Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the Grassmann space representing the lines of an affine space

Roberta Di Gennaro^a, Eva Ferrara Dentice^{b,*}, Pia Maria Lo Re^c

^a Università degli studi di Napoli "Parthenope", Dipartimento per le Tecnologie - Centro Direzionale Isola C4, I-80143, Napoli, Italy ^b Seconda Università degli Studi di Napoli - S.U.N., Dipartimento di Matematica, via Vivaldi, 43, I-81100, Caserta, Italy ^c Università degli Studi di Napoli "Federico II", Dipartimento di Matematica "R. Caccioppoli", via Cinthia, I-80126, Napoli, Italy

ARTICLE INFO

Article history: Available online 31 July 2011

Keywords: Affine Grassmann space

ABSTRACT

In 1982, Bichara and Mazzocca characterized the Grassmann space $Gr(1, \mathbb{A})$ of the lines of an affine space \mathbb{A} of dimension at least 3 over a skew-field K by means of the intersection properties of the three disjoint families Σ_1 , Σ_2 and \mathcal{T} of maximal singular subspaces of $Gr(1, \mathbb{A})$. In this paper, we deal with the characterization of $Gr(1, \mathbb{A})$ using only the family $\Sigma = \Sigma_1 \cup \Sigma_2$ of maximal singular subspaces.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A partial linear space is an incidence geometry $\Gamma = (\mathcal{P}, \mathcal{L})$, consisting of a non-empty set \mathcal{P} , whose elements are called *points*, and of a family \mathcal{L} of subsets of \mathcal{P} , called *lines*, satisfying the following properties:

- every point lies on at least one line;
- every two distinct points lie on at most one line;
- every line contains at least two points.

An irreducible partial linear space is a partial linear space where every line contains at least three points.

Two distinct points *p* and *q* of a partial linear space $\Gamma = (\mathcal{P}, \mathcal{L})$ are *collinear* if there exists a line $L \in \mathcal{L}$ containing them. The symbol $p \sim q$ means that *p* and *q* are collinear. For convenience, we also say that *p* is collinear to itself. More generally, two subsets *X* and *Y* are *collinear* ($X \sim Y$) if each point of one of them is collinear with every point of the other.

If two distinct points *p* and *q* of a partial linear space $\Gamma = (\mathcal{P}, \mathcal{L})$ are *collinear*, we denote with $p \lor q$ the unique line $L \in \mathcal{L}$ containing them and we say that it is the line joining *p* e *q*.

A partial linear space Γ is proper if it contains two non-collinear points. When this is not the case, Γ is a *linear space*. For every point $p \in \mathcal{P}$, p^{\perp} denotes the set of points of \mathcal{P} collinear with p, and, for every subset $X \subseteq \mathcal{P}$, X^{\perp} denotes the set $\bigcap_{p \in X} p^{\perp}$.

A subspace of Γ is a subset W of \mathcal{P} such that for every two distinct collinear points of W, the line joining them is contained in W. Clearly, any intersection of subspaces is a subspace and \mathcal{P} is a subspace of Γ (the *improper* one); thus it is possible to define the *closure* [X] of a subset X of \mathcal{P} as the intersection of all subspaces of Γ containing X. A *clique* is a subset of pairwise collinear points of \mathcal{P} . If a subspace W is a clique, then it is called *singular subspace*.

Bichara and Mazzocca characterized in [1] the *Grassmann space of the lines* of an affine space \mathbb{A} of dimension at least 3. This is the proper partial linear space $Gr(1, \mathbb{A})$ whose points are the lines of \mathbb{A} and whose lines are the proper and improper pencils of lines of \mathbb{A} , a proper pencil being the set of all lines passing through a fixed point and contained in a fixed plane, and an improper pencil being the set of all pairwise parallel lines contained in a fixed plane. According to [1], a proper pencil

^{*} Corresponding author.

E-mail addresses: roberta.digennaro@uniparthenope.it (R. Di Gennaro), eva.ferraradentice@unina2.it (E. Ferrara Dentice), pialore@unina.it (P.M. Lo Re).

of lines of A will be called a *line of the first kind* of Gr(1, A), and an improper pencil will be called a *line of the second kind*. It follows that the lines of $Gr(1, \mathbb{A})$ are partitioned into two disjoint subsets \mathcal{L}_1 and \mathcal{L}_2 , consisting of lines of the first kind and the second kind, respectively. Two points of $Gr(1, \mathbb{A})$ are collinear if, and only if, they are either two lines intersecting at a point, or two parallel lines of \mathbb{A} , and the line through them is a line of the first or the second kind, respectively.

