A TRP Channel that Senses Cold Stimuli and Menthol

Andrea M. Peier,1 Aziz Moqrich,2 Anne C. Hergarden,1 Alison J. Reeve,3 David A. Andersson,1 Gina M. Story,2 Taryn J. Earley,1 Ilaria Dragoni,3 Peter McIntyre,3 Stuart Bevan,3 and Ardem Patapoutian1,2,4

1Genomics Institute of the Novartis Research Foundation
San Diego, California 92121
2Department of Cell Biology
The Scripps Research Institute
La Jolla, California 92037
3Novartis Institute for Medical Sciences
London WC1E 6BN
United Kingdom

Summary

A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.

Introduction

The vertebrate sensory nervous system enables fine detection of varied external information. While these senses are popularly categorized into five modalities (taste, smell, hearing, sight, and touch), the sense of touch actually consists of the perception of multiple discrete types of stimuli, including temperature, position, and pressure. Correspondingly, electrophysiologists have long realized that recognition of touch is executed by neurons of restricted specificity, such that painful (or noxious) stimuli can activate neurons of a different class than nonnoxious pressure (Scott, 1992; Hensel, 1981). The molecular characterization of sensory neurons has advanced remarkably in recent years, perhaps most notably with the identification of genes that encode receptor families for smell and taste ligands (Adler et al., 2000; Axel, 1995). And yet, a great deal remains unknown about the molecular pathways that lead to the diversity of neurons that sense “touch” and that enable these neurons to translate mechanical or thermal stimuli into action potentials.

The specialized neurons that detect sensory stimuli reside within the dorsal root ganglia (DRG). There, the neuronal cell bodies are embedded within the vertebral column along the dorsolateral side of the neural tube. The DRG neurons extend long axons to peripheral targets such as skin and visceral organs where they detect chemical, mechanical, and thermal stimuli (Scott, 1992). These sensory modalities can be divided into submodalities according to neuronal specificity. For example, in the case of neurons that convey thermal sensation (so-called thermoreceptors), some DRG fibers detect temperatures between 32°C and 43°C, and their activation is associated with sensing a warm stimulus (Julius and Basbaum, 2001). Other fibers can only be activated at temperatures above 43°C (noxious heat), and still others only respond to subambient temperature.

Despite some knowledge of the physiology of thermoreceptors, very little is known about molecules that are involved in temperature detection in DRG neurons. One such molecule is Vanilloid Receptor 1 (VR1), an ion channel gated by heat (temperatures above 43°C) and expressed in a subset of nociceptive sensory neurons (Caterina et al., 1997). A close relative, Vanilloid Receptor-Like Protein 1 (VRL1), is activated by very high heat (temperatures above 52°C) and is widely expressed in both neuronal and nonneuronal cells (Caterina et al., 1999). VR1 and VRL1 are members of the TRP family of nonselective cation channels (Clapham et al., 2001). In addition to heat, some TRP channels have been implicated as mechano- and osmosensors in invertebrates (Harteneck et al., 2000; Walker et al., 2000). We were intrigued with the possibility that other members of the TRP family are expressed in mammalian sensory neurons and function as receptors for distinct sensory stimuli. Here, we describe cloning of a mammalian TRP channel that is specifically expressed in a subpopulation of the pain- and temperature-sensing DRG neurons. The functional properties of TRPM8 in a heterologous expression system suggest that it is a nonselective cation channel gated by cold stimuli and menthol, a cooling compound. The channel’s properties appear to be very similar to those of a cold- and menthol-activated current described recently in native dorsal root ganglion neurons and proposed to have a role in cold sensing (Reid and Finta, 2001b).

Results

To identify novel TRP channels, we searched genomic DNA databases by constructing a hidden Markov model (HMM) from the known TRP protein sequences of different mammalian species. With this model, we queried the 6 frame translation of all available human sequences and identified multiple putative exons with similarity to the transmembrane domains 4 and 6 of VR1. We were able to amplify a fragment of the mouse homolog of one TRP channel by RT-PCR from mouse DRG RNA (data not shown). Full-length sequence of this gene was derived from a combination of exon-prediction software, PCR, and RACE amplification from newborn mouse
Figure 1. TRPM8 Is a Member of the Melastatin Subfamily of TRP Channels and Is Expressed Predominantly in Dorsal Root Ganglia (DRGs)

(A) Comparison of mouse TRPM8 protein sequence to some of its closest relatives, TRPM1 (human Melastatin, GenBank accession number 6006023), TRPM2 (human, 4507688), and TRPM7 (mouse Chak, 14211382). The alignment was generated using Megalign and Boxshade. Identical or conserved residues are shown in white letters on a black background.

