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Abstract

In this note we consider the following high-order rational difference equation

xn = 1 +

k∏
i=1

(1 − xn−i )

k∑
i=1

xn−i

, n = 0, 1, . . . ,

where k ≥ 3 is odd number, x−k , x−k+1, x−k+2, . . . , x−1 is positive numbers. We obtain the boundedness of positive solutions for
the above equation, and with the perturbation of initial values, we mainly use the transformation method to prove that the positive
equilibrium point of this equation is globally asymptotically stable.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, there has been an increasing interest in the study of the global asymptotic properties of rational difference
equations. However, there have not been any effective general methods to deal with the global behavior of rational
difference equations of order greater than one so far. As we know, it is extremely difficult to understand thoroughly
the global behaviors of solutions of rational difference equations although they have simple forms (or expressions).
One can refer to [1–9] for examples to illustrate this. Therefore, the study of rational difference equations of order
greater than one is worth further consideration.
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The authors [6] proved that the positive equilibrium point of the difference equation

xn+1 =
xn xn−1 + 1
xn + xn−1

, n = 0, 1, 2, . . . (LZ1)

with positive initial values x−1, x0 is globally asymptotically stable.
In fact, Eq. (LZ1) may be rewritten into

xn+1 = 1 +
(1 − xn)(1 − xn−1)

xn + xn−1
, n = 0, 1, . . . . (LZ2)

Motivated by this kind of form of the above Eq. (LZ2), the first author of this paper studied global asymptotic stability
for positive solutions to the equation

xn+1 = 1 +
(1 − xn)(1 − xn−1)(1 − xn−2)

xn + xn−1 + xn−2
, n = 0, 1, 2, . . . , (L)

where the initial conditions x−2, x−1, x0 are positive numbers and at least two of them are not larger than one.
In this paper, we consider the following high-order rational difference equation

xn = 1 +

k∏
i=1

(1 − xn−i )

k∑
i=1

xn−i

, n = 0, 1, . . . , (1)

where k ≥ 3 is odd number, and the initial values x−k, x−k+1, x−k+2, . . . , x−1 ∈ [α, β], with 0 < α < 1 and β > 1.
It is clear that the equilibrium x of Eq. (1) satisfies

x =
(1 − x)k

+ kx

kx
,

from which we can get that Eq. (1) has a unique positive equilibrium x = 1.
Eq. (1) is interesting in its own right. To the best of our knowledge, however, Eq. (1) has not been investigated so

far. Therefore, to study its qualitative properties is theoretically meaningful.
It is worthwhile to note that the global asymptotic stability for Eqs. (LZ2) and (L) is proved in [6] via the analysis

of semi-cycle structure (similar methods are also used in [8,9]). Such analysis while computationally feasible for small
k, can be very involved for larger values. One can see that it is difficult to depict semi-cycle structure for larger k in Eq.
(1). It is fortunate that, in this note, the transformation method used does not require prior determination of detailed
semi-cycle structure.

The paper proceeds as follows. In Section 2, we obtain the boundedness of positive solutions for Eq. (1), while by
introducing some preliminary lemmas and notation, in Section 3, we get a proof of global asymptotic stability for the
solutions of Eq. (1) with the perturbation of initial values.

The results obtained in this paper partly generalize the corresponding ones given in paper [6].

2. Boundedness of positive solutions to Eq. (1)

Theorem 2.1. Suppose that there exist α ∈ (0, 1) and β ∈ (1, +∞), such that

(1 − α)p(1 − β)q

pα + qβ
≤ β − 1, p + q = k, q = 0, 2, 4, . . . , k − 1 (2)

and

(1 − α)p(1 − β)q

pα + qβ
≥ α − 1, p + q = k, q = 1, 3, 5, . . . , k, (3)

then the solution {xn} of Eq. (1) satisfies xn ∈ [α, β], for n = 0, 1, 2, . . . .
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Proof. In Eq. (1), by setting

f (Y1,Y2, . . . ,Yk) =

k∏
i=1

(1 − Yi )

k∑
i=1

Yi

,

where Yi ∈ [α, β], i = 1, 2, . . . , k, and by deducing, we easily get that the function f (Y1,Y2, . . . ,Yk) is monotone
in Yi (i = 1, 2, . . . , k), respectively.