Furthermore, $Gr(1, \mathbb{A})$ contains three pairwise disjoint families of maximal singular subspaces, say Σ_1, Σ_2 and \mathcal{T} . Every element of Σ_1 is the family of all lines containing a fixed point (proper star), every element of Σ_2 is the family of all pairwise parallel lines (*improper star*), and, finally, every element of \mathcal{T} is the family of all lines contained in a fixed plane of \mathbb{A} (*ruled* plane).

The following result characterizes $Gr(1, \mathbb{A})$ for dim $\mathbb{A} > 3$.

Theorem 1.1 (Bichara and Mazzocca, [1], 1982). Let $\Gamma = (\mathcal{P}, \mathcal{L})$ be a proper partial linear space whose lines are not maximal singular subspaces satisfying the following axioms.

- (A₁) Any three pairwise collinear points are contained in a singular subspace of Γ .
- (A₂) There exist three families Σ_1 , Σ_2 and T of maximal singular subspaces of Γ , and every maximal singular subspace of Γ belongs to exactly one of them. Furthermore, if $\Sigma = \Sigma_1 \cup \Sigma_2$, then the following hold: (i) For every $S \in \Sigma$, $S' \in \Sigma_1$ with $S \neq S'$, we have $|S \cap S'| = 1$. (ii) For every $S, S' \in \Sigma_2$ with $S \neq S'$, we have $S \cap S' = \emptyset$. (iii) For every $S \in \Sigma$ and $T \in \mathcal{T}, S \cap T$ is either empty or a line of Γ .

 - (iv) Every line of $\mathcal L$ is contained in exactly one subspace of Σ and exactly one subspace of $\mathcal T$.
- (A₃) Every point $p \in \mathcal{P}$ is contained in a maximal singular subspace of Σ_2 .

Then, there exists an affine space \mathbb{A} of dimension at least 3 such that Γ is isomorphic to the Grassmann space $Gr(1, \mathbb{A})$ of the lines of \mathbb{A} .

Tallini's paper [3] was the starting point of these types of characterizations of Grassmann spaces. Melone and Olanda, in [2], characterize the well known Grassmann space of the lines of a projective space of dimension at least 3 by using just properties of one family of maximal singular subspaces. More precisely, they prove that the axioms of Tallini [3] on the two families of maximal singular subspaces follow from their axioms. In this paper, similarly to Melone and Olanda, we prove that the axioms of Bichara and Mazzocca [1] for Grassmann spaces of the lines of an affine space follow from suitable axioms on the family Σ of maximal singular subspaces.

It is easy to see that if we denote by $\mathbb{P}(\mathbb{A})$ the projective extension of \mathbb{A} and by \mathcal{H}_{∞} the hyperplane at infinity of \mathbb{A} (removed from $\mathbb{P}(\mathbb{A})$ in order to obtain \mathbb{A}), then $Gr(1, \mathbb{A})$ is the incidence structure induced by the well known Grassmann space $Gr(1, \mathbb{P}(\mathbb{A}))$ of the lines of $\mathbb{P}(\mathbb{A})$ on the set of all lines of \mathbb{A} . For every pair (A, π) consisting of a point A contained in a plane π of $\mathbb{P}(\mathbb{A})$, let $F(A, \pi)$ be the line of $Gr(1, \mathbb{P}(\mathbb{A}))$ coinciding with the pencil of lines of $\mathbb{P}(\mathbb{A})$ passing through A and contained in π . If $A \in \mathcal{H}_{\infty}$ and $\pi \not\subseteq \mathcal{H}_{\infty}$, then $F(A, \pi) \setminus \{\pi \cap \mathcal{H}_{\infty}\}$ is a line of the second kind of $Gr(1, \mathbb{A})$ and, conversely, every line of the second kind is of type $F(A, \pi) \setminus \{\pi \cap \mathcal{H}_{\infty}\}$, with $A \in \mathcal{H}_{\infty}$ and $\pi \not\subseteq \mathcal{H}_{\infty}$. For every pair (A, π) consisting of a point A contained in a plane π of $\mathbb{P}(\mathbb{A})$, $F^*(A, \pi)$ will denote either $F(A, \pi) \in \mathcal{L}_1$ or $F(A, \pi) \setminus \{\pi \cap \mathcal{H}_\infty\} \in \mathcal{L}_2$, according to $A \notin \mathcal{H}_{\infty}$ and $\pi \not\subseteq \mathcal{H}_{\infty}$ or $A \in \mathcal{H}_{\infty}$ and $\pi \not\subseteq \mathcal{H}_{\infty}$. Furthermore, if *A* is a point of $\mathbb{P}(\mathbb{A})$, then S_A will denote either the proper or the improper star of $Gr(1, \mathbb{A})$ consisting of all lines passing through A, according to $A \notin \mathcal{H}_{\infty}$ or $A \in \mathcal{H}_{\infty}$, respectively. Finally, for every plane π of $\mathbb{P}(\mathbb{A})$ not contained in \mathcal{H}_{∞} , T_{π} will denote the subset of $Gr(1, \mathbb{A})$ consisting of all lines contained in π .

