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I. INTRODUCTION 

The theory of variational inequalities provides very effective and powerful techniques for studying 
a wide class of problems arising in mechanics, optimization and control problems, transportation 
and economics equilibrium, contact problems in elasticity, and other branches of mathematics and 
engineering sciences. In recent years, variational inequalities have been generalized and applied 
in various directions. 

Recently Noor [1-4], Siddiqi-Ansari [5], Bose [6], and Ding [7] studied a class of general non- 
linear variational inequalities with bilinear functionals in Hilbert spaces. By applying the fixed 

point technique of Glowinski-Lions-Tremolieres [8] and Lions-Stampacchia [9], they have proved 
the existence and uniqueness of solutions for these variational inequalities and give the iterative 
algorithms for finding the approximate solutions. 

In this paper, we consider and study a new class of general nonlinear variational inequalities 
in reflexive Banach spaces. Some existence and uniqueness theorems of solutions for the general 

nonlinear variational inequalities are proved by applying minimax inequality and fixed point 
techniques. Several special cases are discussed, which can be obtained from the main results. 

2. P R E L I M I N A R I E S  

Let B be a Banach space with norm [['[h B* be the topological dual space of B and (u, v) be 
the pairing between u E B* and v E B. Let M be a nonempty closed convex subset of B, and 
a(., .) : B × B -* R be a continuous function which is linear in both arguments such that there 

This work supported by the National Natural Science Foundation of China and by the Ethel Raybould Fellow 
Scholarship of the University of Queensland, Australia. 

Typeset by AAd~TEX 

31 



32 X.P.  DING AND E. TARAFDAR 

exist  cons tan ts  a > 0, fl > 0 satisfying 

a(v, v) > c~ IIv[I 2 , for all v E B,  (2.1) 

a(u, v) <_ fl llu]] [[v[[ , for all u, v E B.  (2.2) 

Let  the  functional  b(., -) : B × B --* R satisfy the  following propert ies:  

(1) b(u, v) is linear in the  first a rgument ;  

(2) for each u E B,  b(u, .) is a convex functional; 
(3) b(u, v) is bounded,  t h a t  is, there  exists a constant  v > 0 such t ha t  

b(u, v) <_ v Iiuil IiviI, for all u, v E B; (2.3) 

(4) for all u, v, w E B 

b(u, v) - b(u, w) < b(u, v - w). (2.4) 

Let  A : B --* B*, g : B -~ B be nonlinear opera tors  and M be a n o n e m p t y  convex subset  of B. 
A and g are said to  have 0-diagonally concave relat ion on M if the  function ~(w,  v) : M × M --* R 
defined by 

~(w,  v) = (A(w),  g(v) - g ( w ) )  

is 0-diagonal ly  concave in v (cf., [10]), i.e., for any finite set {vl, . . . ,  vm} C M and any  w~ = 

~ v  s A s>_0 ,  A s = l  , 
5=1 j= l  

?n 

vs) < 0. 
j = l  

A is called an t imonotone  on M with respect  to g if for all u, v E M ,  

(Au  - Av ,  g(u) - g(v)) <_ O. 

A is said to  be ~-Lipschitz continuous on M if there exists a cons tant  ~ > 0 such t h a t  

[[Au - Av[[ < ~ [ [ u -  vii, for all u, v E M.  

We consider the  following general nonlinear variat ional  inequali ty problem: find u E M such 
t h a t  

a(u, v - u) + b(u, v) - b(u, u) >_ (A(u) ,  g(v) - g(u)),  for all v E M. (2.5) 

Special Cases 

(I) I f  g ( M )  = M ,  then  the prob lem (2.5) is equivalent to  find u E H such t h a t  g(u) E M and 

a(u, v - u) + b(u, v) - b(u, u) > (A(u) ,  g(v) - g(u)) ,  for all g(v) E M.  (2.6) 

(II)  I f  g = I is the ident i ty  opera tor ,  the prob lem (2.5) is equivalent  to finding u E M such 
t h a t  

a(u, v - u) + b(u, v) - b(u, u) > (A(u) ,  v - u), for all v E K.  (2.7) 

Variat ional  inequal i ty  (2.7), which models  contac t  problems with  friction in elastostat ics ,  
has been studied by Duvant-Lions  [11], Noor  [2,3], and Bose [6] in Hi lber t  space se t t ing 
and has  been generalized by Ding [7] to quasi-variat ional  variat ional  inequalities in Hi lber t  
space sett ing.  

