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Reactive oxygen species (ROS) are a significant pathogenic factor of osteoporosis. Ginsenoside-Rb2 (Rb2), a 20(S)-
protopanaxadiol glycoside extracted from ginseng, is a potent antioxidant that generates interest regarding the
bone metabolism area. We tested the potential anti-osteoporosis effects of Rb2 and its underlying mechanism in
this study. We produced an oxidative damage model induced by hydrogen peroxide (H2O2) in osteoblastic
MC3T3-E1 cells to test the essential anti-osteoporosis effects of Rb2 in vitro. The results indicated that treatment of
0.1 to 10 μM Rb2 promoted the proliferation of MC3T3-E1 cells, improved alkaline phosphatase (ALP) expression,
elevated calcium mineralization and mRNA expressions of Alp, Col1a1, osteocalcin (Ocn) and osteopontin (Opn)
against oxidative damage induced by H2O2. Importantly, Rb2 reduced the expression levels of receptor activator of
nuclear factor kappa-B ligand (RANKL) and IL-6 and inhibited the H2O2-induced production of ROS. The in vivo
study indicated that the Rb2 administered for 12 weeks partially decreased bloodmalondialdehyde (MDA) activity
and elevated the activity of reduced glutathione (GSH) in ovariectomized (OVX)mice. Moreover, Rb2 improved the
micro-architecture of trabecular bones and increased bonemineral density (BMD) of the 4th lumbar vertebrae (L4)
and the distal femur. Altogether, these results demonstrated that the potential anti-osteoporosis effects of Rb2 were
linked to a reduction of oxidative damage and bone-resorbing cytokines, which suggests that Rb2might be effective
in preventing and alleviating osteoporosis.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
Introduction

Oxidative stress is described as an imbalance between an overpro-
duction of reactive oxygen species (ROS) and an insufficient defense
of antioxidants [1]. Oxidative stress can lead to oxidative damage that
affects all of the cellular components, including proteins, lipids and
nucleic acids. Osteoporosis is defined as a systemic degenerative dis-
ease, which is characterized by decreased bone mass and progressive
bone micro-architectural deterioration and results in increasing bone
fragility and susceptibility to fractures [2]. Currently, many studies
have demonstrated a relationship between oxidative damage and
osteoporosis or aging. Sendur and colleagues found that the decreased
BMD of postmenopausal osteoporotic women was related to higher
oxidation of plasma lipid [3] and lowered superoxide dismutase
(SOD), catalase and glutathione peroxidase efficacy [4–6]. Ovariectomy
has been shown to induce oxidative damage and to decrease the efficacy
of antioxidant defense mechanisms, thus leading to osteoporosis. The
. This is an open access article under
activities of lipid peroxidation and H2O2 were increased, and enzymatic
antioxidants, such as superoxide dismutase, glutathione peroxidase,
and glutathione S transferase, were decreased in ovariectomized ani-
mals [7]. Moreover, many studies have demonstrated that superoxide
and H2O2 were highly deleterious to cell survival and that they played
a major causative role in the aging process [8]. These research findings
provided a paradigm shift of osteoporosis pathogenesis from the
“estrogen-centric” concept to one in which age-related mechanisms
intrinsic to bone and oxidative stress were protagonists. Moreover, the
age-related changes in other organs and tissues, such as the ovaries,
accentuated these alterations [9].

Bone remodeling is a process that occurs throughout one's entire life
and involves two types of cells: osteogenic cells and monocyte-derived
osteoclasts [10–12]. The osteogenic cells participate in bone formation,
and osteoclasts are responsible for bone resorption [13,14]. The balance
between bone formation and bone resorption is essential for maintain-
ing bone homeostasis. Bone turnover changes significantly in postmen-
opausal osteoporosis: bone resorption is maintained or increases, but
bone formation decreases, thereby leading to a net bone loss [15].

Emerging evidence has shown that ROS increased bone resorption
by enhancing osteoclastic development and activity [16]. Indeed,
in vivo bone resorption occurs preferentially in sites where ROS and
the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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hence oxidative stress levels are high [17,18]. ROS also led to osteoblast
apoptosis, as well as reducing their activity, which led to decreased os-
teogenesis [19]. Oxidative stress decreases the life span of osteoblast in
the bone, as highlighted by the observation that the administration of
antioxidants abrogates osteoblast apoptosis in ovariectomized or aged
mice [20,21]. Therefore, we recommend substances that contain antiox-
idants because they may ameliorate the dysfunction of these two cell
types bymaintaining bone hemostasis. This suggestionmight be imple-
mented by acting as a latent method for the prevention and new treat-
ment for osteoporosis or other related bone metabolic diseases.

