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Background. Recent studies of growth hormone supplementa-
tion in chronic heart failure have been associated with variable
results. Acquired abnormalities of biochemical parameters of the
growth hormone insulin-like growth factor I axis have been
associated with severe chronic heart failure. There are suggestions
of an acquired growth hormone resistance with deficient insulin-
like growth factor I in some patients.

Objectives. Therefore, we set out to investigate the clinical and
functional status and the degree of cytokine and neurohormonal
alteration of chronic heart failure patients with deficient insulin-
like growth factor I responses.

Methods. Patients with chronic heart failure were divided into
two groups according to their insulin-like growth factor I levels
(classified according to the manufacturer’s assay range in normal
controls): low insulin-like growth factor I <104 (n 5 20; 89 6 9.6
ng/ml), and normal/high >104 ng/ml (n 5 32; 169 6 52 ng/ml).
Between groups there was no difference in age (low versus high:
65.3 6 12.1 versus 61.6 6 9.1 years, p 5 0.21), body mass index,
aerobic capacity (peak oxygen consumption: low versus high:

15.5 6 5.2 versus 17.3 6 6.3 mL/kg/min, p 5 0.23), left ventricular
ejection fraction, New York Heart Association classification.

Results. During quadriceps strength testing, patients with low
insulin-like growth factor I had reduced absolute strength
(224%), and strength per unit area muscle (214%) than patients
with normal/high insulin-like growth factor I. Leg muscle cross-
sectional area was lower in the low insulin-like growth factor I
group (212% and 213% for right and left legs, respectively).
These alterations were accompanied by increased levels of growth
hormone (1145%), tumor necrosis factor-alpha (146%), cortisol/
dehydroepiandrosterone ratio (160%), noradrenaline (149%)
and adrenaline (1136%) (all at least p < 0.05).

Conclusions. Patients with low insulin-like growth factor I
levels show signs of altered body composition, cytokine and
neuroendocrine activation, to a greater extent than patients with
normal/high levels.

(J Am Coll Cardiol 1998;32:393–7)
©1998 by the American College of Cardiology

The syndrome of chronic heart failure (CHF) has as its
cardinal symptom exercise limitation. The genesis of fatigue
and breathlessness is associated with abnormalities of skeletal
muscle (1,2), but the origin of the skeletal myopathy is not
clear. There is imbalance between catabolic and anabolic
steroid metabolism (3,4) and cytokine activation (5–7), both of
which appear to be related to the loss of muscle bulk and the
development of cachexia in chronic heart failure. There is
some evidence for the existence of a catabolic state within
skeletal muscle in this syndrome (8). Abnormalities of the
growth hormone insulin-like growth factor I (IGF-I) axis have

been described in CHF. These include increased levels of
growth hormone coexistent with inappropriately normal levels
of IGF-I being associated with the presence of cachexia (4).
This may suggest the development of a growth hormone-
resistant state. Furthermore, growth hormone can be strikingly
increased in patients with untreated heart failure (9). This may
represent the early response to heart failure, with a secondary
decrease in IGF-I representing a failure of the compensatory
mechanism, which eventually leads to muscle wasting.

We were interested to explore further the possible relation
between growth hormone, IGF-I and the development of
skeletal myopathy in patients with CHF.

Methods
The research protocol was approved by the ethics commit-

tee of the Royal Brompton Hospital. Fifty-two patients were
recruited for study. All had a diagnosis of CHF on the basis of
symptomatic exercise limitation in the presence of objective
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evidence of left ventricular dysfunction. All subjects underwent
maximal exercise testing with metabolic gas exchange measure-
ments to derive peak oxygen consumption and the slope of the
ventilation, carbon dioxide production relation as an index of
the ventilatory response to exercise (10,11).