(B) Phylogenetic tree showing protein sequence relationship of different members of the TRP ion channel super-family. TRPs are subdivided into three main subfamilies: TRPMs, TRPVs, and TRPCs. The TRPMs do not contain any ankyrin domains in their N-terminal domains. The transmembrane domains have the highest homology among different classes of TRP channels.

(C) Northern analysis of TRPM8. Northern blot analysis demonstrates that TRPM8 is expressed predominantly in DRGs. The blot was hybridized with 32P-labeled (top) TRPM8 cDNA, then reprobed with GAPDH cDNA (bottom) to control for loading.
DRGs. We have named this protein TRPM8, following the nomenclature suggested in Clapham et al. (2001). Several human ESTs, many of which have been isolated from various cancer tissues, contain fragments of TRPM8 (GenBank accession numbers 8750489, 9149390, 9335992, and 2223353).

Translation of the nucleotide sequence of TRPM8 predicts a protein composed of 1104 amino acid residues (Figure 1A). The overall sequence of mouse TRPM8 is 93% identical to that of the human gene (data not shown). Its closest relative is TRPM2 (42% identity; Figures 1A and 1B). TRPM8 belongs to the "long" or Melastatin subfamily of TRP channels, a group of TRPs characterized by their lack of ankyrin domains in the N terminus. TRP channels are predicted to contain six transmembrane (TM) domains, although at least one is predicted to have seven membrane-spanning domains (Nagamine et al., 1998). A Kyte-Doolittle plot suggested the presence of eight distinct hydrophobic peaks in TRPM8 sequence, which could represent six to eight predicted transmembrane domains (data not shown). Overall, the predicted transmembrane domains are within amino acids 695–1024 of TRPM8. Outside of this region, the only predicted secondary structures are coiled-coil domains present in both the N- and C-terminal portions of the protein (data not shown; Burkhard et al., 2001). Coiled-coil domains are implicated in oligomerization of GABA-B channels and have previously been predicted in some TRP channels (Funayama et al., 1996; Margeta-Mitrovic et al., 2000).

We knew TRPM8 to be expressed in DRGs, since we PCR-cloned the TRPM8 transcript from newborn DRG cDNA. To determine the overall tissue distribution of TRPM8, we used a probe corresponding to nucleotides 1410–1980 of the mouse TRPM8 sequence for Northern blot analysis. No TRPM8 expression was detected using commercial Northern blots (data not shown). We then used blots from newborn and adult mice that included tissues relevant for somatic sensation, including DRG, spinal cord, and different sources of skin (Figure 1C). The temperature reponse in mouse TRPM8-CHO cells showed a threshold temperature of 22°C–25°C at which [Ca$^{2+}$]$_i$ begins to rise in TRPM8-expressing newborn trkA null mice. The expression of TRPM8 was completely abolished in the mutant ganglia (Figures 2B and 2C). We have further shown that TRPM8 is not coexpressed with VR1, which marks a class of nociceptors that respond to capsaicin and noxious heat (Figures 2G–2I). This observation is confirmed by the lack of TRPM8 coexpression with either CGRP or IB4, two well-characterized nociceptive antigens that together mark 90% of VR1+ DRG neurons (Figures 2J–2O; Snider and McMahon, 1998; Tominaga et al., 1998). This data strongly suggests that TRPM8 is expressed in a subpopulation of thermosensitive/nociceptive neurons distinct from the well-characterized heat- and pain-sensing neurons marked by VR1, CGRP, or IB4.