Because of fewer side-effects and longer term usage than Western
medicine, traditional Chinese medicines with anti-oxidative properties
have recently attracted more attention. The ginseng root, which is a
highly effective phytomedicinal remedy, is awell-recognized, tradition-
al Chinesemedicine that is widely used. The primary components found
in ginseng are ginsenosides, which contribute to themost active proper-
ties. Ginsenoside-Rb2 (Fig. 1) is the most quantitative saponin that is
contained in Panax ginseng [22]. It was reported that Rb2 possessed
anti-diabetic, anti-adipocyte, anti-carcinogenic and anti-oxidative
properties [23–26]. More importantly, recent studies showed that
H2O2,which is known as a cancer promoter, inhibited the gap junctional
intercellular communication (GJIC) of epithelial cells. Rb2 supplementa-
tionmight inhibit the occurrence of cancer through the up-regulation of
GJIC in the cancer-accelerating phase [27]. SOD1 is considered to be one
of the antioxidant enzymes. A previous study [28] has shown that
ginsenoside-Rb2 could induce the transcriptional expressions of Cu,
Zn-superoxide dismutase gene (SOD1). The mutated AP2 binding site in
the promoter of SOD1 gene abrogated this effect, which suggests that
the SOD1 gene was highly activated by ginsenoside-Rb2 through the
AP2 binding site [28]. Kang et al. studied the hydroxyl radical (•OH)
clearing capacity change of Rb2 through heat procedure using an elec-
tron spin resonance spectrometer. Specially, ginsenoside-Rb2 was heat
processed using the same amount of glycine, which was an amino
acid commonly employed in the Maillard response model system [26].

Whether ginsenoside-Rb2 might provide the potential anti-
osteoporosis effects andwhether these effects are produced by reducing
oxidative damage and bone-resorbing cytokines have not been
established. Therefore, in the present study, we tested the anti-
osteoporosis effects of Rb2 and the underlying mechanisms in vitro
Fig. 1. Chemical structure of Rb2 (from National Center of Biotechnology Information,
Pubchem CID: 5458674).
and in vivo using an H2O2-induced oxidative damage model of
osteoblastic MC3T3-E1 cells and a murine ovariectomized model.

Materials and methods

Materials

Rb2 extracted from ginseng (molecular weight, 1079; purity,
N98.0%; dissolved in distilled water) was purchased from Shanghai
Tauto Biotech Co., LTD (China). The culture flasks and plates were
obtained fromNunc (Denmark). The ALP activity assay kit was obtained
from GENMED Scientific Inc. (USA). RANKL and IL-6 ELISA assay kits
were obtained from R&D system Inc. (Minneapolis, MN, USA). The
total RNA kit was obtained from OMEGA. Prime Script RT reagent kit
and SYBR Premix Ex Taq were obtained from TaKaRa Biotechnology
(Dalian, China). The oligonucleotide primers were synthesized by
TaKaRa Biotechnology. BCIP/NBT alkaline phosphatase color develop-
ment kit was obtained from Gibco Life Technologies (Grand Island,
USA). The reactive oxygen species assay kit, GSH and MDA assay kits
were obtained from the Beyotime Institute of Biotechnology (Shanghai,
China). All other reagents were of analytical grade.

Cell cultures

Murine MC3T3-E1 cells were purchased from the Center Laboratory
for Tissue Engineering, College of Stomatology, Fourth Military Medical
University, Xi'an, China [29,30]. The cells were cultured inα-MEMusing
10% heat-inactivated FBS and 100 U/ml penicillin and 100 mg/ml strep-
tomycin in a condition of 5% CO2 and 37 °C. H2O2 acted as exogenous
ROS treatment, whereas N-acetyl-L-cysteine (NAC) acted as an ROS
cleaner. When the cells reached confluence, the serum-free medium
containing Rb2was dissolved in distilledwater and cultured for 24 h be-
fore the administration of 0.3 mM H2O2 for 24 h. For each experiment,
Rb2 administration continued after the pretreatment. All of the experi-
ments were performed in duplicate wells and repeated three times.

Assays of cell survival

For this experiment, the murine MC3T3-E1 cells were administered
using different consistencies of Rb2 (0 μM, 0.1 μM, 1 μM, and 10 μM) for
24 h and 72 h to test the toxicity of Rb2. Subsequently, the cells were in-
cubated using the serum-free regular culture medium, which contained
Rb2 (0 μM, 0.1 μM, 1 μM, and 10 μM) for 24 h followed by the administra-
tion of 300 μMH2O2 for 24h. TheMTT assayswereused formeasuring cell
survival. The absorbances of all of the wells were recorded using a
micro-plate reader at 492 nmwavelength. The cell survival of the control
group,whichwas not exposed to eitherH2O2 or Rb2,was defined as 100%.