It is easy to see that through every line $L = F^*(A, \pi)$ of $Gr(1, \mathbb{A})$ exactly two maximal singular subspaces pass, coinciding with S_A and T_{π} , and every point p of $Gr(1, \mathbb{A})$ is contained in exactly one improper star, coinciding with $S_{p \cap \mathcal{H}_{\infty}}$.

Moreover, let p be a point of $Gr(1, \mathbb{A})$, $S_A \in \Sigma_1$ and $p \notin S_A$. Then every star S_X passing through p intersects S_A at the point of $Gr(1, \mathbb{A})$ coinciding with the line $A \vee X$ of \mathbb{A} , and these points trace out the line $L(A, A \vee p)$ of $Gr(1, \mathbb{A})$, which is a line of the first kind.

Finally, if $p \in Gr(1, \mathbb{A})$, $S_A \in \Sigma_2$ and $p \notin S_A$, then $S_{p \cap \mathcal{H}_\infty}$ is the unique star of Σ_2 passing through p. The star $S_{p \cap \mathcal{H}_\infty}$ is disjoint from S_A , every star S_X with $X \in p$ and $X \notin \mathcal{H}_{\infty}$ intersects S_A at the point of $Gr(1, \mathbb{A})$ coinciding with the line of A passing through X and having the direction of the point at infinity A, and these points trace out the line $L(A, A \lor p)$ of $Gr(1, \mathbb{A})$, which is a line of the second kind.

In what follows, we will prove that these properties characterize $Gr(1, \mathbb{A})$. More precisely, we will prove the following result.

Theorem 1.2. Let $\Gamma = (\mathcal{P}, \mathcal{L})$ be a proper irreducible partial linear space whose lines are not maximal singular subspaces and let Σ_1 and Σ_2 be two non-empty families of maximal singular subspaces of Γ . Let $\Sigma = \Sigma_1 \cup \Sigma_2$, and suppose that the following axioms hold.

- (P₁) Every line $L \in \mathcal{L}$ is contained in at most two maximal singular subspaces of Γ .
- (P₂) For i = 1, 2, for every $S \in \Sigma_i$ and for every point $p \notin S$ there exist exactly i 1 elements of Σ passing through p and disjoint from S. Furthermore, every $S' \in \Sigma$ passing through p and not disjoint from S intersects S at a unique point, and these points trace out a line, coinciding with $p^{\perp} \cap S$.
- (P₃) There exists a point $\bar{p} \in \mathcal{P}$ which is contained in at most one element of Σ_2 .

Then, there exists an affine space A of dimension at least 3 such that Γ is isomorphic to the Grassmann space Gr(1, A) of the lines of \mathbb{A} .

2. The proof

Let $\Gamma = (\mathcal{P}, \mathcal{L})$ be a proper irreducible partial linear space whose lines are not maximal singular subspaces and let Σ_1 and Σ_2 be two non-empty families of maximal singular subspaces of Γ . If $\Sigma = \Sigma_1 \cup \Sigma_2$, then every maximal singular subspace of Σ will be called a *star* of Γ , and suppose that the stars satisfy axioms (P₂) and (P₃). The following proposition summarizes some properties of the stars of Γ .

Proposition 2.1. The stars of Γ satisfy the following properties.

- (i) Two different non-disjoint stars of Γ intersect at a point.
- (ii) Every point $p \in \mathcal{P}$ is contained in exactly one star of Σ_2 .
- (iii) Every line $L \in \mathcal{L}$ is contained in exactly one star of Γ .
- (iv) Every point $p \in \mathcal{P}$ is contained in at least two stars.