Muscle measurements. Quadriceps muscle strength and
fatiguability was measured by previously described methods
(12,13). The subject was seated in a rigid frame, with the legs
hanging freely. An inelastic strap was attached from the ankle
to a pressure transducer. The recording (Multitrace 2, Lec-
tromed, Jersey, Channel Islands) from the pressure transducer
was used to assess strength and provide visual feedback to the
subject. The loss of a superimposed 1-Hz muscle twitch during
the plateau of maximum force production indicated that the
contraction was maximal. The best of three voluntary contrac-
tions on each leg, with a rest period of at least 1 min in
between, was taken to represent the maximal voluntary quad-
riceps muscle strength of the right and left leg, respectively.

The quadriceps fatigue protocol (13) was performed on the
stronger leg after the strength test. The patients were asked to
undertake repeated voluntary contractions at 30% to 40% of
the maximum, using visual feedback as a guide. Contractions
of 1 s were followed by 1-s relaxations for 40 s, followed by 20 s
of complete rest. These series were repeated for 20 min. In the
rest period after 5, 10, 15 and 20 min a maximum voluntary
contraction was repeated. All values for muscle strength are
presented in newtons. The fatiguability at each time point was
expressed as percentage of baseline maximal quadriceps mus-
cle strength.

Ultrafast computerized tomography (Imatron) was used in
48 patients to measure the cross-sectional area of the total
thigh, the four major muscles of the thigh (quadriceps, ham-
strings, gracilis and sartorius) and the femur in both legs (13).
The scans were performed in the supine position after at least
5 min of rest. A single 6-mm slice was scanned transaxial at
midfemur level, marked as 12.5% of patient height above the
knee joint (14). The cross-sectional area (CSA) was calculated
in square centimeters by semiautomatic generation of an
outline of the area of interest using the console software of the
computer tomography scanner. To get an estimate of the
cross-sectional area of the fat tissue of the thigh, we calculated
the difference between the total thigh CSA and the CSAs of
the four thigh muscles and the femur combined.

Hormonal measurements. Blood samples were collected in
the morning, between 9 and 10 AM, after a fasting period of
12 h. An antecubital polyethylene catheter was inserted and

after supine rest of at least 20 min, 25 ml of venous blood was
drawn. After immediate centrifugation aliquots were stored at
270°C until analysis. The IGF-I (Medgenix, Fleurus, Belgium,
sensitivity 0.25 ng/ml), and human growth hormone (GH)
(Nichols Institute Diagnostics, sensitivity 0.02 ng/ml) were
measured. The IGF-I radioimmunoassay within-assay coeffi-
cients of variation at concentrations of 54, 194 and 491 ng/ml
were 6.1%, 4.1% and 4.7%; between-assay coefficients of
variation were 9.9%, 9.6%, and 9.3% at concentrations of 121,
251 and 494 ng/ml. The GH immunoradiometric assay within-
assay coefficients of variation at concentrations of 1.4, 6.0 and
12.2 mg/liter were 4.2%, 2.9% and 2.8%; between-assay coef-
ficients of variation were 7.2%, 3.5% and 4.6%, respectively.
Adrenaline and noradrenaline were measured using high
power liquid chromatography (sensitivity 0.1 ng/ml for both).
Tumor necrosis factor-alpha (TNF-alpha) was measured using
an ELISA assay with a lower limit of detectability of 3.0 pg/ml
(Medgenix, Fleurus, Belgium). Cortisol was measured using an
enzyme-linked immunosorbent assay (Boeringer Mannheim,
Germany) and dehydroepiandrosterone (DHEA) was mea-
sured by radioimmunoassay with a lower limit of detectability
of 0.04 ng/ml (DPC).

Statistical analysis. Patients were dichotomized on the
basis of their IGF-I levels into a group with low IGF-I (n 5 20)
and a group with high or normal IGF-I (n 5 32) according to
the manufacturer’s normal range, which was in keeping with
the lowest level measured in a normal subject in our laboratory
of 104 ng/ml. Data are presented as mean 6 standard devia-
tion. Between group comparisons were made using Student’s
unpaired t test. Some of the data were log transformed before
analysis to form a normal distribution. Normality was assessed
by the Kolmogorow–Smirnoff test. We also performed univar-
iate correlation analyses to establish the relationship between
variables.