In fact, might as well supposes,
(i) if Y1,Y2, . . . ,Yp ≤ 1, Yp+1,Yp+2, . . . ,Yp+q > 1, q is even number, then we easily prove that f is decreasing

in Y1,Y2, . . . ,Yp, and increasing in Yp+1,Yp+2, . . . ,Yp+q ;
(ii) if Y1,Y2, . . . ,Yp ≤ 1, Yp+1,Yp+2, . . . ,Yp+q > 1, q is odd number, then we easily prove that f is increasing

in Y1,Y2, . . . ,Yp, and decreasing in Yp+1,Yp+2, . . . ,Yp+q .
Therefore, we may get the extremum of f (Y1,Y2, . . . ,Yk), that is,

0 ≤ f (Y1,Y2, . . . ,Yk) ≤
(1 − α)p(1 − β)q

pα + qβ
, Yi ∈ [α, β], i = 1, 2, . . . , k,

here p + q = k, q = 0, 2, 4, . . . , k − 1; and

(1 − α)p(1 − β)q

pα + qβ
≤ f (Y1,Y2, . . . ,Yk) ≤ 0, Yi ∈ [α, β], i = 1, 2, . . . , k,

here p + q = k, q = 1, 3, 5, . . . , k.
According to (2) and (3), we may get

α − 1 ≤ f (Y1,Y2, . . . ,Yk) ≤ β − 1, Yi ∈ [α, β], i = 1, 2, . . . , k,

which implies that the solution {xn} of Eq. (1) satisfies xn − 1 ∈ [α − 1, β − 1], for n = 0, 1, 2, . . .. The proof of
theorem follows. �

3. The global asymptotic behavior of solutions to Eq. (1)

In order to prove the result in this section, we introduce some preliminary lemmas and notation. First, we consider
the simple transformed sequence {x∗

n } defined by

x∗
n =

{
exn−1, 1 ≤ xn < 2
e1−xn , 0 < xn < 1.

(4)

The following elementary lemmas will be useful.

Lemma 3.1. Suppose that {xn} satisfies (1), that {x∗
n } is obtained from {xn} via (4), and that 1 ≤ xn−i < 2, i =

1, 2, . . . , p, 0 < xn−p− j < 1, j = 1, 2, . . . , q, p + q = k, then,

ln x∗
n =

p∏
i=1

ln x∗

n−i ·

q∏
j=1

ln x∗

n−p− j

k +

p∑
i=1

ln x∗

n−i −

q∑
j=1

ln x∗

n−p− j

. (5)

Proof. From (4), we know that, if 1 ≤ xn < 2, then xn − 1 = ln x∗
n ; while if 0 < xn < 1, then xn − 1 = − ln x∗

n .
(i) if q is even number, then p is odd number, and we have

− ln x∗
n =

(−1)p
p∏

i=1
ln x∗

n−i ·

q∏
j=1

ln x∗

n−p− j

k +

p∑
i=1

ln x∗

n−i −

q∑
j=1

ln x∗

n−p− j

; (6)
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(ii) if q is odd number, then p is even number, and we get

ln x∗
n =

(−1)p
p∏

i=1
ln x∗

n−i ·

q∏
j=1

ln x∗

n−p− j

k +

p∑
i=1

ln x∗

n−i −

q∑
j=1

ln x∗

n−p− j

. (7)

Obviously, from (6) and (7), (5) follows. �

Lemma 3.2. Suppose that f is defined by

f (y1, . . . , yp; yp+1, . . . , yp+q) =
y1 · · · yp · yp+1 · · · yp+q

k + y1 + · · · + yp − yp+1 − · · · − yp+q
, (8)

and y1, . . . , yp, yp+1, . . . , yp+q ∈ [0, 1), then, f is increasing in y1, . . . , yp; yp+1, . . . , yp+q , respectively. Here,
p + q = k, k is odd number.

Proof.
∂ f

∂ym
=

E · F

(k + y1 + · · · + yp − yp+1 − · · · − yp+q)2 , m = 1, 2, . . . , p,

here

E = y1 · · · ym−1 · ym+1 · · · yp · yp+1 · · · yp+q ≥ 0,

F = k + y1 + · · · + ym−1 + · · · + ym+1 + · · · + yp − yp+1 − · · · − yp+q ≥ 0.

Similarly,

∂ f

∂ym
=

G · H

(k + y1 + · · · + yi − yi+1 − · · · − yi+ j )2 , m = p + 1, p + 2, . . . , p + q,

here

G = y1 · · · yp · yp+1 · · · ym−1 · ym+1 · · · yp+q ≥ 0,

H = k + y1 + · · · + yp − yp+1 − · · · − ym−1 − · · · − ym+1 − · · · − yp+q ≥ 0.