Given the similarity of TRPM8 to TRPV family members and its unique expression pattern within the DRG, we tested whether disparate sensory stimuli activate TRPM8. The full-length murine TRPM8 was stably expressed in Chinese hamster ovary (CHO) cells and evaluated for channel properties. We loaded TRPM8-expressing cells with the Ca$^{2+}$ indicator Fura-2 and used conventional microscopy to monitor changes in fluorescence, which reflected changes in the intracellular calcium concentration. CHO cells do not express an endogenous TRPM8 isoform (data not shown) and therefore served as a control along with a cell line stably transfected with a VR1-expressing plasmid. Capsaicin (10 µM), an activator of VR1, did not evoke a response in TRPM8-expressing cells (data not shown). Neither hypoosmotic solutions, known to generate Ca$^{2+}$ responses in TRPV3-expressing cells, nor hypertonic buffer elicited a response in TRPM8-expressing cells (data not shown). We then used blots from newborn and adult mice that included tissues relevant for somatic sensation, including DRG, spinal cord, and different sources of skin (Figure 1C). The temperature response in mouse TRPM8-CHO cells showed a threshold temperature of 22°C–25°C at which [Ca$^{2+}$]$_i$ begins to rise in TRPM8-expressing newborn trkA null mice. The expression of TRPM8 was completely abolished in the mutant ganglia (Figures 2B and 2C). We have further shown that TRPM8 is not coexpressed with VR1, which marks a class of nociceptors that respond to capsaicin and noxious heat (Figures 2G–2I). This observation is confirmed by the lack of TRPM8 coexpression with either CGRP or IB4, two well-characterized nociceptive antigens that together mark 90% of VR1+ DRG neurons (Figures 2J–2O; Snider and McMahon, 1998; Tominaga et al., 1998). This data strongly suggests that TRPM8 is expressed in a subpopulation of thermosensitive/nociceptive neurons distinct from the well-characterized heat- and pain-sensing neurons marked by VR1, CGRP, or IB4.

Since TRPM8 responded to a decrease in temperature, we performed additional experiments to investigate the temperature threshold at which intracellular calcium ([Ca$^{2+}$]) begins to rise in TRPM8-expressing cells. Cells were incubated at 35°C (normal skin temperature) for several minutes, followed by a decrease in temperature to 13°C (Figure 3C). The temperature response in mouse TRPM8-CHO cells showed a threshold of 22°C–25°C at which [Ca$^{2+}$]$_i$ begins to increase, followed by a marked increase when the temperature of the buffer reached ~15°C. These experiments indicate that at physiologically relevant temperatures, the upper activation threshold for TRPM8 is ~23°C.
Menthol, a compound commonly used for its cooling properties, was tested as a stimulus on TRPM8-expressing CHO cells. Nontransfected CHO cells were completely insensitive to menthol (tested up to 1 mM; Figures 4A and 4B). However, upon treatment of TRPM8 cells (incubated at 25°C), intracellular fluorescence increased significantly within seconds in response to menthol concentrations of 10 μM and 100 μM (Figures 4A and 4B). Additionally, as with the temperature stimulus, depletion of calcium from the extracellular buffer suppressed the calcium response (Figures 4A and 4B). We next tested the effect menthol had at different temperatures. Incubation of TRPM8-expressing cells at 33°C revealed that 10 μM menthol did not induce a calcium response as observed at 25°C, but upon lowering the temperature to 30°C, intracellular calcium levels increased (Figure 4C). Menthol thus appears to mimic the effect of lowering the temperature on TRPM8-expressing cells.

To investigate the membrane responses to cold and menthol, we carried out voltage clamp experiments on TRPM8-expressing cells. Temperature ramps from 35°C to 7°C–13°C evoked inward currents at a holding potential of −60 mV and outward currents at +40 or +60 mV. Currents increased in amplitude as the temperature was lowered and usually showed some degree of desensitization at the coldest temperatures tested (<10°C; Figure 5A). The temperature threshold for current activation showed no dependence on membrane potential, and individual cells activated at temperatures between 19°C and 25°C, with a mean threshold of 21.79°C ± 0.64°C (n = 5). Analysis of the current-voltage relationships of the response to a cold stimulus with CsCl-filled recording pipettes and a typical NaCl-based external solution revealed an outwardly rectifying current with a reversal potential (E_{rev}) close to 0 mV, which is typical of a nonselective cation channel (Figure 5B).
Figure 3. Increase in Intracellular Calcium $[\text{Ca}^{2+}]_{i}$ Concentration in TRPM8-Expressing CHO Cells in Response to Cold

(A) Representative images taken from calcium imaging experiments. TRPM8 stably transfected CHO cells and nontransfected CHO cells loaded with Fura-2 and viewed with fluorescence microscopy. Upon addition of a 15°C cold stimulus (measured in the cell chamber by a miniature thermocouple), an increase in fluorescence is observed as the buffer in the cell chamber is cooled, indicative of an increase in intracellular Ca^{2+} in TRPM8-expressing cells. Increasing levels of intracellular Ca^{2+} are indicated by a change in color (blue-green-yellow-red). The highest levels of $[\text{Ca}^{2+}]_{i}$ are indicated in red. The same microscopic field of cells is shown before and after the cold stimulus. The bars indicate 50 μm.