Alkaline phosphatase (ALP) staining and activity assay

After a 6-day osteogenic induction, themurineMC3T3-E1 cells were
incubated using serum-free medium, which contained Rb2 and/or H2O2

for 2 days. The cells were stained using the BCIP/NBT alkaline phospha-
tase color development kit according to themanufacturer's instructions.
To evaluate the ALP activity, the cell monolayer was lysed using the cell
lysis buffer. Subsequently, the lysate was centrifuged at 10,000 g for
5 min. The clear supernatant was used to measure the ALP activity,
which was determined employing the ALP activity assay kit. The total
protein consistencies were determined using the Bradford protein
assay method. The ALP activity was normalized to total protein, which
was measured using the Bradford protein assay method.

Calcium mineralization assay

After a 21-day osteogenic induction, the murine MC3T3-E1 cells
were incubated using a serum-free medium, which contained Rb2
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and/or H2O2 for 2 days. After the cells were collected, the cells were
fixed with formalin for 20 min and stained with Alizarin Red S for
45 min under room temperature. To measure matrix calcification, un-
bound alizarin red was washed off using PBS. Subsequently, the stain
was solubilized using 10% cetylpyridinium chloride by shaking for
15 min. The absorbances of the released Alizarin Red S were recorded
using a micro-plate reader at 562 nm wavelength.

Quantitative real-time PCR

After a 6-day osteogenic induction, murine MC3T3-E1 cells were in-
cubated using a serum-free medium, which contained Rb2 and/or H2O2

for 2 days. The total cellular RNA was extracted from these cells using
Trizol reagent. Single strand cDNA synthesis was determined using the
Prime Script RT reagent kit (TaKaRa). The RT-PCR was performed
using the CFX96 (BIO-RAD) instrument, and individual PCRs were con-
ducted in 96-well optical reaction plates using SYBR Green-I (TaKaRa)
according to the manufacturer's instructions. Target gene (Alp, Col1a1,
Ocn and Opn) expressions were normalized to the reference gene
β-actin. The 2−ΔΔCt method was applied to calculate the relative gene
expression. These PCR products were subjected to a melting curve
analysis and a standard curve to confirm the correct amplification. All
of the PCRs were performed in triplicate, and the primers used for PCR
are shown in Table 1.

RANKL and IL-6 measurements

After a 6-day osteogenic induction, the murine MC3T3-E1 cells were
incubated using serum-free medium, which contained Rb2 and/or H2O2

for 2 days. The expressions of RANKL and IL-6 in culture medium were
tested using the sandwich ELISA assay kit according to themanufacturer's
instructions. The total protein consistencies were measured using the
Bradford protein assay method.

Intracellular reactive oxygen species (ROS) measurement

After a 6-day osteogenic induction, themurineMC3T3-E1 cells were
incubated using serum-free medium, which contained Rb2 and/or H2O2

for 2 days. The intracellular ROS expression level was determined using
the ROS assay kit. DCFH-DA can be oxidized by ROS in viable cells to
2′,7′-dichlorofluorescein (DCF), which is highly fluorescent at 530 nm.
These cells were washed three times with PBS. DCFH-DA, whichwas di-
luted to a final consistency of 10 μM,was added and cultured for 30min
at 37 °C in the dark. When washed three times by PBS, the relative
expression of fluorescence was quantified using a multi-detection
micro-plate reader (485 nm excitation and 535 nm emission).

Animals and ginsenoside-Rb2 intervention

Forty 8-week-old, BALB/c female mice, weighing 20.84 ± 1.21 g,
were obtained from the Experimental Animal Center of The Fourth
Military Medical University (Xi'an, China). There was no significant
difference in the initial body weights of the mice among all 4 groups
in this experiment. The mice were allowed to adapt to the laboratory
environment (a well-ventilated controlled room at 20 °C on a 12-h
Table 1
Real-time PCR primers for amplification of specific MC3T3-E1 mRNA.