(v) For every star S and for every point $p \notin S$, $p^{\perp} \cap S$ is a line.

Proof. (i) This easily follows from condition (P₂).

(ii) Step 1. Σ_2 is a covering of \mathcal{P} . Let p be a point of \mathcal{P} and S be a star of Σ_2 . If $p \in S$ we are done, otherwise, from property (P₂), there exists a star S' passing through p and disjoint from S. If $S' \in \Sigma_1$, then a fixed point $q \in S$ is contained into a star disjoint from S', contradicting property (P₂). It follows that $S' \in \Sigma_2$.

Step 2. Every two distinct stars of Σ_2 have empty intersection. By contradiction, let *S* and *S'* be two distinct stars of Σ_2 having non-empty intersection. From (i) above, $S \cap S'$ is a point *p*. Recall that, from property (P₃), \bar{p} is a fixed point of \mathcal{P} which is contained in at most one star of Σ_2 , hence $\bar{p} \neq p$. If either $\bar{p} \in S$ or $\bar{p} \in S'$, from (P₂) there exists a unique star \bar{S} of Σ passing through \bar{p} and disjoint from either S' or *S*, respectively. If $\bar{S} \in \Sigma_1$, either the star S' or the star *S* contained in at most one star of Σ_2 . It follows that $\bar{S} \in \Sigma_2$, contradicting the assumption that \bar{p} is contained in at most one star of Σ_2 . Hence $\bar{p} \notin S \cup S'$. From property (P₂) again, there exist a star S'' and a star S''' passing through \bar{p} and disjoint from *S* and *S'*, respectively. The arguments of \bar{S} hold for S'' and S''' too, thus $S'', S''' \in \Sigma_2$. If $S'' \neq S'''$, we contradict (P₃), thus S'' = S'''. It follows that there exist two stars passing through *p* and disjoint from *S''*, contradicting property (P₂).

(iii) From (i), the line *L* is contained in at most one star. Let *p* be a point of *L* and, from (ii) above, let *S* be a star of Σ_2 passing through *p*. If $L \subseteq S$ we are done, otherwise, let *q* be a point of $L \setminus \{p\}$. Since $p \in q^{\perp} \cap S$, from property (P₂) there exists a star *S'* passing through *q* and intersecting *S* at the point *p*. Thus $L = p \lor q$ is contained in *S'*.

(iv) Let p be a point of \mathcal{P} and, from (ii), let S be a star of Σ_2 passing through p. Since $\Sigma_1 \neq \emptyset$ there exists a star $S' \in \Sigma_1$ and S' intersects S at a point, from property (P₂). If $p \in S'$ we are done, otherwise, p is collinear with the point $S \cap S'$ of S'; hence, from property (P₂), $p^{\perp} \cap S'$ is a line and there exists a star S'' passing through p and a point of the line $p^{\perp} \cap S'$ different from $S \cap S'$.

(v) It comes directly from property (P₂). \Box

As a consequence of the previous proposition, we have the following fundamental result.

Proposition 2.2. For every point $p \in \mathcal{P}$ and for every line $L \in \mathcal{L}$, if $|p^{\perp} \cap L| \geq 2$, then $L \subseteq p^{\perp}$ (i.e. Γ is a gamma-space).

Proof. Let *p* be a point and *L* be a line such that $p^{\perp} \cap L$ contains at least two distinct points *a* and *b*. From Proposition 2.1(iii), *L* is contained in a unique star *S*. If $p \in S$, then $p \sim L$, otherwise, from (v) of Proposition 2.1, $p^{\perp} \cap S$ is a line *M*, and *M* intersects *L* at least at the two distinct points *a* and *b*, thus M = L and $p \sim L$. \Box

For every line $L \in \mathcal{L}$, from Proposition 2.1(iii), there exists a unique star of Σ , say S_L , passing through L.

For every point *p* and for every line *L* such that $p \sim L$ and $p \notin S_L$, we can consider the subspace [p, L]. The following proposition characterizes [p, L], but its principal significance is in the assertion that [p, L] is singular.

Proposition 2.3. Let $L \in \mathcal{L}$, S_L be the unique star passing through L and $p \notin S_L$ be a point of \mathcal{P} collinear with L. Then [p, L] is one of the following subsets.