(B) TRPM8-transfected CHO cells show a rapid increase in $[\text{Ca}^{2+}]_{i}$ when the temperature is lowered from 25°C to 15°C. The stimulus period is indicated below the traces. Nontransfected CHO cells do not show a response to cold. Removal of external Ca^{2+} completely suppressed the response to cooling. Experiments were performed in triplicate. The average response (± SEM) of 20–30 cells from a representative experiment is presented.

(C) Increase in $[\text{Ca}^{2+}]_{i}$ due to decrease in temperature from 35°C to 13°C in TRPM8-1 cells. The panel shows mean ± SEM for 34 individual cells. Note the increase started to occur between 22°C and 25°C.

Application of menthol-evoked rapidly activating currents in TRPM8-expressing cells, but not in nontransfected CHO cells, at temperatures above the threshold for cold activation (~23°C; Figure 6A). The menthol-activated current showed pronounced outward rectification (Figure 6B) with an E_{rev} of $-9.28 ± 0.75$ mV ($n = 12$) that is similar to the E_{rev} for the cold-activated current under the same ionic conditions. These currents could be inactivated by raising the temperature (Figure 6A), suggesting that menthol shifts the threshold for activation to higher temperatures, which agrees with our calcium imaging experiments. To test this idea further, we obtained concentration-response curves for menthol-evoked currents at two temperatures (22°C and 35°C), using positive membrane potentials to increase the size of the currents (Figures 7A and 7B). The concentration-response relationship was shifted to the left at the lower temperature with a marked increase in the maximum amplitudes (Figures 7A and 7B). We next used changes in E_{rev} to determine the ion selectivity of the menthol-
Figure 4. Increase in Intracellular Calcium ([Ca\(^{2+}\)]\(_i\)) Concentration in TRPM8-Expressing CHO Cells in Response to Menthol

(A) Individual TRPM8\(^+\) cells respond to menthol at 25˚C. Representative images from calcium imaging experiments illustrate a large influx of calcium in response to a menthol stimulus (100 \(\mu\)M). This response was not seen in nontransfected CHO cells or without extracellular calcium. Intracellular calcium concentration is indicated by colors described in Figure 3A. The same field of cells is shown for TRPM8 before and after menthol treatment (with calcium). The other images presented were taken immediately after the menthol stimulus.

(B) TRPM8 responds to menthol at 25˚C. Intensity of the TRPM8 response is dependent on menthol concentrations. A 10-fold increase in
Figure 5. Current Evoked by Reduction in Temperature in TRPM8-Expressing CHO Cells.

(A) Outward currents evoked at +60 mV by reducing the temperature from 35°C to 10°C. In this cell the current activated at 19.3°C as indicated in the right graph.

(B) Current-voltage relationship for currents activated at 20.5°C and 33.5°C. Increasing the temperature reduces the amplitude of outward currents.

activated current. Isotonic replacement of the NaCl in the solution with KCl or CsCl caused small positive shifts in E
rev, indicating that the TRPM8 channel discriminated poorly between these cations (data not shown). From the changes in E
rev measured on individual cells (external NaCl to KCl gave a shift of +7.38 ± 1.43 mV, n = 7; NaCl to CsCl gave a shift of +9.09 ± 0.36 mV, n = 6), we calculated a permeability sequence of Cs > K > Na with Pcs/Pna = 1.43 and Pk/Pna = 1.34. Relative calcium permeability was calculated from the E
rev values measured with different external calcium concentrations. Increasing the external calcium from 1 to 30 mM, in the absence of external Mg2+ ions, shifted E
rev by +11.67 ± 1.20 mV, which corresponds to Pca/Pna = 0.97 (data not shown). Thus, TRPM8 is permeable to the monovalent cations, Na, K, and Cs, as well as the divalent cation calcium.

