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a b s t r a c t

In this paper a numerical method named as Asymptotic Initial Value Technique (AIVT)
is suggested to solve the singularly perturbed boundary value problem for the second
order ordinary delay differential equation with the discontinuous convection–diffusion
coefficient term. In this technique, the original problem of solving the second order
differential equation is reduced to solving three first order differential equations, one of
which is a delay differential equation and other two are singularly perturbed problems.
The singularly perturbed problems are solved by the second order hybrid finite difference
scheme, whereas the delay problem is solved by the fourth order Runge–Kutta method
with Hermite interpolation. An error estimate is derived by using the supremum norm
and it is of order O(ε + N−2 ln2 N), where N and ε are the discretization parameter and
the perturbation parameter, respectively. Numerical results are provided to illustrate the
theoretical results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent years, there has been growing interest in developing numerical methods for singularly perturbed delay
differential equations. For more details one may refer to [1–9]. The motivation for this study has come from the paper
of Lange and Miura [10]. In the present paper, we consider Singularly Perturbed Boundary Value Problems (SPBVPs) for
the second order ordinary delay differential equation with the discontinuous convection–diffusion coefficient term and
suggest a numerical method namely Asymptotic Initial Value Technique (AIVT). So far, people have considered problems
with continuous coefficients. This initial value method was introduced by Gasparo and Macconi [11]. In fact they applied
this method to solve singularly perturbed boundary value problems for differential equations without delay. In [12],
the authors presented a numerical method namely asymptotic-numerical method for solving singularly perturbed Robin
problems.

The present paper is organized as follows. In Section 2, the problem under study is stated. A maximum principle for the
Delay Differential Equation (DDE) is derived in Section 3 and using this principle a stability result is obtained. An asymptotic
expansion for the current problem is constructed in Section 4. The present numerical method is described in Section 5 and
an error estimate is derived in Section 6. Section 7 presents numerical results.
Note. In the following, C denotes a generic positive constant independent of the singular perturbation parameter ε and the
discretization parameter N of the discrete problem. It is conventional for the convection–diffusion problem to assume that
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ε ≤ CN−1 [13]. The supremum norm is used for studying the convergence of the numerical solution to the exact solution of
a singular perturbation problem: ∥u∥Ω = supx∈Ω |u(x)|.

2. Statement of the problem

Motivated by the work of [10,13], we consider the following boundary value problem for SPDDE.
Find u ∈ Y = C0(Ω) ∩ C1(Ω) ∩ C2(Ω−

∪Ω+) such that
−εu′′(x)+ a(x)u′(x)+ b(x)u(x − 1) = f (x), x ∈ Ω−

∪Ω+,
u(x) = φ(x), x ∈ [−1, 0], u(2) = l, (2.1)

a(x) = a1(x), x ∈ [0, 1], a(x) = a2(x), x ∈ (1, 2], a1(1−) ≠ a2(1+), where ai(x) ≥ αi > 0, i = 1, 2, α = min{α1, α2},
β0 ≤ b(x) ≤ β1 ≤ 0, 2α + 5β0 ≥ η > 0, α(α2 − α) > −2β0, |a′

i(x)| ≤ C , b, f are sufficiently smooth functions on
Ω, Ω = (0, 2), Ω = [0, 2], Ω−

= (0, 1), Ω+
= (1, 2) and φ is smooth on [−1, 0]. Using the stepwise integration

procedure [10] and the method of proof adopted in the Theorem 1 of [14], one can show that the above boundary value
problem (2.1) has a solution.

The above problem is equivalent to

Pu(x):=

−εu′′(x)+ a1(x)u′(x) = f1(x)− b(x)φ(x − 1), x ∈ Ω−,

−εu′′(x)+ a2(x)u′(x)+ b(x)u(x − 1) = f2(x), x ∈ Ω+,
(2.2)

u(0) = φ(0), u(1−) = u(1+), u′(1−) = u′(1+), u(2) = l,

where u(1−) and u(1+) denote the left and right limits of u at x = 1, respectively.