Gene Forward (5′–3′) Reverse (5′–3′)

Alp GCAGTATGAATTGAATCGGAACAAC ATGGCCTGGTCCATCTCCAC
Colla1 GACATGTTCAGCTTTGTGGACCTC GGGACCCTTAGGCCATTGTGTA
Ocn ACCATCTTTCTGCTCACTCTGCT CCTTATTGCCCTCCTGCTTG
Opn TACGACCATGAGATTGGCAGTGA TATAGGATCTGGGTGCAGGCTGTAA
β-Actin CATCCGTAAAGACCTCTATGCCAAC ATGGAGCCACCGATCCACA
light/dark cycle; the animals were given free access to water and
food) for 1 week before the surgery. Subsequently, the mice experi-
enced sham-operation (n = 10) or were surgically ovariectomized
(OVX) (n = 30) under anesthesia using pentobarbital sodium
(50 mg/kg body weight, i.p.). The ovariectomy operation was per-
formed according to Steven K. Boyd's procedure [31]. A total of 30
BALB/c female mice were randomly divided into three groups: 1) OVX
group, administered intraperitoneally with distilled water (n = 10);
2) OVX group, administered intraperitoneally with Rb2 (body weight,
4.6 μmol/kg; n = 10) daily; and 3) OVX group, administered intra-
peritoneally with Rb2 (body weight, 18.5 μmol/kg; n = 10) daily.
Rb2 was dissolved in distilled water. One week after the operation,
the treatments commenced and continued for 12 weeks. Blood
samples were obtained from the hearts in anesthetized mice and
serum samples were prepared by centrifugation. The left femurs
and 4th lumbar vertebrae (L4) of the mice were collected and the
adherent tissue was discarded. All of the experimental procedures
were officially approval by the Ethics in the Animal Research Com-
mittee of the Fourth Military Medical University (permission code
2010C00843).
Measurements of serummalondialdehyde (MDA) and reduced glutathione
(GSH)

The activity of MDA inwhole blood sampleswas determined using a
lipid peroxidation MDA assay kit according to the manufacturer's
instructions. The binding of thiobarbituric acid to malondialdehyde,
which was formed during lipid peroxidation, results in a chromogenic
complex. In the spectrophotometer, the change of absorption
peak was detected at 532 nm. Colorimetry was used to detect the
Fig. 2. Protection by Rb2 on H2O2-induced cytotoxicity in MC3T3-E1 cells. A: MC3T3-E1
cells were cultured in different concentrations of Rb2. B: MC3T3-E1 cells were adminis-
tered with Rb2 for 24 h before 0.3 mM H2O2 administration for 24 h. The control values
for cell survival were 0.61 ± 0.02 OD. ##P b 0.01 compared with untreated control cells;
*P b 0.05 and **P b 0.01 in contrast to the group treated with H2O2 alone.
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Fig. 3. Protection by Rb2 onMC3T3-E1 cell dysfunction induced by H2O2. After induced for 6 days or 21 days, MC3T3-E1 cells were administeredwith Rb2 for 24 h before 0.3 mMH2O2 admin-
istration for 24 h. A and B: Protection by Rb2 on ALP staining and ALP activity inMC3T3-E1 cells after H2O2 treatment. The control value for ALP activity was 0.36± 0.03 unit/mg protein. C and
D: Protective effects of Rb2 on calciumdeposition inMC3T3-E1 cells byAlizarin Red S staining afterH2O2 treatment. The control values formineralizationwere 0.73±0.02OD.①Control group;
②H2O2;③H2O2+Rb2 (0.1 μM);④H2O2+Rb2 (1 μM);⑤H2O2+Rb2 (10 μM);⑥H2O2+NAC (1mM). ##P b 0.01 comparedwith untreated control cells; *P b 0.05 and **P b 0.01 in contrast
to the group treated with H2O2 alone.
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malondialdehyde activity in the whole blood samples. Additionally, the
activity of GSH was determined using the GSH assay kit. The GSH
activity was determined by the reaction of GSH with 5.50-dithiobis-2-
nitrobenzoic acid (DTNB) to produce a product that could be measured
using a spectrophotometer at 412 nm.
Fig. 4. Protection by Rb2 on the transcriptional expressions of Alp, Col1a1, Ocn and Opn after H2O
before 0.3 mM H2O2 administration for 24 h. #P b 0.05 and ##P b 0.01 compared with untreated c
Assessment of bone micro-architecture and bone mass by micro-computed
tomography

The 4th lumbar vertebrae (L4) and the distal femur were scanned
using explore Locus SP Pre-Clinical Specimen micro-CT (GE Healthcare,
2 treatment. When induced for 6 days, MC3T3-E1 cells were administered with Rb2 for 24 h
ontrol cells; *P b 0.05 and **P b 0.01 in contrast to the group treated with H2O2 alone.