From the above analysis, the Lemma 3.2 follows. �

By Lemmas 3.1 and 3.2, we have

Lemma 3.3. Suppose that p ≥ 1 in Lemma 3.1, then we have

max
1≤i≤k

{ln x∗

n−i } ≥ ln x∗
n ≥ 0, (9)

for all n ≥ k, where k is odd number.

Proof. By the definition of (4), we easily know that in (5), 1 ≤ x∗
n < e for all n. Setting M = max1≤i≤k{ln x∗

n−i }, and
applying Lemma 3.2 k times, we obtain

ln x∗
n ≤

Mk

k + (p − q)M
.

Note that 1 ≤ x∗
n < e for all n, M = max1≤i≤k{ln x∗

n−i } ∈ [0, 1), then we obtain

Mk
≤ k M + (1 − k)M2

≤ k M + (p − q)M2.

Therefore,

ln x∗
n ≤

Mk

k + (p − q)M
≤ M. (10)

Also the proof of the Lemma 3.3 is completed. �
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Now, set

Dn = max
n−k≤i≤n−1

{ln x∗

i }, n = 0, 1, 2, . . . . (11)

By (11) and (9), we have

Dn+1 = max
n+1−k≤i≤n

{ln x∗

i } = max{ max
n+1−k≤i≤n−1

{ln x∗

i }, ln x∗
n }

≤ max{ max
n+1−k≤i≤n−1

{ln x∗

i }, max
1≤i≤k

{ln x∗

n−i }}

= max{ max
n+1−k≤i≤n−1

{ln x∗

i }, max
n−k≤i≤n−1

{ln x∗

i }} = max
n−k≤i≤n−1

{ln x∗

i } = Dn .

Therefore, we easily get the following lemma.

Lemma 3.4. The sequence Dn is monotonically non-increasing in n for n ≥ k.

Since Dn ≥ 0 for n ≥ k, Lemma 3.4 implies that, as n tends to infinity, the sequence Dn converges to some limit,
say D, where D ≥ 0.

Theorem 3.1. If (2) and (3) hold, and 1 < β < 2, then the positive equilibrium point x = 1 of Eq. (1) is globally
asymptotically stable.

Proof. The linearized equation of Eq. (1) about the positive equilibrium point x is

zn = 0 · zn−1 + 0 · zn−2 + · · · + 0 · zn−k,

and so it is clear from [7, Remarks 1.3.7] that the positive equilibrium point x of Eq. (1) is locally asymptotically
stable. It remains to verify that every positive solution {xn}

∞

n=−k of Eq. (1) converges to x as n −→ ∞. Namely, we
want to prove

lim
n→∞

xn = x = 1. (12)

Might as well supposes that in Eq. (1), 1 ≤ xn−i < 2, i = 1, 2, . . . , p, 0 < xn−p− j < 1, j = 1, 2, . . . , q,
p + q = k, for n = 0, 1, 2, . . .. Especially, p = 0 means that xn− j < 1, j = 1, 2, . . . , k.

First, if p = 0, the rules for the positive and negative semi-cycles of the solution to Eq. (1) can be periodically
expressed as follows: . . . , (k + 1)−, 1+, (k + 1)−, 1+, (k + 1)−, 1+, . . . . Then we can easily prove (12) by the semi-
cycle methods (see References [6,8,9]).

Next, if p ≥ 1, it is difficult to depict semi-cycle structure of the solution to Eq. (1), so we will show that the
transformed sequence {x∗

n } converges to 1, which also indicates (12) to be true.
By the definition (11), the values of Dn are taken on by entries in the sequence {ln x∗

n }, and as well, by Lemma 3.3,
ln x∗

n ∈ [0, Dn] for n ≥ k. It suffices to prove that D = 0. Suppose that D > 0, then for any ∈ (0, D), we can find
an N such that ln x∗

N ∈ [D, D + ], and for n ≥ N − k,

ln x∗
n ∈ [0, D + ].

Since x∗
n ≥ 1 for all n, employing Lemmas 3.1 and 3.2 gives

D ≤ ln x∗

N ≤
(D + )k

k + (p − q)(D + )
,

namely,

D[k + (p − q)(D + )] ≤ (D + )k

or

k D + (p − q)D2
≤ Dk

+ C1
k Dk−1

+ C2
k Dk−2 2

+ · · · + Ck
k

k
+ (q − p)D ,

which implies that D = 0 by k ≥ 3 and arbitrary > 0. The proof of this theorem is complete. �

For the further study, we leave the following problem to the interested readers:
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Conjecture. If (2) and (3) hold, and β ≥ 2, then the positive equilibrium point x = 1 of Eq. (1) is globally
asymptotically stable.
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