( I I I )  I f  a - 0 and A = - I ,  then  the prob lem (2.6) is equivalent to finding u E B such tha t  
g(u) E M and 

(Tu,  g(v) - g(u)) + b(u, v) - b(u, u) > O, for all g(v) e g .  (2.8) 

Variat ional  inequali ty (2.8) and its special cases have been studied by Noor  [4] in Hi lber t  
space and Yao [12] in Banach  space with b - 0. 
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The following result is Theorem 1 of Ding-Tan [13]. 

LEMMA 2.1. Let  X be a nonempty  convex subset of a topological vector space and let 

f : X x X --* R U { -oo ,  +co} be such that 

(i) for each x E X ,  y ~-* f ( x ,  y) is lower semi-continuous on each nonempty  compact subset 
of  X ,  

(ii) for each nonempty finite set A c X and each y e co(A), ~,  ](~, y) < O, 

(iii) there exist a nonempty  compact convex subset Xo of  X and a nonempty  compact subset 

K of  X such that  for each y E X \ K,  there is an x E co(X0 U {y}) with f ( x ,  y) > O. 

Then there exists 9 E K such that f ( x ,  Y) <- 0 for a11 x E X .  

3.  M A I N  R E S U L T S  

In this section, we use minimax inequality and fixed point technique to prove the existence and 
uniqueness of solutions for the general nonlinear variational inequality (2.5). 

THEOREM 3.1. B be a reflexive Banach space, B* be the topological dual o r B ,  and M be a 
nonempty  closed convex subset orB .  Let a : B x B --~ R be a continuous function which is linear 
in both arguments and satisfies (2.1) and (2.2) and b : B x B --~ ]~ satisfy the conditions (1)-(4) 
where u E (0, a) .  Let A : B ~ B* and g : B ~ B be two nonlinear operators such that A is 

continuous and antimonotone with respect to g, A and g have O-diagonally concave relation on M 

and g is O-Lipschitz continuous. Then, the variational inequality (2.5) has an unique solution fi 

in M .  

PROOF. First  of all, we prove tha t  for each given ~ E M, there exists an unique W E M such 
tha t  for all v E M. 

a(~,  v - ~ )  + b(~, v) - b(~, ~ )  > (A(~) ,  g(v) - g(~)) .  (3.1) 

For any fixed ~ E M, define a mapping f : M x M -* R by 

f ( v ,  w) = (A(w),  g(v) - g(w)) + b(~, w) - b(~, v) - a(w, v - w), for all v, w e i .  

Since b(-, .) satisfies the conditions (3) and (4), it is easy to see that  b(., .) also satisfies 

Ib(u, v) - b(u, w)l < ~ Ilull II v - wll, 

and hence, b(u, v) is continuous in the second argument. Since a(., .) is a continuous function 
which is linear in both  arguments and the operators A and g are continuous, we must  have tha t  
for each fixed v E M ,  f ( v ,  .) is weak lower semicontinuous. We claim tha t  f ( v ,  w) satisfies the 
condition (ii) of Lemma 2.1. If  it were not true, then there exist A = { v l , . . . , v n }  C M and 

w = ~ Aiv,, As >_ 0 and ~ Ai = 1 such that  f (v , ,  w) :> 0 for a l l / =  1 , . . . , n ,  tha t  is, 
u = l  i = l  

(A(w), g(vi) - g(w)) + b(~, w) - b(~, vi) - a(w, vi - w) > 0, for all i = 1 , . . . ,  n. 

I t  follows tha t  

A(~) ,  ),~g(~) - g(~)  + b(~, ~)  - ~_, ~b(~,  v~) - a(~,  ~ - ~ )  > O. 
i=1 i = l  

Since b(u, v) is convex in the second argument,  we have 
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and hence, we have 

which contradicts the fact that  A and g have 0-diagonally concave relation on M. 
condition (ii) of Lemma 2.1 is also satisfied. Let 

Thus, the 

1 
p = ~[(~ + v)[l~ll + e [[A(~)[I], 

K = ( w E M :  [ [w-~[I  < p } .  