- (i) If $S_L \in \Sigma_1$, then $[p, L] = \bigcup_{a \in I} (p \lor q)$.
- (ii) If $S_L \in \Sigma_2$, then there exists a unique star \hat{S} passing through p and disjoint from S_L , $L^{\perp} \cap \hat{S}$ is a line R and $[p, L] = \bigcup_{a \in L} (p \lor q) \cup R$.

In both cases, [p, L] is a singular subspace of Γ .

Proof. (i) Let *T* be $\bigcup_{a \in L} (p \lor q)$. Clearly, $\{p\}, L \subseteq T$, thus we have to prove the following items:

- (i)₁ *T* is a subspace of Γ .
- (i)₂ Every subspace W of Γ containing p and L contains T, too.

(i) Let x and y be two distinct collinear points of T. If either x, $y \in L$, or x = p, or y = p, then $x \lor y \subseteq T$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \not\subseteq L$. Then, there exist $q_1, q_2 \in L$ such that $x \in p \lor q_1$ and $y \in p \lor q_2$. It is not an essential restriction if we suppose that $y \neq q_2$. Since $q_2 \sim q_1$, p, from Proposition 2.2, $q_2 \sim x$. Let $z \in x \lor y \setminus \{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star S passing through the line $p \lor z$. Since $S_L \in \Sigma_1$, from property (P₂), S intersects S_L at a point q of $p^{\perp} \cap S_L = L$. From Proposition 2.2, x is collinear with L, hence x is collinear with $p, z, q \in S$ and, from Proposition 2.1(v), $z \in p \lor q \subseteq T$.

(i)₂ Since {*p*}, $L \subseteq W$, then for every point *q* of *L* we have $p \sim q$ and the line $p \lor q$ is contained in *W*. It follows that $T \subseteq W$.

(ii) Since $S_L \in \Sigma_2$, from property (P₂) there exists a unique star \hat{S} passing through p and disjoint from S_L . For every point $x \in L, x \sim p$; hence, from property (P₂), $x^{\perp} \cap \hat{S}$ is a line R_x passing through p. Let $y \in L \setminus \{x\}$ and $z \in p \lor y \setminus \{p, y\}$. From Proposition 2.2, $x \sim z$; hence, from Proposition 2.1(iii), the line $x \lor z$ is contained into a star S passing through x. Since x is contained into the star S_L which is disjoint from \hat{S} , from property (P₂), the star S intersects \hat{S} at a point w of the line R_x . It is $w \in x \lor z$, otherwise p would be collinear with the three non-collinear points x, z, w in S, contradicting Proposition 2.1(v). It follows that y is collinear with $x, z \in S$; hence, from Proposition 2.2, $y \sim w$. Finally, y is collinear with p and w in \hat{S} , thus, $R_y := y^{\perp} \cap \hat{S} = R_x$. Let R be the unique line of \hat{S} collinear with all points of L. Then $L^{\perp} \cap \hat{S} = R$, otherwise a point of L would be collinear with more than a line in \hat{S} . Let \hat{T} be $\bigcup_{q \in L} (p \lor q) \cup R$. Clearly, $\{p\}, L \subseteq \hat{T}$, thus we have to prove the following items:

(ii)₁ \hat{T} is a subspace of Γ .

(ii)₂ Every subspace W of Γ containing p and L contains \hat{T} , too.

(ii)₁ Let *x* and *y* be two distinct collinear points of \hat{T} .

First of all, let us suppose that $x, y \in \bigcup_{q \in L} (p \lor q)$. If either $x, y \in L$, or x = p, or y = p, then $x \lor y \subseteq \bigcup_{q \in L} (p \lor q) \subseteq \hat{T}$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \not\subseteq L$. Then, there exist $q_1, q_2 \in L$ such that $x \in p \lor q_1$ and $y \in p \lor q_2$. Furthermore, let us suppose that $y \neq q_2$. Since $q_2 \sim q_1$, p, from Proposition 2.2, $q_2 \sim x$. Let $z \in x \lor y \setminus \{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star S passing through the line $p \lor z$. If $S \neq \hat{S}$, then, from property (P₂), S intersects S_L at a point q of $p^{\perp} \cap S_L = L$. From Proposition 2.2, x is collinear with L; hence x is collinear with $p, z, q \in S$ and, from Proposition 2.1(v), $z \in p \lor q \subseteq \bigcup_{q \in L} (p \lor q) \subseteq \hat{T}$. If $S = \hat{S}$, since $q_2 \sim x$, y, from Proposition 2.2 $q_2 \sim z$; hence $z \in q_2^{\perp} \cap \hat{S} = R \subseteq \hat{T}$.