3. Stability result

The differential–difference operator P defined in (2.2) satisfies the following maximum principle.

Theorem 3.1 (Maximum Principle). Let w ∈ C0(Ω) ∩ C2(Ω−
∪ Ω+) be any function satisfying w(0) ≥ 0, w(2) ≥ 0,

Pw(x) ≥ 0, ∀x ∈ Ω−
∪Ω+ andw′(1+)− w′(1−) = [w′

](1) ≤ 0. Thenw(x) ≥ 0, ∀x ∈ Ω .

Proof. Define s(x) =
1
8 +

x
2 , x ∈ [0, 1], s(x) =

3
8 +

x
4 , x ∈ [1, 2]. Note that s(x) > 0,∀x ∈ Ω, Ps(x) > 0,∀x ∈ Ω−

∪Ω+

and [s′](1) < 0. Let µ = max{−w(x)
s(x) : x ∈ Ω}. Then there exists x0 ∈ Ω such that w(x0)+ µs(x0) = 0 and w(x)+ µs(x) ≥

0, ∀x ∈ Ω . Therefore the function (w + µs) attains its minimum at x = x0. Suppose the theorem does not hold true. Then
µ > 0.
Case (i). (x0 ∈ Ω−)

0 < P(w + µs)(x0) = −ε(w + µs)′′(x0)+ a1(x0)(w + µs)′(x0) ≤ 0.

It is a contradiction.
Case (ii). (x0 ∈ Ω+)

0 < P(w + µs)(x0) = −ε(w + µs)′′(x0)+ a2(x0)(w + µs)′(x0)+ b(x0)(w + µs)(x0 − 1) ≤ 0.

It is a contradiction.
Case (iii). (x0 = 1)

0 ≤ [(w + µs)′](1) = [w′
](1)+ µ[s′](1) < 0.

It is a contradiction. Hence the proof of the theorem. �

Theorem 3.2 (Stability Result). For any u ∈ Y we have

|u(x)| ≤ C max


|u(0)|, |u(2)|, sup

ξ∈Ω−∪Ω+

|Pu(ξ)|


, ∀x ∈ Ω. (3.1)

Proof. Define ψ±(x) = CMs(x) ± u(x), x ∈ Ω , where M = max{|u(0)|, |u(2)|, supξ∈Ω−∪Ω+ |Pu(ξ)|}. Then, ψ±(0) =

CMs(0)± u(0) > 0 and ψ±(2) = CMs(2)± u(2) > 0, by a proper choice of C .

Pψ±(x) = CMPs(x)± Pu(x) ≥
CM
8
(4α)± Pu(x) ≥ 0, x ∈ Ω−
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by a proper choice of C . Similarly one can obtain Pψ±(x) ≥ 0, x ∈ Ω+ and [ψ±
′

](1) = CM[s′](1)±[u′
](1) < 0 by a proper

choice of C . Then by Theorem 3.1 we have ψ±(x) ≥ 0, x ∈ Ω . Therefore

|u(x)| ≤ C max


|u(0)|, |u(2)|, sup

ξ∈Ω−∪Ω+

|Pu(ξ)|


, ∀x ∈ Ω. �

An immediate consequence of the above Theorem 3.2 is that, the solution of the BVP (2.1) is unique.

4. An asymptotic expansion

In this section, an asymptotic expansion approximation for the solution of problem (2.1) is constructed by using the
fundamental idea of the WKB method [15,12].