Then K is a bounded closed convex subset of M and hence, it is weakly compact  convex. Let 
X0 = {~}. Clearly, X0 is also weakly compact convex subset of M. For each w E M \ K ,  there 
exists ~ e co(X0 tJ {w}) such tha t  

f (~ ,  w) ---- ( A ( w ) ,  g (~)  - g ( w ) )  -t- b(~, w)  - b(~, ~)  - a ( w ,  ~ - w )  

> a ( w  - ~,  w - ~)  - a(~ ,  ~ - w)  - b(~, ~ - w)  + ( A ( w ) ,  g (~)  - g ( w ) ) .  

Since A is antimonotone with respect to g, we have 

( A ( w ) ,  g (~)  - g ( w ) )  >_ ( A ( ~ ) ,  g (~)  - g ( w ) ) .  

By the assumptions on a(., -) and g, we have 

f ( ~ ,  w)  ~ ~ I[w - ~][2 _ / ~  I[~i ] []w - uII - ~ I1~11 IIw - Eli - 0 ]]A(~)I ] Hw - ull 

= IIw - TIt [ ~  IIw - ~ l l  - ( ~  + ~)[[~]] - e ] ]A(~) [ [ ]  > O. 

Hence, the condition (iii) of Lemma 2.1 is also satisfied. By Lemma 2.1, there exists ~ E M such 

tha t  f ( v ,  ~ )  <_ 0 for all v E M, that  is, 

a ( ~ ,  v - ~ )  + b(~, v)  - b(~, ~ )  > ( A ( ~ ) ,  g (v )  - g ( ~ ) ) ,  for all v e M. (3.1) 

Now we prove tha t  the ~ is unique. Suppose tha t  for given ~ E M, there exist wl, w2 E M 
such tha t  (3.1) holds for all v E M. Then we have 

a ( w l ,  y - -  Wl)  -~" b(~, v) - b(~, Wl) __~ ( A ( w l ) ,  g (v )  - g ( w l ) ) ,  and 

a(w2,  v - w2) + b(~, v) - b(~, w2) _> (A(w2), g(v)  - g(w2)), 

(3.2) 
(3.3) 

for all v E M. Taking v = w2 in (3.2) and v = Wl in (3.3) and adding these inequalities, we 

obtain 

a(w2 - Wy, w2 - w l )  <_ (A(w2) - A ( w l ) ,  g(w2) - g ( w l ) ) .  

Since A is antimonotone with respect to g and a(-, .) satisfies (2.1), we must have Wl -- w2, and 
hence, W E M is unique for a given ~ E M. Thus, we have proved tha t  given u E M, there is a 
unique solution w ( u )  satisfying (3.1). Define a mapping F : M --* M by u --~ w ( u ) .  We prove 
tha t  the mapping F is a Banach contraction mapping. Indeed, for any u l , u :  E M ,  there exist 
unique Wl = F(uy)  and w2 = F(u2) such that  for each v E M 

a ( F ( U l ) ,  v - F ( U l ) ) + b ( U l ,  v)  - b (u l ,  F(uy))  >_ ( A ( F ( u l ) ) ,  g (v )  - g ( F ( u l ) ) ) ,  (3.4) 

a ( F ( u 2 ) ,  v - F(u2))+b(u2,  v)  - b(u2, F(u2)) _> ( A ( F ( u 2 ) ) ,  g (v )  - g ( F ( u 2 ) ) ) .  (3.5) 
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Taking v --- F(u2) in (3.4), and v = F (u l )  in (3.5) and adding these inequalities and by the 
assumptions of a(., .), b(., .), and A, we have 

a ( F ( U l )  - F ( u 2 ) ,  F ( u l )  - F ( u 2 ) )  + b (Ul  - u s ,  F ( U l ) )  - b (U l  - u2 ,  F ( u 2 ) )  

<_ ( A ( F ( u ~ ) )  - A ( F ( u 2 ) ) ,  g ( F ( U l ) )  - g ( F ( u 2 ) ) }  ~_ O, 

and hence, 

a( F(u~  ) - F(u2),  F (u ~)  - F(u2)) <_ b(u2 - ?A1, F ( u 2 ) )  - b(u2 - u~, F(Ul))  

~_ b(u2 - Ul, F ( u 2 )  - F(Ul))  