Discussion

The study of temperature perception has recently moved into the molecular arena with the cloning and characterization of the vanilloid receptors. These molecules, members of the TRP family of membrane channels, are activated by high temperatures to mediate a cation influx (Clapham et al., 2001). Here, we show that another relative, TRPM8, is instead activated by cold stimuli. We have furthermore found that TRPM8 is expressed in a very select group of dorsal root ganglia (DRG) neurons that share characteristics of thermoreceptive neurons.

Ambient skin temperature is maintained near 32°C. Temperatures above this point activate neurons within the dorsal root ganglia (DRG) and lead to the perception of warmth and, beyond 43°C–45°C, noxious pain. VR1, a heat-gated TRP channel, is involved in detecting noxious heat stimuli and is found in DRG neurons (Julius and Basbaum, 2001). At temperatures below ambient, another set of DRG neurons is activated. Although an exact threshold for cold pain has not been found, it is thought that a separate set of neurons is responsible for innocuous cool temperatures (20°C–30°C) and for painful cold. A further division of specialization seems to exist between neurons that are activated by cold

menthol concentration resulted in a larger influx of Ca2+. This response was suppressed in the absence of Ca2+. Nontransfected CHO cells exhibited no increase in [Ca2+]i upon application of menthol. Experiments were performed in triplicate. The average response (±SEM) of 20–30 cells from a representative experiment is presented.

(C) At 33°C, 10 μM menthol does not elicit an influx of Ca2+. When the temperature of the bath solution is lowered to 30°C, a marked increase in intracellular Ca2+ is observed. These experiments suggest that menthol simulates the effect of cooling in TRPM8-expressing cells.
plasma membrane cation channel activated by cold temperatures. The ionic permeability of TRPM8 is similar to that of other TRP channels, which are permeable to both monovalent and divalent cations, although calcium permeability estimates (P_{Ca}/P_{Na}) vary from 0.3 to 14 (see for example Harteneck et al., 2000). Menthol is a cooling compound that likely acts on endogenous cold-sensitive channel(s) (Schafer et al., 1986). Our observation that TRPM8-expressing cells are activated and modulated by menthol reinforces the idea that TRPM8 indeed functions as a cold-sensitive channel in vivo. The finding that the sensitivity to menthol is dependent on temperature is consistent with the behavior of a subset of isolated DRG neurons that show a raised "cold" threshold in the presence of menthol (Reid and Flonta, 2001b). The mechanism of TRPM8 activation by cold is not yet known: TRPM8 could be directly gated by cold stimulus through a conformational change, or cold temperatures could act through a second messenger system that in turn activates TRPM8. Our experiments do not distinguish between these possibilities, although the rapid activation by menthol would suggest a direct gating mechanism, at least for this mode of activation.

The expression pattern we have documented for TRPM8 is consistent with a role in cold thermoception. First, we have found TRPM8 mRNA to be highly specific to DRG neurons, as might be expected. Within the DRG, TRPM8 is expressed in the small-diameter nonmyelinated neurons, which correspond to the c fiber thermoreceptor and nociceptors (Scott, 1992). The lack of TRPM8 expression in trkA knockout mice, whose DRGs lack all thermoreceptor and nociceptive neurons, corroborates this finding. Furthermore, the lack of coexpression with VR1, CGRP, or IB4 in the adult suggests that TRPM8 is expressed in a unique population of DRG neurons distinct from well-characterized heat nociceptors. Both soma size of neurons that express VRL-1 (medium-large neurons) and their coexpression with NF200 (80% coexpression; Caterina et al., 1999) strongly argues that cells expressing TRPM8 and VRL-1 are also distinct. Therefore, by using various markers we have shown that TRPM8 is expressed in a subclass of nociceptors/thermoreceptors that is distinct from noxious heat-sensing neurons. Both soma size of neurons that express VRL-1 (medium-large neurons) and their coexpression with NF200 (80% coexpression; Caterina et al., 1999) strongly argues that cells expressing TRPM8 and VRL-1 are also distinct. Therefore, by using various markers we have shown that TRPM8 is expressed in a subclass of nociceptors/thermoreceptors that is distinct from noxious heat-sensing neurons, and this correlates well with physiological studies of cold-sensitive DRG neurons (Hensel, 1981).