Let u0 ∈ C0(Ω) ∩ C1(Ω−
∪Ω+

∪ {2}) be the solution of the reduced problem of (2.1) given by
a(x)u′

0(x)+ b(x)u0(x − 1) = f (x), x ∈ Ω−
∪Ω+

∪ {2},
u0(x) = φ(x), x ∈ [−1, 0]. (4.1)

Further, let v1(x) = exp(−
 1
x

a1(s)
ε

ds), ∀x ∈ [0, 1] and v2(x) = exp(−
 2
x

a2(s)
ε

ds), ∀x ∈ [1, 2] be the solutions of the
following Terminal Value Problems (TVPs), respectively:

L1v1(x) = εv′

1(x)− a1(x)v1(x) = 0, x ∈ [0, 1), v1(1) = 1 (4.2)

and L2v2(x) = εv′

2(x)− a2(x)v2(x) = 0, x ∈ [1, 2), v2(2) = 1. (4.3)

An asymptotic expansion approximation to the solution of the original problem (2.1) is given by

uas(x) =


u0(x)+ k1[v1(x)− v1(0)], x ∈ [0, 1],
u0(x)+ k2v2(x)+ k3, x ∈ [1, 2]. (4.4)

Here the constants k1, k2, and k3 are to be determined such that uas ∈ Y . In fact the constants k1, k2, and k3 are given by
k1 =

[l − u0(2)]
1 − v1(0)

v2(1)+ k3
1 − v2(1)
1 − v1(0)

, k2 = l − u0(2)− k3,

k3 =
ε[u′

0(1+)− u′

0(1−)][1 − v1(0)] + a2(1+)[l − u0(2)][1 − v1(0)]v2(1)
a1(1−)+ a2(1+)− [a2(1+)v1(0)+ a1(1−)v2(1)]

.

(4.5)

It is easy to see that k2 is bounded, |k1| ≤ Cε and |k3| ≤ Cε.

Theorem 4.1. Let u be the solution of (2.1) and uas be its asymptotic expansion approximation given by (4.4). Then ∥u − uas∥Ω
≤ Cε.

Proof. Consider the barrier function

ϕ±(x) =


Mε[s(x)+ e

−α(1−x)
ε + e

−α(2−x)
ε ] ± (u(x)− uas(x)), x ∈ [0, 1],

Mε[s(x)+ 1 + e
−α(2−x)

ε ] ± (u(x)− uas(x)), x ∈ [1, 2],

whereM is a positive constant independent of perturbation parameter ε.
It is obvious that ϕ±

∈ C0(Ω) ∩ C2(Ω−
∪Ω+), ϕ±(0) > 0 and ϕ±(2) > 0.

Case (i). (x ∈ Ω−). First we have

P(u(x)− uas(x)) = εu′′

0 + k1[a′

1(x)]v1(x) ≥ −Cε[1 + e
−α(1−x)

ε ],

since |k1| ≤ Cε, ∥u′′

0∥Ω−∪Ω+ ≤ C and |a′

1(x)| ≤ C . Then,

Pϕ±(x) = M

α[a1(x)− α][e(

−α(1−x)
ε )

+ e(
−α(2−x)

ε )
] + ε

a1(x)
2


± P(u(x)− uas(x))

≥ M

α[α1 − α][e(

−α(1−x)
ε )

+ e(
−α(2−x)

ε )
] + ε

α1

2


∓ Cε[1 + e(

−α(1−x)
ε )

].

Then Pϕ±(x) ≥ 0 for a suitable choice ofM .
Case (ii). (x ∈ Ω+). First we have

P(u(x)− uas(x)) = εu′′

0 + k2[a′

2(x)v2(x)− b(x)v2(x − 1)] − k3[b(x)] ≥ −C(ε + e
−α(2−x)

ε ),
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since |k3| ≤ Cε, ∥u′′

0∥Ω−∪Ω+ ≤ C , v2(x) ≤ e−
α(2−x)
ε , v2(x − 1) ≤ Cε, |a′

2(x)| ≤ C and b is a smooth function on [0, 2]. Then,

Pϕ±(x) = M

α[a2(x)− α]e(

−α(2−x)
ε )

+ ε


a2(x)
4

+ b(x)[s(x − 1)+ 1 + e
−α(3−x)

ε ]


± P(u(x)− uas(x))

≥ M

α[α2 − α]e(

−α(2−x)
ε )

+ ε


α2

4
+

5β0

8
+ β0 + β0e

−α(3−x)
ε


∓ C(ε + e(

−α(2−x)
ε )).