Results
There was no significant difference between the two groups

of patients in age, body mass index, degree of left ventricular
dysfunction as assessed by ejection fraction or exercise capacity
(Table 1). The average daily dose of diuretic was 100.5 mg of
frusemide (where 1 mg of bumetanide was assumed equivalent
to 40 mg of frusemide) in the low IGF-I group and 119 in the
normal IGF-I group. Respectively, in the low and normal
IGF-I group, 15 and 25 patients were receiving angiotensin-
converting enzyme inhibitors. A total of 21 patients were
receiving digoxin, 16 amiodarone and 15 nitrates or other
vasodilators. There were no significant differences in drug use
between the two groups. Average creatinine was 133 6 56
mmol/L and this did not differ between the two groups. There
was no difference between the two groups in the presence of
cachexia as previously defined (4) (9 of 20 in the low IGF
group; 9 of 32 in the normal IGF-I group).

Muscle function. The low IGF-I group had a lower quad-
riceps muscle strength in the stronger leg (224%). Cross-
sectional muscle area at midfemur was lower in the low IGF-I

Abbreviations and Acronyms

CHF 5 chronic heart failure
CSA 5 cross-sectional area
DHEA 5 dehydroepiandrosterone
GH 5 human growth hormone
IGF-I 5 insulin-like growth factor I
TNF-alpha 5 tumor necrosis factor-alpha

394 NIEBAUER ET AL. JACC Vol. 32, No. 2
IGF-I IN CHF August 1998:393–7



group (right leg, 12%; left leg, 13%) (Table 2). Muscle strength
corrected for bulk (using CSA) was thus still lower in the low
IGF-I group (214%). Fat formed a higher proportion of the
total leg CSA in the low IGF-I group. Muscle strength during
fatigue testing decreased by the same proportion and at the
same rate in both groups (Fig. 1), although strength was at a
lower absolute level in the low IGF-I group throughout.

Neurohormonal activation. There were higher levels of
catecholamines (noradrenaline 149%; adrenaline 1136%),
TNF (146%) and GH (1145%) in the low IGF group (Tables
3 and 4). There were no significant differences in the absolute
levels of cortisol and DHEA, but the ratio (used as an index of
catabolic:anabolic steroid ratio) was higher in the low IGF
group (160%). The IGF-I-to-GH ratio was lower in the low
IGF-I group (278%), suggesting that there is some degree of
GH resistance in the low IGF-I group. There was no difference
in liver function between the two groups as represented by
aspartate transaminase (28.9 [13.1] IU/l in the low IGF-I group
versus 25.8 [6.9]).

Correlations with IGF-I. There were no significant corre-
lations between IGF-I and exercise variables, or with muscle
variables other than a weak negative relationship between
IGF-I and the fat-to-muscle ratio on computed tomographic

scanning (r 5 20.35; p , 0.01), that is, the lower the level of
IGF-I, the higher the ratio of fat to muscle in the leg. There
was a relationship between the IGF-I-to-GH ratio and body
mass index (r 5 20.58; p , 0.001; Fig. 2). Levels of IGF-I did
not correlate with GH levels or with TNF.

Growth hormone levels correlated with noradrenaline and
adrenaline (r 5 0.65, p , 0.001 and r 5 0.56, p , 0.001,
respectively; Fig. 3) and with the levels of cortisol (r 5 0.51;
p , 0.001). There was a negative relation between the IGF-I-
to-GH ratio and the cortisol-to-DHEA ratio (r 5 20.5; p ,
0.001) (Fig. 4).

There was a negative relation between TNF levels and
muscle bulk as measured by CSA (r 5 20.44; p , 0.001) and
strength (r 5 20.37; p 5 0.007).

Figure 1. Fatigue testing. Muscle strength is expressed as proportion
of the initial maximal contraction (i.e., 100% at rest). Measurements
were repeated at 5, 10, 15 and 20 min of the fatigue protocol (see text
for details). There was no significant difference between the two
groups. Error bars are shown as the SEM for clarity.