If $x, y \in R$, then $x \lor y = R \subseteq \hat{T}$.

Finally, we can suppose that $x \in R \setminus \{p\}$ and $y \in \bigcup_{q \in L} (p \lor q) \setminus \{p\}$. Let $z \in x \lor y \setminus \{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star *S*, which is different from \hat{S} , passing through the line $p \lor z$. Since $S_L \in \Sigma_2$ and p is contained into the star \hat{S} which is disjoint from S_L , from property (P₂), *S* intersects S_L at a point q of $p^{\perp} \cap S_L = L$. Since $R = L^{\perp} \cap \hat{S}$, x is collinear with L; hence x is collinear with $p, z, q \in S$ and, from Proposition 2.1(v), $z \in p \lor q \subseteq \hat{T}$.

(ii)₂ Since {*p*}, $L \subseteq W$, then for every point *q* of *L* we have $p \sim q$ and the line $p \vee q$ is contained in *W*. It follows that $\bigcup_{q \in L} (p \vee q) \subseteq W$. For every point $x \in R \setminus \{x\}$, let *q* be a fixed point of *L*. Since $L \sim R$, *x* is collinear with *q* and, from Proposition 2.2, *p* is collinear with the line $x \vee q$. Let *z* be a point of $x \vee q \setminus \{x, q\}$. From Proposition 2.1(iii), there exists a star *S* passing through the line $p \vee z$. Since $S_L \in \Sigma_2$ and *p* is contained into the star \hat{S} which is disjoint from S_L , from property (P₂), *S* intersects S_L at a point *q'* of $p^{\perp} \cap S_L = L$. Since *x* is collinear with *p*, *z*, *q'* $\in S$, from Proposition 2.1(v), $z \in p \vee q' \subseteq \bigcup_{q \in L} (p \vee q) \subseteq W$. Finally, since *q* and *z* are two collinear points of the subspace *W*, the line through them is contained in *W*, hence $x \in W$.

Finally, we have to prove that both *T* and \hat{T} are cliques.

Let *x* and *y* be two distinct points of $\bigcup_{q \in L} (p \lor q)$. If either $x, y \in L$, or x = p, or y = p, then $x \sim y$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \not\subseteq L$. Then, there exist $q_1, q_2 \in L$ such that $x \in p \lor q_1$ and $y \in p \lor q_2$. It is not an essential restriction if we suppose that $y \neq q_2$. Since $q_2 \sim q_1$, *p*, from Proposition 2.2, $q_2 \sim x$. It follows that *x* is collinear with *p*, q_2 and, from Proposition 2.2 again, $x \sim y$. This proves that *T* is a clique.

Furthermore, in case (ii), if $x, y \in R$ the assumption easily follows. Finally, let $x \in R$ and $y \in \bigcup_{q \in L} (p \lor q) \setminus \{p\}$. Then, there exists a point $q \in L$ such that $y \in p \lor q$. Since $x \sim p, q$, from Proposition 2.2 it is $x \sim y$. \Box

For every line $L \in \mathcal{L}$, let T_L be the set $(L^{\perp} \setminus S_L) \cup L$ and \mathcal{T} be the family $\{T_L : L \in \mathcal{L}\}$. The following proposition holds.

Proposition 2.4. For every line L of \mathcal{L} , the following holds.

- (i) $L^{\perp} \setminus S_L$ is non-empty.
- (ii) T_L is a subspace of Γ .

(iii) T_L is a maximal singular subspace of Γ if, and only if, property (P₁) holds.

Proof. (i) Let p_0 be a fixed point of the line *L*. From Proposition 2.1(iv), there exists a star *S* passing through p_0 and different from S_L . From Proposition 2.1(v), a point $q \in L \setminus \{p_0\}$ is collinear with a line *M* of *S*; hence, from Proposition 2.2, every point of $M \setminus \{p_0\}$ is collinear with *L*, thus $M \setminus \{p_0\} \subseteq L^{\perp} \setminus S_L$.