As such, TRPM8 will be an important starting point for molecular studies of cold perception. A human gene with a high degree of similarity to mouse TRPM8 but no known function was recently shown to be expressed in prostate tissue (Tsavaler et al., 2001). All three molecules identified as thermoreceptors belong to the TRP group of channels. VR1 and VRL1 are closely related (47% identity) and sense heat, while TRPM8 (which is 21% identical to VR1) responds to cold temperature. The most significant similarity between TRPM8 and TRPVs is found in the transmembrane domain, while the intracellular N and C termini are quite divergent. All three, however, act as calcium-permeable nonselective cation channels. Further work on the relationship between structure and function of these channels may reveal much about how thermal energy is transmitted into neural activity. Given that humans can detect temperature variations as small as 1°C, it is likely that other channels and receptors are involved in tempera-

![Figure 6. Current Evoked by Menthol in TRPM8-Expressing CHO Cells](image)

(A) Inward currents evoked by 1 mM menthol (Vh = -60 mV) are inactivated by increasing the temperature from 25°C to 45°C. (B) Current-voltage relationship for response to 1 mM menthol. Currents show pronounced outward rectification in the presence of menthol not seen in the absence of this agonist.
TRPM8, a Cold-Activated Channel

Figure 7. Current Evoked by Menthol at +60 mV

(A) Single examples, from two different cells, of current evoked by applying 0.1, 0.5, 1, and 10 mM menthol at 22°C and 35°C. (B) Comparison of response (mean ± SEM, n = 5 for all points) of current evoked by menthol either at 22°C or 35°C.

ture perception. For example, although DEG/EnaC channels do not respond to thermal stimuli alone, their activity can be modulated by cold temperature (Askwith et al., 2001). As the first molecule to respond to cold temperatures and menthol, TRPM8 offers interesting insight into the fundamental biology of cold perception. Modification of TRPM8 activity may also be relevant for therapeutic applications: cold treatment is often used as a method of pain relief, and in some instances, hypersensitivity to cold can lead to cold allodynia in patients suffering from neuropathic pain.

Experimental Procedures

Molecular Cloning of mTRPM8

For PCR cloning, primer 163f (5'-CAAGTTTGTCCGCCTCTTTC) and 164r (5'-AACTGTCTGGAGCTGGCAGT) were designed from the HMM sequences for TRPM8 as a result of blast hits and used to amplify a 699 nucleotide fragment of TRPM8 from newborn DRG cDNA. From this initial sequence and exon prediction programs, rapid amplification of cDNA ends (RACE) PCR (Clontech) was used to obtain the 5' and 3' ends of TRPM-8 from mouse newborn DRG cDNA following the manufacturer’s protocol.

Expression Analysis

Northern blots were made as follows: total RNA was purified from mouse newborn and adult tissues using TRIzol LS (Invitrogen/GIBCO Life Technologies), followed by poly(A)\(^+\) purification with Oligotex (Qiagen) according to the manufacturer’s protocol. Approximately 3 \(\mu\)g of sample was electrophoresed on 1% glyoxal gels, transferred, and hybridized at high stringency with a \(^3\)P-labeled probe representing nucleotides 1410–1980 of the mouse full-length TRPM8 sequence. Commercial Northern blots (Clontech) were hybridized with the same TRPM6 probe. Blots were hybridized for 3 hr at 68°C in ExpressHyb hybridization solution (Clontech), washed according to the manufacturer’s high-stringency washing protocol, and exposed to a phosphoimager screen for 1–3 days.

For in situ hybridizations, newborn and adult tissues were dissected, fixed in 4% paraformaldehyde in PBS, cryoprotected, and frozen in liquid nitrogen in OCT mounting medium. Cryostat sections (10 \(\mu\)m) were processed and hybridized with a digoxigenin cRNA probe generated by in vitro transcription (Roche Biochemicals). The mouse TRPM8 mRNA specific antisense riboprobe corresponded to nucleotides 1410–1980 of the mTRPM8 sequence. Fluorescence detection and double-labeling experiments were carried out with the tyramide signal amplification kit (TSA; NEN) essentially as previously described (Dong et al., 2001). Following in situ hybridization, immunofluorescence was performed with anti-CGRP (1:100; Biogenesis), IB-4 (10 \(\mu\)g/ml; Sigma), anti-VR1 (1/2000; Abcam), and anti-NF150 (1/1000; Chemicon) and was detected with FITC or CY3 (10 \(\mu\)g/ml; Jackson Immunoresearch). Although all panels shown in these studies demonstrate lack of coexpression, this was not due to technical issues since additional probes/antibodies were used as controls to ensure our double-labeling protocol with the TRPM8 in situ probe was working (data not shown).