image of Fig.�3
image of Fig.�4


Fig. 5. Rb2 inhibited the expressions of RANKL and IL-6 after H2O2 treatment. After osteo-
genic induction for 6 days, MC3T3-E1 cells were administered with Rb2 for 24 h before
0.3 mM H2O2 administration for 24 h. A: Expression of RANKL with the presence of Rb2
and/or H2O2. The control values for RANKL were 2.27 ± 0.18 ng/mg. B: Expression of
IL-6 with the presence of Rb2 and/or H2O2. The control values for IL-6 were 0.72 ±
0.17 ng/mg. ##P b 0.01 compared with untreated control cells; *P b 0.05 and **P b 0.01
in contrast to the group treated with H2O2 alone.
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USA) with 8-mm resolution, 50-kV tube voltage and 0.1-mA tube cur-
rent. The reconstruction and 3D quantitative analyses were determined
using software provided by a desktop micro-CT system (GE Healthcare,
USA). Similar settings for scans and analyses were used for all of the
samples. In the femur, the scanning regions were confined to the distal
metaphysis, extending proximally 2.0 mm from the proximal tip of the
primary spongiosa. The trabecular bone region from the vertebral body
was outlined for each micro-CT slice, excluding both the cranial and
caudal endplate regions. The following 3D indices in the defined region
of interest (ROI) were analyzed: bone mineral density (BMD), connectiv-
ity density (Conn.D), structure model index (SMI), trabecular number
(Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp) and
relative bone volume over total volume (BV/TV, %). The operator who
conducted the scan analysis was blinded to the procedure associated
with the specimens.
Histological examination by Van Gieson (VG) staining

The 4th lumbar vertebrae and the left femur of all of the mice were
collected and fixed in 4% paraformaldehyde for 48 h. After dehydration
and embedding, the 4th lumbar vertebrae and the distal femur were
embedded in polymethyl-methacrylate (PMMA) and processed into
240-mm-thick sections in the coronal plane using a rotationmicrotome.
Subsequently, all of the sections were hand-grounded to a thickness
of 20 mm for VG staining, which was used for staining collagen
fiber [32].
Statistical analysis

The data represented the mean ± SD values of multiple repeats of
the same experiment (n = 5). The data for all of the measurements
were analyzed using a one-way analysis of variance (ANOVA)with sub-
sequent post hoc multiple comparison by Dunnett's test. Statistically
significant values were defined as P b 0.05.

Results

Rb2 inhibited H2O2-induced cytotoxicity in MC3T3-E1 cells

Before the anti-cytotoxicity effect of Rb2 was tested, the toxicity of
Rb2 onMC3T3-E1was observed. The results showed that Rb2 treatment
alone did not affect cell survival at the consistencies tested in this exper-
iment (Fig. 2A). Subsequently, we tested the survival of MC3T3-E1 cells
to observe the defensive effects by Rb2 on the repercussion of the cells
after H2O2-induced oxidative damage. We implemented oxidative
damage onMC3T3-E1 cells using 0.3 mMH2O2 for 24 h.When different
concentrations of Rb2 (0.1, 1, 10 μM) were administered to MC3T3-E1
cells for 24 h before H2O2 treatment, the viability of the cells increased
compared to the group without Rb2 treatment, which indicates that
Rb2, in part, inhibited H2O2-induced cytotoxicity (Fig. 2B). N-acetyl-L-
cysteine represented the positive control, which significantly
suppressed cytotoxicity induced by H2O2 at 1 mM.

Protection by Rb2 on H2O2-induced dysfunction of MC3T3-E1 cells

We tested the protective effect of Rb2 on H2O2-induced dysfunction
of MC3T3-E1 cells by evaluating osteoblast differentiation and mineral-
ization with ALP staining, ALP activity and Alizarin Red S staining. Addi-
tionally, we detected the expression of osteogenic genes including Alp,
Col1a1, Ocn and Opn. Compared with the control group, all markers of
osteogenic differentiation, such as ALP expression, calcium deposition
and osteogenic genes (Figs. 3 and 4), decreased after treatment of
H2O2. However, when we pretreated MC3T3-E1 cells with Rb2
(0.1 μM, 1 μM, and 10 μM), cellular ALP expression (Fig. 3A) and activity
(Fig. 3B) increased in a dose-dependent manner. As shown in Fig. 3C
and D, Rb2 (0.1 μM, 1 μM, and 10 μM) exhibited a good recovery effect
on calcium deposition, which was suppressed by H2O2. Furthermore,
pretreatment with Rb2 partially elevated the expression of osteogenic
genes compared with the group of H2O2 treated alone (Fig. 4). Our
data indicated that Rb2, in part, attenuated H2O2-induced dysfunction
of MC3T3-E1 cells.