(ii) Let *x* and *y* be two distinct and collinear points of T_L . If $x, y \in L$, then $x \vee y = L \subseteq T_L$, thus we can suppose that $\{x, y\} \not\subseteq L$. From Proposition 2.2, every point of *L* is collinear with $x \vee y$, hence every point $z \in x \vee y$ is contained in L^{\perp} . Moreover, if $x \vee y$ intersects S_L at a point *w*, then $w \in L$, otherwise a point of $x \vee y$ different from *w* would be collinear with *L* and $w \notin L$ in S_L , contradicting (v) of Proposition 2.1. It follows that $x \vee y \subseteq T_L$.

(iii) Suppose that T_L is a maximal singular subspace of Γ . Then L is contained in S_L and T_L . If W is a maximal singular subspace of Γ passing through L and different from S_L , from Proposition 2.1(v) $W \cap S_L = L$; hence every point $x \in W \setminus L$ is a point of $L^{\perp} \setminus L$. It follows that $W \setminus L \subseteq L^{\perp} \setminus L$ and, from maximality of $W, W = T_L$. Thus, the line L is contained in S_L and T_L , and property (P₁) holds.

Conversely, suppose that (P_1) holds. From (ii), T_L is a subspace, thus we have to prove the following steps.

Step 1. T_L is a clique. Let x and y be two distinct points of T_L . If either x or y lies on L, then $x \sim y$, thus we can suppose that $x, y \in T_L \setminus L = L^{\perp} \setminus S_L$, which is non-empty, from (i). From Proposition 2.3, [x, L] and [y, L] are two singular subspaces of Γ . If $x \not\sim y$, then there exist two different maximal singular subspaces X and Y of Γ containing [x, L] and [y, L], respectively. Furthermore, neither X nor Y coincides with S_L , otherwise, either x or y is contained in S_L , a contradiction, since $x, y \in L^{\perp} \setminus S_L$. It follows that L is contained into three different maximal singular subspaces of Γ , contradicting property (P₁).

Step 2. T_L is a maximal singular subspace. Let X be a singular subspace containing T_L and let us consider a point $x \in X \setminus L$. Then, from $\{x\}, L \subseteq X$ we have $x \sim L$. Furthermore, $x \notin S_L$, otherwise a fixed point $y \in T_L \setminus S_L$ (whose existence is guaranteed by (i)) would be collinear with L and $x \notin L$ in S_L , contradicting (v) of Proposition 2.1. It follows that $x \in L^{\perp} \setminus S_L \subseteq T_L$, thus $X \subseteq T_L$ and $X = T_L$. \Box

From the previous proposition, the family $\mathcal{T} = \{T_L : L \in \mathcal{L}\}$ consists of maximal singular subspaces of Γ . In what follows, we will prove that the three families Σ_1 , Σ_2 and \mathcal{T} satisfy the hypotheses of Theorem 1.1. We explicitly observe that property (P₁) is a necessary and sufficient condition in order that every T_L is a maximal singular subspace of Γ .

Proposition 2.5. The partial linear space $\Gamma = (\mathcal{P}, \mathcal{L})$ satisfies the following properties.

(i) Any three pairwise collinear points of \mathcal{P} are contained in a maximal singular subspace of $\Sigma \cup \mathcal{T}$.

- (ii) No subspace of \mathcal{T} is contained in a star of Σ .
- (iii) If $S \in \Sigma$ and $T \in \mathcal{T}$, then $S \cap T$ either is empty or it is a line.
- (iv) Every line of \mathcal{L} is contained in exactly one subspace of Σ and exactly one subspace of \mathcal{T} .
- (v) Every maximal singular subspace belongs to $\Sigma \cup \mathcal{T}$.

Proof. (i) Let *a*, *b* and *c* be three pairwise collinear points of \mathcal{P} , and let *L* be the line of \mathcal{L} passing through *a* and *b*. From Proposition 2.2, $c \in L^{\perp}$; hence either $c \in S_L$, or $c \in L^{\perp} \setminus S_L \subseteq T_L$.

(ii) If there exists a subspace $T_L \in \mathcal{T}$ which is contained into a star $S \in \Sigma$, then, from Proposition 2.1(iii), S coincides with the unique star S_L containing L, a contradiction, since $L^{\perp} \setminus S_L \neq \emptyset$ from (i) of Proposition 2.4.