Then Pϕ±(x) ≥ 0 for a suitable choice ofM . Further [ϕ±
′

](1) < 0. Then by Theorem 3.1 we have ϕ±(x) ≥ 0, x ∈ Ω , that is,
|u(x)− uas(x)| ≤ Cε, x ∈ Ω . Hence the proof of the theorem. �

Note. From the expansion (4.4) and Theorem 4.1 we see that problem (2.1) exhibits a weak interior layer at x = 1 and a
strong boundary layer at x = 2.

5. Numerical methods

In this section, a hybrid finite difference scheme for the singularly perturbed TVPs (4.2)–(4.3) and a classical numerical
method for the IVP (4.1) are described.

5.1. Mesh selection strategy

Since the BVP (2.1) exhibits a strong boundary layer at x = 2 and a weak interior layer at x = 1, we choose a piece-wise
uniform Shishkin mesh on [0, 2]. For this we divide the interval [0, 2] in to four subintervals, namely Ω1 = [0, 1 − τ ],
Ω2 = [1 − τ , 1],Ω3 = [1, 2 − τ ],Ω4 = [2 − τ , 2], where τ = min{0.5, 2ε lnN

α∗ }, where α∗ > max{α1, α2}. Let h = 2N−1τ

and H = 2N−1(1 − τ). The meshΩ2N
= {x0, x1, . . . , x2N} is defined by

x0 = 0.0, xi = x0 + iH, i = 1(1)
N
2
, xi+ N

2
= x N

2
+ ih, i = 1(1)

N
2
,

xi+N = xN + iH, i = 1(1)
N
2
, xi+ 3N

2
= x 3N

2
+ ih, i = 1(1)

N
2
.

5.2. A hybrid finite difference scheme for the TVPs (4.2)–(4.3)

Applying the hybrid finite difference scheme given in [5,16] to the TVPs (4.2) and (4.3) on [0, 1] ∩Ω
2N and [1, 2] ∩Ω

2N

separately, we get

LN1 V1i = 0, i = 0(1)N − 1, V1N = 1, (5.1)

LN2 V2i = 0, i = N(1)2N − 1, V22N = 1, (5.2)

where

LN1 V1i =


ε
V1i+1 − V1i

H
− a1(xi)V1i , i = 0(1)

N
2

− 1,

ε
V1i+1 − V1i

h
− a1


xi + xi+1

2


V1i + V1i+1

2
, i =

N
2
(1)N − 1,

LN2 V2i =


ε
V2i+1 − V2i

H
− a2(xi)V2i , i = N(1)

3N
2

− 1,

ε
V2i+1 − V2i

h
− a2


xi + xi+1

2


V2i + V2i+1

2
, i =

3N
2
(1)2N − 1.

The following theorem gives an error estimate for this scheme.

Theorem 5.1. Let v1(x) and v2(x) be the solutions of problems (4.2) and (4.3), respectively. Further let V1i and V2i be their
numerical solutions defined by (5.1) and (5.2), respectively. Then

∥v1 − V1∥Ω2N
∩[0,1] ≤ CN−2 ln2 N and ∥v2 − V2∥Ω2N

∩[1,2] ≤ CN−2 ln2 N.