Table 2. Results of Muscle Testing

Low IGF-I
(n 5 20)

High/Normal IGF-I
(n 5 32)

Strength (N) 311 (91) 410 (124)*
Leg CSA (cm2) 163.6 (48.8) 165.3 (28.8)
Muscle CSA (cm2): right 100.1 (23.9) 114.0 (20.6)†
Muscle CSA (cm2): left 95.6 (24.4) 109.9 (21.4)†
Fat CSA (cm2) 56.9 (30.6) 46.0 (12.0)
Strength/CSA (N/cm2) 5.99 (0.98) 6.94 (1.02)‡
Fat/muscle 0.56 (0.24) 0.41 (0.10)*

CSA 5 cross sectional area. The difference between the two groups in fat
CSA did not reach statistical significance (p 5 0.07). Fat/muscle is the relative
proportion of fat and muscle on computerized tomography scanning at midfe-
mur. Tomography was available for 48 patients (4 missing from the normal/high
IGF-I group). Unless otherwise stated, data for the stronger leg are shown. †p ,
0.05; *p , 0.01; ‡p , 0.005.

Table 3. Results of Neuroendocrine Assays

Low IGF-I
(n 5 20)

High/Normal IGF-I
(n 5 32)

Arrhytmetic Mean 6 Standard Deviation

GH (ng/ml) 4.2 (6.1) 1.3 (2.6)*
TNFa (pg/ml) 13.7 (12.3) 8.4 (5.7)*
Noradrenaline (nmol/liter) 4.9 (3.0) 3.3 (2.1)*
Adrenaline (nmol/liter) 2.3 (2.1) 0.9 (1.2)†
Cortisol (nmol/liter) 406.8 (81.6) 422.0 (108.5)
DHEA (nmol/liter) 7.7 (7.3) 10.5 (5.9)
IGF-I:GH 1,738.4 (3,517.0) 3,414.5 (6,251.3)*
Cortisol:DHEA 104.7 (88.0) 55.7 (39.1)†

Geometric Mean 6 Asymetric Standard Deviation

GH (ng/ml) 0.71 (0.05–9.46) 0.29 (0.04–2.23)
TNFa (pg/ml) 9.94 (4.14–23.67) 6.83 (3.37–13.86)
Noradrenaline (nmol/liter) 4.00 (2.06–7.75) 2.69 (1.45–4.98)
Adrenaline (nmol/liter) 1.37 (0.43–4.42) 0.58 (0.26–1.27)
DHEA (nmol/liter) 5.52 (2.44–12.46) 9.09 (5.15–16.05)
IGF-I:GH 124.8 (9.17–1699.95) 557.51 (71.97–4318.98)
Cortisol:DHEA 72.12 (27.80–187.11) 44.94 (23.65–85.39)

The geometric mean together with asymetric standard deviations for those
variables log-normally distributed. GH 5 human growth hormone; TNFa 5
tumour necrosis factor-alpha; DHEA 5 dehydroepiandrosterone. *p , 0.05;
†p , 0.01.

Table 1. Characteristics of the Two Patient Groups

Low IGF-I
(n 5 20)

High/Normal IGF-I
(n 5 32)

IGF-I (ng/ml) 89.2 (9.6) 169.2 (52.0)
Age (yr) 65.3 (12.1) 61.6 (9.1)
BMI (kg/m2) 24.6 (4.9) 25.1 (2.7)
Peak VO2 (ml/kg/min) 15.5 (5.2) 17.3 (6.3)
VE/VCO2 slope 38.9 (14.7) 37.2 (14.3)
LVEF (%) 29.5 (17.4) 26.6 (15.2)
NYHA 2.6 (0.6) 2.8 (0.9)

BMI 5 body mass index; peak VO2 5 peak oxygen consumption; VE/VCO2 5
slope of the relation between ventilation and carbon dioxide production;
LVEF 5 left ventricular ejection fraction by radionucleide ventriculography;
NYHA 5 New York Heart Association classification of symptoms in chronic
heart failure. None of the differences is significant; p . 0.2.
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Discussion
Loss of muscle bulk happens early in the course of CHF

(15) and the development of cachexia is an adverse prognostic
feature (16). The origin of the weight loss is not clear, but
recent studies have drawn attention to the potential impor-
tance of neurohormonal and immune activation. Tumor ne-
crosis factor is elevated in CHF (5,6); there is an increase in
the ratio between circulating levels of catabolic and anabolic
steroids (3), and an insulin-resistant state develops (17,18).
The resting metabolic rate of patients with heart failure is
increased (19) and resting leg oxygen consumption has been
shown to be increased (8).