(iii) Clearly, for every $S \in \Sigma$ and $T \in \mathcal{T}$, $S \cap T$ is at most a line, otherwise we can consider a point $x \in T \setminus S$ (from (ii)) and x would be collinear with more than a line into the star S, contradicting Proposition 2.1(v). Since $T \in \mathcal{T}$, there exists a line $L \in \mathcal{L}$ such that $T = T_L$. From Proposition 2.1(ii), let S_L be the unique star passing through L. If $S = S_L$, then $S_L \cap T_L = L$, and we are done. Thus, we can suppose that $S \neq S_L$. From Proposition 2.1(i), $S \cap S_L$ either is empty or is a point y. Moreover, let $S \cap T \neq \emptyset$, and let p be a point of $S \cap T$.

Let $p \in L$. For every $w \in L \setminus \{p\}$, from Proposition 2.1(v), $w^{\perp} \cap S$ is a line M passing through p. It follows that every point $z \in M \setminus \{p\}$ is collinear with both p and w in L; hence $M \setminus \{p\} \subseteq L^{\perp} \setminus S_L$ and $M \subseteq T_L$, thus $S \cap T_L = M$.

Now, suppose that $p \notin L$. Moreover, let us suppose that $S \cap S_L = \emptyset$. From property (P₂), $S_L \in \Sigma_2$; hence, from Proposition 2.3(ii), $L^{\perp} \cap S$ is a line *R* passing through *p*. It follows that $R \subseteq L^{\perp} \setminus S_L \subseteq T_L$, thus $S \cap T_L = R$.

Finally, let us suppose that $p \notin L$ and $S \cap S_L = y$. Clearly, $p \neq y$, otherwise $T_L \cap S_L$ contains $L \cup \{p\}$, contradicting the fact that a star and a subspace of \mathcal{T} intersect in at most a line. If $y \notin L$, p would be collinear with y and L in S_L , contradicting Proposition 2.1(v). It follows that $y \in L$; hence $S \cap T_L = p \lor y$.

(iv) From Proposition 2.1(iii), every line *L* is contained in exactly one star S_L of Σ . Moreover, the maximal singular subspace $T_L = (L^{\perp} \setminus S_L) \cup L$ of \mathcal{T} contains *L*. If *T* is a maximal singular subspace of \mathcal{T} passing through *L* and different from T_L , then *L* is contained in at least three maximal singular subspaces of Γ , contradicting property (P₁).

(v) Let *W* be a maximal singular subspace of Γ , let us suppose that $W \notin \Sigma$, and let *L* be a line of *W*. From (iv) and property (P₁), it is $W \in \mathcal{T}$. \Box

Let $\Gamma = (\mathcal{P}, \mathcal{L})$ be a proper partial linear space whose lines are not maximal singular subspaces and let Σ_1 and Σ_2 be two non-empty families of maximal singular subspaces of Γ such that the family $\Sigma = \Sigma_1 \cup \Sigma_2$ satisfies property (P₁), (P₂) and (P₃) of Theorem 1.2. From Proposition 2.1(iii), every line $L \in \mathcal{L}$ is contained in exactly one maximal singular subspace $S_L \in \Sigma$ and, from (iii) of Proposition 2.4, the subset $T_L = (L^{\perp} \setminus S_L) \cup L$ is a maximal singular subspace. Denoted by \mathcal{T} , the family of all maximal singular subspaces T_L , $L \in \mathcal{L}$, from Proposition 2.5(v) every maximal singular subspace of Γ belongs to exactly one of the families $\Sigma_1, \Sigma_2, \mathcal{T}$. Axiom (A₁) of Theorem 1.1 follows from (i) of Proposition 2.5. Item (i) of Axiom (A₂) easily follows from property (P₂), and items (ii), (iii) and (iv) follow from Proposition 2.1(ii), and from (iii) and (iv) of Proposition 2.5. Finally, Axiom (A₃) follows from (ii) of Proposition 2.1.

Since all the hypotheses of the Theorem 1.1 of Bichara and Mazzocca are satisfied, we can conclude that there exists an affine space A of dimension at least 3 such that Γ is isomorphic to the Grassmann space Gr(1, A) of the lines of A.

References

- A. Bichara, F. Mazzocca, On a characterization of Grassmann space representing the lines in an affine space, Simon Stevin 56 (3) (1982) 129–141.
 N. Melone, D. Olanda, A characteristic property of the Grassmann manifold representing the lines of a projective space, European J. Combin. 5 (1984) 323-330.
- [3] G. Tallini, On a characterization of the Grassmann manifold representing the lines of a projective space, in: Proc. of the Second Isle of Thorns Conf., 1980, in: London Math. Soc. Lecture Note Series 49, Cambridge University Press, Cambridge, 1981.