< ~' I I~e - u~ l l  I I P ( u ~ )  - F ( u ~ ) l l  • 

I t  follows tha t  

and 

a [ I F ( u 1 )  - F ( u 2 ) l l  2 ~ ~' I l ue  - u ~ l l  l i P ( u , , )  - F ( u l ) l l ,  

I IY(u l )  - F (u2 ) l l  < -~ Ilu~ - u l l l .  
C~ 

Since v E (0, a) ,  F : M --~ M is a Banach contraction mapping. Hence, there exists an unique 

point 5 E M such tha t  5 = F(5) ,  that  is, 

a(~, v - ~) + b(~, v) - b(~, ~) > (d(~),  g(v)  - g(fi)), for all v E M. I 

REMARK 3.1. I fg  : H -~ H be the identity mapping, then Theorem 3.1 improves and generalizes 

the corresponding results of Duvant-Lions [11], Glowinski-Lions-Tremolieres [8], Noor [2] and 
Necas-Jerusek-Haslinger [14] to reflexive Banach spaces. 

REMARK 3.2. Instead of assuming B to be a reflexive Banach, we can easily see tha t  the Theo- 
rem 3.1 will hold if we assume B = C* when C is any Banach space. 

In Theorem 3.1, if A is Lipschitz continuous, then the antimonotonity of A is not necessary. 
This has been proved in the following theorem. 

THEOREM 3.2. L e t  M be a n o n e m p t y  closed convex  subse t  of a ref lexive B a n a c h  space  B and  B* 

be the  topological  dual  space o r B .  L e t  a : B x B -~ • be a con t inuous  f unc t i on  which  is l inear in 

b o t h  a r g u m e n t s  and  satisf ies (2.1), (2.2) and b : B x B -~ R sa t i s fy  condi t ions  (1)-(4). S u p p o s e  

t h a t  A : B --~ B* is ¢ -L ipsch i t z  cont inuous ,  g : B --~ B is O-Lipschitz  con t inuous  and  A and  g 

have  O-diagonally concave relat ion such tha t  v + ¢0 < a.  Then ,  the  variat ional  inequal i t ies  (2.5) 
have  a un ique  so lu t ion  ~ E M .  

PROOF. For any fixed E E M, define a mapping f : M × M ~ ~ by 

f ( v ,  w)  -- ( A ( w ) ,  g(v)  - g (w) )  + b(~, w)  - b(~, v) - a (w ,  v - w) ,  for all v, w e M. 

By the same argument as in the proof of Theorem 3.1, f satisfies the conditions (i) and (ii) of 
Lemma 2.1. Let X0 = {~} and K = {w E M :  ]I w - ~[[ _< p} where p = 1 / ( a  - ¢8)[(/3 + v) ]]ul] + 

[]A(~)I]]. Then, for each w E M \ K,  there exists ~ E co(X0 U {w}) such tha t  

f ( ~ ,  w)  = ( A ( w ) ,  g(~)  - g (w) )  + b(~, w)  - b(~, ~) - a (w ,  ~ - w)  

>_ a ( w  - ~, w - ~)  - a(~,  ~ - w)  - (A(~)  - A ( w ) ,  g(~)  - g (w) )  

+ (A(~), g(~) - g(w) )  - b(~, ~ - w) 

> o~ l i t  - ~112 - ~' I1~11 I1~ - ~11 - o,~ I1~ - ~11 ~ - o I I A ( ~ ) I I  I1~ - ~ l l  - ,~ I1~11 I1,,, - ~11 

- -  I I ~  - ~11 [(o~ - 0¢)lit - ~ l ]  - (~ '  + ~ ) I I ~ l l  - 0 I I A ( ~ ) I I ]  > 0 ,  

and hence, by Lemma 2.1, there exists ~ E M such that  (3.1) holds for all v E M. Noting tha t  A 
and g both  are Lipschitz continuous and the condition v + 8¢ < a ,  we can prove by using similar 
argument  as in the proof of Theorem 3.1, that  given u E M, there is a unique solution w ( u )  E M 

satisfying (3.1) and that  the mapping F : M --* M defined by F ( u )  = w ( u )  is a contraction 
mapping. 

REMARK 3.3. I f g  : H -~ H is the identity mapping, it is clear that  A and g have the 0-diagonally 
concave relation. Hence Theorem 3.2 improves and generalizes Theorem 3.1 of Noor in [2,3] and 
Bose [6, Theorem 2-4] to reflexive Banach spaces. 
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