Appendix A, we see that

u(x, t) =
{ α(x+1)

tα+1 Mα( x+1
tα ), t > 0, x > 0,

0, t � 0,
(4.2)
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Fig. 1. The exact solution u and the regularized solution v with α = 0.1, μ = 0.1086.

is the exact solution of problem (1.1)–(1.3) with data

f (t) =
{ 2α

tα+1 Mα( 2
tα ), t > 0, x > 0,

0, t � 0.
(4.3)

In addition,

ux(x, t) =
{

α
tα+1 Mα( x+1

tα ) − α(x+1)

t2α+1 K (x, t), t > 0, x > 0,

0, t � 0,
(4.4)

where

K (x, t) =
∞∑

k=0

(− x+1
tα )k−1

(k − 1)!Γ (1 − α − αk)
.

We apply numerical integration formula to compute the exact data. By using the noisy data f δ(tn) generated from (4.1),
according to (2.10) and (2.11), we get the regularized solutions uδ

c and uδ
c,x computed by using the Discrete Fourier Transform

(DFT).
The numerical results for temperature u with α = 0.1 at x = 0.8,0.5,0.2 are shown in Fig. 1, and heat flux ux with

α = 0.1 at x = 0.8,0.5,0.2 are shown in Fig. 2.
The numerical results for temperature u with α = 0.1 at x = 0 are shown in Fig. 3, and the numerical results for heat

flux ux with α = 0.1 at x = 0 are shown in Fig. 4.
The numerical results for temperature u with α = 0.3 at x = 0.8,0.5,0.2 are shown in Fig. 5, and heat flux ux with

α = 0.3 at x = 0.8,0.5,0.2 are shown in Fig. 6.
The numerical results for temperature u with α = 0.3 at x = 0 are shown in Fig. 7, and the numerical results for heat

flux ux with α = 0.3 at x = 0 are shown in Fig. 8.
From Figs. 1–8, it can be seen that numerical results near the boundary x = 1 are better than the ones close to x = 0.

Moreover, we can see numerical accuracy becomes worse as the order α of Caputo fractional derivative increases. This is
consistent with our theoretical analysis (see Remark 4).
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Fig. 2. The exact solution ux and the regularized solution vx with α = 0.1, μ = 0.01.

Fig. 3. The exact solution u and the regularized solution v at x = 0.

Fig. 4. The exact solution ux and the regularized solution vx at x = 0.
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Fig. 5. The exact solution u and the regularized solution v with α = 0.3, μ = 0.03.

Fig. 6. The exact solution ux and the regularized solution vx with α = 0.3, μ = 0.01.
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Fig. 7. The exact solution u and the regularized solution v at x = 0.

Fig. 8. The exact solution ux and the regularized solution vx at x = 0.

5. Conclusion

In this paper, we use a new regularization method to solve an inverse problem for a time-fractional diffusion equation
in a one-dimensional semi-infinite domain. The convergence results have been obtained for the cases 0 � x < 1 under
the a priori bound assumptions for the exact solution and the suitable choices of the regularization parameter. Finally,
the numerical results show that the proposed methods are effective and stable.

Appendix A

The Laplace transform of a function f (t) is defined below [14]:

f̃ (s) = L
{

f (t); s
} =

∞∫
0

e−st f (t)dt (A.1)

and its inverse is given by the formula

f (t) = L−1{ f̃ (s); t
} =

γ +i∞∫
γ −i∞

est f̃ (s)ds, γ = Re(s) > s0. (A.2)

The Laplace transform formula for the Caputo fractional derivative of f (t):

L
{

0 Dα
t f (t); s

} = sα f̃ (s) − sα−1 f (0), 0 < α � 1. (A.3)

We investigate the following time-fractional diffusion equation:

−ux(x, t) =0 Dα
t u(x, t), x > 0, t > 0, α ∈ (0,1), (A.4)

u(0, t) = δ(t), t � 0, (A.5)

u(x,0) = lim
x→∞ u(x, t) = 0, (A.6)

where δ(t) denotes the Dirac delta function.
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Theorem 6. The exact solution of problem (A.4)–(A.6) is given by

u(x, t) = αx

tα+1
Mα

(
xt−α

)
, (A.7)

where Mα(z) denotes Mainardi’s function [8]:

Mα(z) =
∞∑

k=0

(−z)k

k!Γ (1 − α − αk)
, 0 < α < 1. (A.8)

Proof. Applying the Laplace transform with respect to t to (A.4) and (A.5), using (A.6), we have

−ũx(x, s) = sα ũ(x, s), (A.9)

ũ(0, s) = 1. (A.10)

By (A.6), we get

ũ(x, s) = e−sαx. (A.11)

Note the Laplace transform formula [9]:

L
{

αx

tα+1
Mα

(
xt−α

); s

}
= e−sαx. (A.12)

Hence, (A.7) holds. �
Remark 7. Setting α = 1 in (A.7), and noting M1(z) = δ(x−1), we obtain the exact solution of the first order wave equation:

u(x, t) = x

t
δ(x − t). (A.13)
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