Duplication in CHIT1 gene and the risk for Aspergillus lung disease in CF patients

G. Livnat1, R. Bar-Yoseph1, A. Mory1, E. Dagan1, N. Elias1, R. Gershoni2, L. Bentur2. 1Meyer Children’s Hospital, Rambam Health Care Campus, Haifa, Israel; 2Meyer Children’s Hospital, Rambam Health Care Campus The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel

Background: Aspergillus often persists in the respiratory tract of patients with Cystic Fibrosis (CF) and may cause allergic broncho pulmonary aspergillosis (ABPA). Chitinases are enzymes that digest the chitin polymer. Plants use chitinase as a defense mechanism against fungi. Chitotriosidase (CHIT1) is the major chitinase in human airways. Variation in the coding region with 24-bp duplication allele results in reduced CHIT1 activity. Recently, CHIT1 duplication heterozygocity was found in 6/6 patients with severe asthma and fungal sensitization (SAFS).

Our aim was to evaluate the link between CHIT1 duplication in CF patients and the predisposition to Allergic bronchopulmonary mycosis (ABPM) or persistent Aspergillus positive sputum (APS).

Patients and Methods: CHIT1 duplication was assessed in three CF groups. Group 1: patients who had neither ABPA nor APS in the past (control group). Group 2: patients with persistent APS (>2/year), without ABPA. Group 3: patients with current or past ABPA.

Results: Forty patients with CF were included in the analysis. CHIT1 duplication heterozygocity was found in 3/6 (50%) of the patients in the ABPM group, 3/12 (25%) in the APS group, and 7/22 (31.8%) in the control group (P > 0.05). Eleven patients were heterozygous for W1282X CF mutation, 90.9% were negative for duplication or ABPA.

Conclusions: CHIT1 duplication is not found in all CF patients with ABPM in contrast to patients with SAFS. These results suggest that CHIT1 duplication cannot be the sole explanation for fungal positive sputum in CF patients.

The impact of human rhinovirus infection on the cystic fibrosis lung microbiome

W.G. Flight1,2, J.R. Marchesi3, P. Norville3, K.J. Mutton3, A.K. Webb1,2, R.J. Bright-Thomas1,2, A.M. Jones1,2, E. Mahenthiralingam3, 1University of South Manchester NHS Foundation Trust, Manchester Adult Cystic Fibrosis Centre, Manchester, United Kingdom; 2University of Manchester, Institute of Inflammation & Repair, Manchester, United Kingdom; 3Cardiff University, School of Biosciences, Cardiff, United Kingdom; 4Central Manchester University Hospitals NHS Foundation Trust, Department of Virology, Manchester, United Kingdom

Objectives: Human rhinovirus is the most common viral respiratory infection amongst patients with CF and is associated with significant morbidity. The effect of rhinovirus infection on the CF lung microbiome is unknown.

Methods: 5 adult CF patients with acute rhinovirus infection were identified. Sequential respiratory tract samples were collected during clinical stability, rhinovirus infection and recovery. Standard bacterial culture and 16S rRNA pyrosequencing were performed on paired sputum samples at each visit. A PCR panel for 9 respiratory viruses was also performed on sputum, nose- & throat-swabs. The Shannon Index was calculated to quantify sputum bacterial diversity and analysed using generalised estimating equation models.

Results: Median age of the patients was 31 years and all took regular azithromycin and a nebulized antibiotic. 4/5 patients commenced additional antibiotics at the time of rhinovirus infection. 16S rRNA pyrosequencing showed that rhinovirus infection was associated with a substantial change in bacterial diversity in 4/5 patients. The mean (SD) Shannon Index increased from 0.33 (0.46) at baseline to 0.74 (0.41) at the virus-positive visit (p = 0.1). The mean Shannon Index fell to 0.19 (0.08) at recovery (p < 0.001). In 3/5 cases rhinovirus was associated with a large increase in the proportion of Streptococcus spp. and a corresponding decrease in the proportion of the previously predominant bacterial pathogen.

Conclusion: Rhinovirus infection is frequently associated with changes in the bacterial diversity of CF sputum. The interaction between rhinovirus and Streptococcus spp. in CF pulmonary exacerbations requires further exploration.

Candida colonisation status in adults and children with cystic fibrosis

G.M. Lavelle1, C.M. Greene1, N.G. McElvaney1. 1Royal College of Surgeons in Ireland, Respiratory Medicine, Dublin, Ireland

Objectives: Previously believed to be an innocent bystander in the cystic fibrosis (CF) microbiome, Candida has recently been considered to be a potential pathogen in the CF airway. Candida colonisation has been shown to predict a greater FEV1 decline, and to also increase the rate of exacerbations in people with CF [1].

Methods: Here we characterised the Candida colonisation status of people with CF attending three hospitals in Dublin. Sputum was spontaneously expectorated from a deep cough and bronchoalveolar lavage (BAL) was obtained via fibroptic bronchoscopy. Samples were liquefied and serially diluted before plating on CHROMagar and incubating at 37ºC for 48 hours. Based on the hydrolysis of hexosaminidase in the media, Candida isolates were differentiated by colour.

Results: From 80 sputum samples from 44 adults with CF (30 male, 14 female; average age 25.8 years ±8.8), 65% of the adults (n=28) were positive for Candida in at least one of their sputum samples. 59% (n=26), 13% (n=6) and 4% (n=2) had C. albicans, C. krusei and C. dublinensis respectively. BAL samples from 11 children with CF (4 male, 7 female; average age 3.4±2.1 years) were also cultured; none were positive for Candida.

Conclusion: C. albicans is the most common Candida isolate in the sputum of adults with CF. Candida was not present in pediatric BAL samples, indicating that it may only be acquired at later stages, possibly after prolonged exposure to broad-spectrum antibiotics.

Reference(s)