Growth hormone is secreted by the anterior pituitary, and
mediates its major metabolic effects through activation of
somatomedins, predominantly IGF-I (20,21). Levels of GH
can be greatly elevated in untreated heart failure (9) and we
have found elevated levels in patients with cardiac cachexia (4).
Paradoxically, perhaps, there is some evidence for a beneficial
effect in patients with heart failure from the exogenous treat-
ment with GH (22), although other investigators have found
the converse (23). This suggests that there may be a group of
patients who are not “sensitive” to GH, who are GH resistant.

This group of patients might be expected to have low levels
of circulating IGF-I and elevated levels of GH. Therefore, we

studied a group of patients intending to characterize those
patients with low IGF-I levels. The lower level of IGF-I is not
related to abnormal liver function, as transaminase levels were
the same in the two groups.

We have found these patients to have a higher level of
circulating GH, giving some support for the GH resistance
hypothesis, and higher levels of neuroendocrine activation. In
addition, these patients had a higher catabolic-to-anabolic
steroid ratio. Previously, we have reported an alteration in the
cortisol-to-DHEA ratio with relative catabolic steroid excess in
heart failure (3) and the present report suggests a relationship
between this and the apparently independent GH and IGF-I
systems. The relationship may be underestimated in the
present report; GH levels peak at night and thus we may have
underestimated the abnormalities in IGF-I-to-GH ratio. The
pathophysiologic link between the two systems is not known,
but warrants further investigation.

The low IGF-I group of patients had a reduced muscle
strength, even after correction for muscle bulk, and there was
a direct relationship between the degree of GH sensitivity, as
represented by the IGF-I-to-GH ratio, and body mass index.
Furthermore, although leg CSA was unchanged in the low
IGF-I group, there was a reduction in muscle CSA and an
increase in the ratio of fat to muscle in the leg. These findings
suggest a possible role for GH resistance in the development of
muscle loss in CHF. Additional mechanisms for muscle catab-
olism include insulin resistance (17,18). Growth hormone can
enhance sympathetic activation (24). It may be that as IGF-I
levels decline, GH increases and sympathetic activation is
augmented.

Insulin-like growth factor and apoptosis. The decline in
IGF-I levels may itself be deleterious. The IGF-I promotes
tumor growth (25,26), an effect mediated through the IGF-I
receptor (27). A decrease in the number of IGF-I receptors is
associated with massive apoptosis in some tumor models, and
overexpression of IGF-I protects cells from apoptosis (28,29).
Antibodies against the IGF-I receptor (30,31) or the induction
of IGF-I receptor mutant (32) also inhibit tumor growth. The
frequency with which apoptosis is seen in tissue samples is
increased in CHF (33,34). It may be that in heart failure as
IGF-I levels decline, a protective factor is removed allowing
apoptosis of skeletal muscle cells and muscle.

Figure 3. The relation between levels of catecholamines and growth
hormone.

Figure 4. The relation between corisol-to-DHEA ratio and IGF-
to-GH ratio.

Figure 2. The relation between IGF-I and GH and body mass index
(BMI).
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Insulin-like growth factor and cytokines. The TNF levels
were significantly higher in patients with low IGF-I levels than
in those with normal to high levels, and were also inversely
correlated with muscle bulk. The TNF-induced cell killing is
prevented by IGF-I alone (35). Furthermore, embryonic fibro-
blasts derived from mice with targeted disruption of the IGF-I
receptor showed a marked sensitivity to TNF, which was not
observed in fibroblasts derived from wild-type littermates.
There may be a link between loss of muscle bulk and low IGF-I
levels in patients with CHF.
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