Rb2 inhibited RANKL and IL-6 expression in MC3T3-E1 cells

Osteoblasts always express and secrete several cytokines, which
bind to receptors in osteoclasts and affect osteoclast activity in bone re-
modeling. RANKL and IL-6 are two essential bone-resorbing factors
expressed in osteoblasts. After the addition of 0.3mMH2O2, the expres-
sions of RANKL and IL-6 increased. However, when pretreated with Rb2
of 0.1 μM, 1 μM and 10 μM, the elevated expressions of RANKL and IL-6
were, in part, inhibited (Fig. 5).

Rb2 inhibited the production of reactive oxygen species induced by H2O2 in
MC3T3-E1 cells

To clarify whether the cell-protective capacity of Rb2 was associated
with its antioxidant property, we tested ROS production using a fluores-
cent probe DCFH-DA. The results in Fig. 6 showed that whenMC3T3-E1
cells were treatedwith 0.3mMH2O2, ROS increased. These data indicat-
ed that H2O2 stimulated the generation of oxidants and resulted in
oxidative stress to MC3T3-E1 cells. However, when pretreated with Rb2
of different concentrations, ROS production was partially suppressed

image of Fig.�5


Fig. 6. Rb2 inhibited H2O2-induced ROS expression in MC3T3-E1 cells. After osteogenic induction for 6 days, the cells were administered with Rb2 for 24 h before a 0.3 mMH2O2 admin-
istration for 24 h. A: ROS detection by fluorescent probe DCFH-DA; B: quantitative analysis of ROS detection.① Control group;② H2O2;③ H2O2 + Rb2 (0.1 μM);④ H2O2 + Rb2 (1 μM);
⑤ H2O2 + Rb2 (10 μM); ⑥ H2O2 + NAC (1 mM). ##P b 0.01 compared with untreated control cells; *P b 0.05 and **P b 0.01 in contrast to the group treated with H2O2 alone.

311Q. Huang et al. / Bone 66 (2014) 306–314
(Fig. 6). These results suggested that the protection by Rb2 might be
related to its antioxidant activity.

Rb2 inhibited serum oxidative damage of ovariectomized mice

To test whether Rb2 can inhibit serum oxidative damage caused by
estrogen insufficiency, the activities of serum malondialdehyde (MDA)
and reduced glutathione (GSH) were observed in ovariectomized mice
with or without Rb2 intervention. The results in Fig. 7 showed that in
contrast to the sham-operated group, the activity of MDA in serum
increased, whereas the GSH activity in the ovariectomized group
decreased. However, Rb2 treatment partly rescued the serum activities
of MDA and GSH.

Rb2 improved bone mass and bone structure of ovariectomized mice

To evaluate Rb2 acting on trabecular bone mass and micro-
architecture, different concentrations of Rb2 were supplemented to
the ovariectomized (OVX) mice. When all of the mice were collected
at 13 weeks after operation, there were no significant differences
in body weights of all four groups. The body weights of the sham-
operated group, OVX group, OVX + Rb2 (4.6 μmol/kg) group and
OVX + Rb2 (18.5 μmol/kg) group were 24.26 ± 0.99 g, 24.12 ±
1.06 g, 24.03 ± 1.09 g and 24.07 ± 0.98 g, respectively. The micro-
architectures of distal femurs are shown in Fig. 8A and B. The analyses
of the trabecular bone of the 4th lumbar vertebrae (L4) and the distal
femur showed that ovariectomy reduced bone mass and deteriorated
bone micro-architecture, which was indicated through decreases in
BMD, Conn.D, Tb.N, Tb.Th and BV/TV (Fig. 8C and D) (P b 0.05). SMI
and Tb.Sp exhibited increases that contributed to ovariectomy
(P b 0.05), as shown in Fig. 8E and F. However, the treatment of ovari-
ectomized mice with 4.6 μmol/kg or 18.5 μmol/kg Rb2, in part, rescued
these bone parameters and improved the micro-architecture of the
trabecular bone in the 4th lumbar vertebrae and the distal femur.
Moreover, we evaluated the changes of bone micro-architecture by VG
staining. As shown in Fig. 8G and H, compared with the sham-
operated group, the number of trabeculae decreased and the trabecular
space became broader in the OVX group. The supplement of Rb2 re-
versed these changes by an elevated number of trabecular bone and a
reduction of trabecular bone space (Fig. 8G and H). These results were
consistent with the micro-CT data (Fig. 8A–F).