Proof. Application of the method of proof described in [16,5] on the intervals [0, 1] and [1, 2] yields the desired result. �

5.3. A numerical method for problem (4.1)

In order to obtain a numerical solution for problem (4.1), we apply the fourth order Runge–Kutta methodwith piecewise
cubic Hermite interpolation onΩ2N [17]. In fact we have
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U0(x0) = φ(x0),

U0i+1 = U0i +
1
6
(K1 + 2K2 + 2K3 + K4), i = 0(1)2N − 1,

(5.3)

where

K1 = h∗


f (xi)
a(xi)

−
b(xi)
a(xi)

Uh∗

0 (xi)


K2 = h∗

 f

xi + h∗

2


a

xi + h∗

2

 −

b

xi + h∗

2


a

xi + h∗

2

 Uh∗

0


xi +

h∗

2


K3 = h∗

 f

xi + h∗

2


a

xi + h∗

2

 −

b

xi + h∗

2


a

xi + h∗

2

 Uh∗

0


xi +

h∗

2


K4 = h∗


f (xi + h∗)

a(xi + h∗)
−

b(xi + h∗)

a(xi + h∗)
Uh∗

0 (xi + h∗)


,

h∗
=


H, i = 0(1)

N
2

− 1, i = N(1)
3N
2

− 1

h, i =
N
2
(1)N − 1, i =

3N
2
(1)2N − 1,

Uh∗

0 (x) =


φ(x − 1), x ∈ [xi, xi+1], i = 0(1)N − 1,
U0i−NAi(x)+ U0i−N+1Ai+1(x)+ Bi(x)f ∗(xi−N)+ Bi+1(x)f ∗(xi−N+1),
x ∈ [xi, xi+1], i = N(1)2N − 1,

Ai(x) =


1 −

2(x − xi)
xi − xi+1


(x − xi+1)

2

(xi − xi+1)2
, Ai+1(x) =


1 −

2(x − xi+1)

xi+1 − xi


(x − xi)2

(xi+1 − xi)2
,

Bi(x) =
(x − xi)(x − xi+1)

2

(xi − xi+1)2
, Bi+1(x) =

(x − xi+1)(x − xi)2

(xi+1 − xi)2

and f ∗(xi−N) =
f (xi−N)

a(xi−N)
−

b(xi−N)

a(xi−N)
φ(xi−N − 1), f ∗(xi−N+1) =

f (xi−N+1)

a(xi−N+1)
−

b(xi−N+1)

a(xi−N+1)
φ(xi−N+1 − 1).

Here a(xi) = a1(xi), i = 0(1)N, and a(xi) = a2(xi), i = N + 1(1)2N . The following theorem gives an error estimate for the
above method.

Theorem 5.2. Let u0(x) be the solution of problem (4.1). Further let U0i be its numerical solution defined by (5.3). Then
∥u0 − U0∥Ω2N ≤ Ch

4
, where h = max{H, h}.

Proof. Applying the method described in [17] on the intervals [0, 1] and [1, 2] separately we get the desired proof. �

5.4. A numerical solution to the BVP (2.1)

A numerical solution to the original problem (2.1) is given by

Ui =


U0i + k1[V1i − v1(0)], i = 0(1)N,
U0i + k2V2i + k3, i = N + 1(1)2N, (5.4)

where U0i , V1i and V2i are numerical solutions of problems (4.1)–(4.3) respectively and k1, k2 and k3 are defined by (4.5). An
error estimate for the above numerical solution is derived in the following section.

6. Error estimate

Theorem 6.1. Let u(x) be the solution of problem (2.1). Further let Ui be its numerical solution defined by (5.4). Then ∥u −

U∥
Ω

2N ≤ C(ε + N−2 ln2 N).
Proof. From Theorems 4.1, 5.1 and 5.2, we have

∥u − uas∥Ω ≤ Cε, ∥u0 − U0∥Ω2N ≤ Ch
4
,

∥v1 − V1∥Ω2N
∩[0,1] ≤ CN−2 ln2 N and ∥v2 − V2∥Ω2N

∩[1,2] ≤ CN−2 ln2 N.