Generation of Mouse TRPM8-Expressing CHO Cell Lines

Mouse TRPM8 cDNA was subcloned in pcDNA5 (Invitrogen) and transfected into CHO-K1/FRT cells using Fugene 6 (Roche). The transfected cells were selected by growth in MEM medium containing 200 \(\mu\)g/ml hygromycin (GIBCO-BRL). Populations were frozen at early passage numbers, and these stocks were used for further studies. Stable clones that expressed the mRNAs were identified by Northern blot analysis as well as Southern blotting to confirm integration site (not shown).

Imaging of Intracellular Calcium Levels [Ca\(^{2+}\)]

Calcium imaging experiments were performed essentially as previously described (Savidge et al., 2001). Briefly, cells were plated on glass coverslips, loaded with Fura-2 acetoxymethyl ester (2.5–5
Electrophysiology

Cells were plated onto poly-D-lysine-coated coverslips for recording purposes, and recordings were undertaken 18–24 h later. Experiments were carried out at room temperature using whole-cell voltage clamp technique, with an Axopatch 2B amplifier filtered at 5 kHz and pClamp suite of software (Axon Instruments). Series-resistant compensation was 80% for all experiments, using 2–5 M Ω fire-polished pipettes. Recording solutions were as follows: pipette solution for all experiments was (mM) CsCl, 140; CaCl2, 1; EGTA, 10; HEPES, 10; MgATP2−, 2; titrated to pH 7.4 with CsOH. For menthol- and cold-activated currents, the bath solution was (mM) NaCl, 140; KCl, 5; Glucose, 10; HEPES, 10; CaCl2, 2; MgCl2, 1; titrated to pH 7.4 with NaOH. Current-voltage relationships were used to evaluate reversal potentials with voltage ramps from −100 to +60 mV (2 s duration). For the permeability studies for the monovalent ions, the NaCl in a simplified bath solution ([mM]: NaCl, 140; Glucose, 10; HEPES, 10; CaCl2, 2; MgCl2, 1) was substituted by equimolar CsCl or KCl titrated with CsOH or KOH. For calcium permeability estimates, the bath solutions contained (mM) NaCl, 100; Glucose, 10; and HEPES, 10 (titrated with NaOH), plus 1 or 30 mM CaCl2. Osmolarity of solutions was adjusted by addition of sucrose. Permeability ratios for the monovalent cations to Na (PNa/PNaCl) were calculated as follows:

\[\frac{P_{Na}}{P_{NaCl}} = \frac{E_{m} - E_{Na}}{E_{m} - E_{NaCl}} \]

where \(E_{Na} \) is the reversal potential for Na, \(E_{NaCl} \) is the reversal potential for NaCl, and \(E_{m} \) is the membrane potential. For measurements of calcium permeability, \(P_{Ca} \) and \(P_{Na} \) were calculated as follows:

\[\frac{P_{Ca}}{P_{Na}} = \frac{E_{m} - (RT/F) \log [Na] / [Ca]]}{E_{m} - (RT/F) \log [Ca] / [Na]} \]

where \(F \) is Faraday’s constant, \(R \) is the universal gas constant, and \(T \) is absolute temperature. For the current-voltage relationship, \(P_{Na} \) and \(P_{Ca} \) were calculated as follows:

\[\frac{P_{Na}}{P_{Ca}} = \frac{E_{Na} - (RT/F) \log [Na] / [Ca]]}{E_{Ca} - (RT/F) \log [Ca] / [Na]} \]

where \(E_{Na} \) and \(E_{Ca} \) refer to the two different calcium concentrations. Local perfusion of menthol was via a Tc channel temperature controller; a Marlow temperature controller was used for the cooling ramps.

Acknowledgments

The authors would like to thank Carey Backus, Keith Ching, Todd Hricic, Elizabeth Gardiner, James Mainquist, James Watson, and A.J. Wilson for technical help and John Hogenesch, Nancy Hong, Steve Kay, Lou Reichardt, and Pete Schultz for valuable advice. This work was partially supported by a grant from Novartis. A.P. is a Basil O’Connor Scholar.

References

Received: January 25, 2002
Revised: February 7, 2002
Published online: February 11, 2002

Accession Numbers

The GenBank accession number of TRPM8 is AF481480.