Discussion

The reactive oxygen species are highly reactive oxygen free radicals
or non-radical molecules, which include hydrogen peroxide (H2O2),
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Fig. 7.Rb2 inhibited serumoxidative damage in the ovariectomizedmodel. A: SerumMDA
concentrations in OVX mice that were administered different concentrations of Rb2.
B: Serum GSH concentrations in OVX mice that were administered different concentrations
of Rb2. Groups: Sham; OVX; OVX+Rb2 (4.6 μmol/kg); OVX+Rb2 (18.5 μmol/kg). The con-
trol values forMDA and GSHwere 9.24± 0.67 nM/mg and 11.87± 1.27 nM/mg. ##P b 0.01
compared with the sham group; *P b 0.05 and **P b 0.01 in contrast to the OVX group.
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superoxide anion (O2•
−) and hydroxyl radical (•OH) [33]. Their over-

production induces oxidative stress. A considerable number of studies
indicated that increased oxidative stress was involved in the pathogen-
esis of osteoporosis caused by estrogen deficiency and aging [34,35]. Be-
cause of good stability and property to pass through cell membranes,
hydrogen peroxide is favorable to serve as both an extra- and an inter-
cellular signal [36]. Therefore, an in vitro H2O2-induced oxidative
damage model was used in this study. The study of Zhang et al. showed
that the treatment of 0.3 mM H2O2 for 24 h reduced the number of
MC3T3-E1 cells to 50% and that 0.3 mMH2O2 was suitable for gener-
ating an in vitro oxidative stress model [32]. Therefore, we used
0.3 mM H2O2 for 24 h to make an oxidative damage model in the
present study. Our data showed that H2O2 toxicity was reversed to
a certain degree by pretreatment with Rb2. This study demonstrated
that Rb2, in part, decreased H2O2-induced cytotoxicity on MC3T3-E1
cells.

Oxidative damage not only affects osteoblast survival but also has an
impact on its differentiation. H2O2-induced oxidative damage is report-
ed to inhibit osteoblast differentiation in primary murine bone marrow
stem cells and to reduce the expression of osteoblast markers in osteo-
blasticMC3T3-E1 cells [19,37]. Our study also showed that H2O2 supple-
mentwas linked to a reduction of cellular alkaline phosphatase activity,
a decrease of calciummineralization and lowered expressions of osteo-
genic genes, including Alp, Col1a1, Ocn and Opn, which confirms previ-
ous results that cytotoxicity of H2O2, in part, results in MC3T3-E1 cell
dysfunction. Moreover, our data showed that H2O2-induced inhibition
of osteogenic differentiation could be reversed by Rb2. Rb2 alone could
not significantly enhance MC3T3-E1 cell survival and osteogenic differ-
entiation within experimented consistencies. Therefore, we speculated
that the antioxidant property of Rb2 contributed to the protective effect.
Because Rb2 improves osteoblastic survival and differentiation against
oxidative damage, Rb2 might become an anti-osteoporosis agent in
the bone metabolism area.
Several pathways and cytokines couple the link between osteoblasts
andosteoclasts. RANKL and IL-6 are generated by osteoblasts and function
as bone-resorbing cytokines by stimulating osteoclast activity. RANKL
belongs to the superfamily of tumor necrosis factor [38]. By binding to
RANK, RANKL leads to osteoclastic differentiation, prolongs osteoclastic
activity and increases bone resorption [11]. Several studies have shown
that reactive oxygen species could elevate the expression of RANKL in
osteoblasts [39]. IL-6 is also generated by osteoblastswhen it ismotivat-
ed by IL-1, TNF-α, and lipopolysaccharide [40]. IL-6 could affect the ex-
pression of RANKL, improve osteoclast development and be a significant
pathogenic factor of estrogen deficiency osteoporosis [41,42]. It was
reported that reactive oxygen species might indirectly influence os-
teoclasts by increasing the expression of bone-resorptive cytokines,
which are highly involved in estrogen deficiency osteoporosis [43].
In our study, Rb2 was noted to inhibit, in part, the H2O2-induced gener-
ations of RANKL and IL-6 in MC3T3-E1 cells. The reductions of RANKL
and IL-6 might contribute to the anti-resorbing property, which Rb2
exhibited.