Then, |u(xi)− Ui| ≤ |u(xi)− uas(xi)| + |uas(xi)− Ui|, i = 0(1)2N

≤


|u(xi)− uas(xi)| + |u0(xi)− U0i | + |k1| |v1(xi)− V1i |, i = 0(1)N,
|u(xi)− uas(xi)| + |u0(xi)− U0i | + |k2| |v2(xi)− V2i |, i = N + 1(1)2N,

≤


Cε + CεN−2 ln2 N, i = 0(1)N,
Cε + CN−2 ln2 N, i = N + 1(1)2N.

That is, |u(xi)− Ui| ≤ C(ε + N−2 ln2 N), i = 0(1)2N. � (6.1)
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Table 1
Numerical results.

M (Number of mesh points)
64 128 256 512 1024 2048 4096

Example 7.1, ε ∈ {2−17, 2−16, 2−15, 2−14, 2−13, 2−12, 2−11
}

Max. error 5.1438e−4 1.7672e−4 5.9056e−5 1.9387e−5 6.3586e−6 2.1222e−6 7.3739e−7
Order 1.5413 1.5813 1.6070 1.6083 1.5832 1.5250 –

Example 7.2, ε ∈ {2−12, 2−11, 2−10, 2−9, 2−8, 2−7, 2−6
}

DM 4.3408e−3 1.5033e−3 5.0751e−4 1.5480e−4 4.8023e−5 1.4576e−5 4.2949e−6
pM 1.5298 1.5666 1.7131 1.6886 1.7202 1.7629 –

7. Numerical results

In this section, two examples (one constant coefficient problem and one variable coefficient problem) are given to
illustrate the numerical method discussed in this paper. The exact solution of the variable coefficient problem is not
known. Therefore, in this case we use the double mesh principle to estimate the error and compute the experiment rate
of convergence in our computed solution. For this we put DM

ε = max0≤i≤M |UM
i − U2M

2i |, where UM
i and U2M

2i are the ith
components of the numerical solutions on meshes of M and 2M points, respectively. We compute the uniform error and
rate of convergence as DM

= maxε DM
ε and PM

= log2(
DM

D2M ). For the following examples the numerical results are presented
for the values of perturbation parameter ε ∈ {2−17, 2−16, . . . , 2−6

}.

Example 7.1 (Constant Coefficient Homogeneous Problem).−εu′′(x)+ 3u′(x)− u(x − 1) = 0, x ∈ Ω−,

−εu′′(x)+ 4u′(x)− u(x − 1) = 0, x ∈ Ω+,
u(x) = 1, x ∈ [−1, 0], u(2) = 2.

(7.1)

The exact solution of this problem is given by

u(x) =


1 + B[e

3x
ε − 1] +

x
3
, x ∈ [0, 1],

2 − D[e
8
ε − e

4x
ε ] −

(13 + ε)

24
+

B
2

−
Bε
3
e

3
ε +

x(1 − B)
4

+
(x − 1)2

24
+
εx
48

+
Bε
3
e

3(x−1)
ε , x ∈ [1, 2],

where D = e−
8
ε D1, B = e−(3/ε)B1, B1 =

4D1e−(4/ε)
+ ε2/48 − ε/12

3 − (3ε/4)e−(3/ε)
,

D1 =

18−ε
16 +

ε
12 + ε2

 1
36 +

1
48


−

ε3

144 + εe
−3
ε


5ε
192 +

ε2

144 −
18−ε
64 −

ε
36 −

5
48


3 − e(−3/ε) 3ε

4 + e−(4/ε)

1 −

4ε
3


− e−(7/ε)


5 +

ε
2

 .

Example 7.2 (Variable Coefficient Non-Homogeneous Problem).−εu′′(x)+ (3 + x2)u′(x)− u(x − 1) = sin(x), x ∈ Ω−,

−εu′′(x)+ (4 + ex)u′(x)− u(x − 1) = sin(x), x ∈ Ω+,
u(x) = 1, x ∈ [−1, 0], u(2) = 2

(7.2)

Table 1 presents the numerical results for the problems given in Examples 7.1–7.2.
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