Ginsenoside-Rb2 (Rb2), which is extracted from Panax ginseng,
belongs to traditional Chinese medicine. Recently, its anti-oxidative
property has been reported [16]. In this study, we could reverse, in
part, H2O2-induced production of reactive oxygen species by pretreat-
mentwith Rb2 for 24 h. Our data indicated that Rb2might be a useful an-
tioxidant to protect MC3T3-E1 cells from cytotoxicity induced by
oxidative damage. Consequently, the protection by Rb2 to MC3T3-E1
cells could be mediated via its antioxidant property. The beneficial effect
of Rb2 might be linked to reduced oxidative damage and bone-
resorbing cytokines. However, the molecular mechanism has not been
established. Comparedwith other growth factors, reactive oxygen species
result in the retention of FoxOs in the nucleus and the activation of their
transcription [44]. FoxO protein family is characterized by a common
winged-helix DNA binding domain called Forkhead box [45]. Animal
studies have demonstrated that in response to oxidative damage, c-jun
kinase (JNK) and mammalian sterile 20-related kinase-1 (Mst1) bond
and phosphorylate FoxOs in a direct manner [46–49]. FoxO-dependent
oxidative defense systems provide an approach for dealing with oxygen
free radicals that are constantly produced by the aerobic metabolism of
osteoblasts and are therefore essential for bone mass balance [50].
Under these circumstances, we deduced that Rb2 provided protective
effects against cytotoxicity and osteoblast dysfunction induced by H2O2

through the JNK,Mst1 and FoxOs signaling pathway. In additional studies,
we will explore this molecular mechanism.

Themechanismbywhich estrogen deficiency activates bone loss has
not been established. Recently, oxidative damage has been documented
to result in postmenopausal osteoporosis. Almeida et al. reported that
similar increases in oxidative stress and p66shc phosphorylation ob-
served with age-related changes in bone of C57BL/6 mice were caused
by removing gonads in the female or male mice [17,20]. Moreover, the
alterations were ameliorated by administering antioxidants, such as
N-acetyl-L-cysteine, ascorbate, and catalase, which is as effective as hor-
mone replacement [9]. Malondialdehyde (MDA), which commonly
served as a trustful parameter in evaluating the oxidative damage status
[51], is an end product of lipid peroxidation induced by reactive oxygen
species. Reduced glutathione (GSH) is an intracellular antioxidant,
which prevents cells from oxidative stress caused by free radicals, per-
oxides and toxins. It can effectively remove O2•

− and provide electrons
for glutathione peroxidase to transform H2O2 into H2O [52]. Additional-
ly, GSH reduction is a marker of oxidative damage [53]. Our research
showed that Rb2 administration for 12 weeks reversed, in part, serum
MDA and GSH activities of ovariectomized mice.

Sharing similarities with postmenopausal women, ovariectomized
mice experience significant bone loss due to estrogen deficiency,
which primarily results from trabecular bone loss [54]. Therefore,
the trabecular bone micro-architecture is considered to be a proper
predictor of OVX-induced bone loss and bone quality deterioration
[55]. The micro-architecture of trabecular bone has been shown to
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Fig. 8. Protection by Rb2 on the bone mass and micro-architecture of trabecular bone of OVX mice. A and B: Analysis of micro-CT in the distal metaphyseal femur region. Groups: Sham;
OVX; OVX + Rb2 (4.6 μmol/kg); OVX+ Rb2 (18.5 μmol/kg). C and E: Analysis of micro-CT quantification in the distal metaphyseal femur region. D and F: Analysis of micro-CT quantifi-
cation in the 4th lumbar vertebrae. The following 3D indices in the defined region of interest (ROI) were analyzed: BMD, Conn.D, SMI, Tb.N, Tb.Th, Tb.Sp and BV/TV. G and H: Van Gieson
(VG) staining of the distal femur and body of the 4th lumbar vertebrae. The figure was 40× and 100× of the original section. *P b 0.05 and ##P b 0.01 compared with the sham group;
*P b 0.05 and **P b 0.01 in contrast to the OVX group.
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dramatically deteriorate after ovariectomy by both micro-CT scan-
ning and VG staining [32,56]. Nevertheless, these negative effects
could be reversed, to some degree, after administering Rb2. These re-
sults further confirmed that Rb2 might, in part, ameliorate trabecular
micro-architecture and bonemass of OVXmice and that Rb2 might be a
good candidate for the prevention and the treatment of estrogen-
deficient osteoporosis.

To conclude, the results described in this article indicated that in an
in vitro analysis, ginsenoside-Rb2 protected osteoblastic MC3T3-E1 cells
fromcytotoxicity and osteoblast dysfunction induced by hydrogen perox-
ide at 0.1 to 10 μM. This activity is linked to a reduction of oxidative dam-
age and bone-resorbing cytokines. More importantly, ginsenoside-Rb2
decreased serum reactive oxygen species to a certain degree and partly
reversed estrogen-deficient effects in vivo at doses of 4 to 18 μmol/kg
body weight. Ginsenoside-Rb2 may act as a substantive alternative in
bone metabolic diseases, especially osteoporosis. Extensive research is
needed in the future to explore the intricate molecular mechanisms of
ginsenoside-Rb2 on bone metabolism.
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