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a b s t r a c t

In 1982, Bichara and Mazzocca characterized the Grassmann space Gr(1, A) of the lines of
an affine space A of dimension at least 3 over a skew-field K by means of the intersection
properties of the three disjoint families Σ1, Σ2 and T of maximal singular subspaces of
Gr(1, A). In this paper, we deal with the characterization of Gr(1, A) using only the family
Σ = Σ1 ∪ Σ2 of maximal singular subspaces.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A partial linear space is an incidence geometry Γ = (P , L), consisting of a non-empty set P , whose elements are called
points, and of a family L of subsets of P , called lines, satisfying the following properties:

• every point lies on at least one line;
• every two distinct points lie on at most one line;
• every line contains at least two points.

An irreducible partial linear space is a partial linear space where every line contains at least three points.
Two distinct points p and q of a partial linear space Γ = (P , L) are collinear if there exists a line L ∈ L containing them.

The symbol p ∼ qmeans that p and q are collinear. For convenience, we also say that p is collinear to itself. More generally,
two subsets X and Y are collinear (X ∼ Y ) if each point of one of them is collinear with every point of the other.

If two distinct points p and q of a partial linear space Γ = (P , L) are collinear, we denote with p ∨ q the unique line
L ∈ L containing them and we say that it is the line joining p e q.

A partial linear space Γ is proper if it contains two non-collinear points. When this is not the case, Γ is a linear space.
For every point p ∈ P , p⊥ denotes the set of points of P collinear with p, and, for every subset X ⊆ P , X⊥ denotes the set

p∈X p⊥.
A subspace ofΓ is a subsetW ofP such that for every two distinct collinear points ofW , the line joining them is contained

inW . Clearly, any intersection of subspaces is a subspace and P is a subspace of Γ (the improper one); thus it is possible to
define the closure [X] of a subset X of P as the intersection of all subspaces of Γ containing X . A clique is a subset of pairwise
collinear points of P . If a subspaceW is a clique, then it is called singular subspace.

Bichara and Mazzocca characterized in [1] the Grassmann space of the lines of an affine space A of dimension at least 3.
This is the proper partial linear space Gr(1, A) whose points are the lines of A and whose lines are the proper and improper
pencils of lines of A, a proper pencil being the set of all lines passing through a fixed point and contained in a fixed plane,
and an improper pencil being the set of all pairwise parallel lines contained in a fixed plane. According to [1], a proper pencil

∗ Corresponding author.
E-mail addresses: roberta.digennaro@uniparthenope.it (R. Di Gennaro), eva.ferraradentice@unina2.it (E. Ferrara Dentice), pialore@unina.it

(P.M. Lo Re).

0012-365X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2011.07.021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82392105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disc.2011.07.021
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:roberta.digennaro@uniparthenope.it
mailto:eva.ferraradentice@unina2.it
mailto:pialore@unina.it
http://dx.doi.org/10.1016/j.disc.2011.07.021


700 R. Di Gennaro et al. / Discrete Mathematics 312 (2012) 699–704

of lines of A will be called a line of the first kind of Gr(1, A), and an improper pencil will be called a line of the second kind.
It follows that the lines of Gr(1, A) are partitioned into two disjoint subsets L1 and L2, consisting of lines of the first kind
and the second kind, respectively. Two points of Gr(1, A) are collinear if, and only if, they are either two lines intersecting
at a point, or two parallel lines of A, and the line through them is a line of the first or the second kind, respectively.

Furthermore, Gr(1, A) contains three pairwise disjoint families of maximal singular subspaces, say Σ1, Σ2 and T . Every
element of Σ1 is the family of all lines containing a fixed point (proper star), every element of Σ2 is the family of all pairwise
parallel lines (improper star), and, finally, every element of T is the family of all lines contained in a fixed plane of A (ruled
plane).

The following result characterizes Gr(1, A) for dimA ≥ 3.

Theorem 1.1 (Bichara and Mazzocca, [1], 1982). Let Γ = (P , L) be a proper partial linear space whose lines are not maximal
singular subspaces satisfying the following axioms.
(A1) Any three pairwise collinear points are contained in a singular subspace of Γ .
(A2) There exist three families Σ1, Σ2 and T of maximal singular subspaces of Γ , and every maximal singular subspace of Γ

belongs to exactly one of them. Furthermore, if Σ = Σ1 ∪ Σ2, then the following hold:
(i) For every S ∈ Σ , S ′

∈ Σ1 with S ≠ S ′, we have |S ∩ S ′
| = 1.

(ii) For every S, S ′
∈ Σ2 with S ≠ S ′, we have S ∩ S ′

= ∅.
(iii) For every S ∈ Σ and T ∈ T , S ∩ T is either empty or a line of Γ .
(iv) Every line of L is contained in exactly one subspace of Σ and exactly one subspace of T .

(A3) Every point p ∈ P is contained in a maximal singular subspace of Σ2.
Then, there exists an affine space A of dimension at least 3 such that Γ is isomorphic to the Grassmann space Gr(1, A) of the

lines of A.

Tallini’s paper [3] was the starting point of these types of characterizations of Grassmann spaces. Melone and Olanda,
in [2], characterize the well known Grassmann space of the lines of a projective space of dimension at least 3 by using just
properties of one family of maximal singular subspaces. More precisely, they prove that the axioms of Tallini [3] on the two
families of maximal singular subspaces follow from their axioms. In this paper, similarly to Melone and Olanda, we prove
that the axioms of Bichara andMazzocca [1] for Grassmann spaces of the lines of an affine space follow from suitable axioms
on the family Σ of maximal singular subspaces.

It is easy to see that if we denote by P(A) the projective extension of A and by H∞ the hyperplane at infinity of A
(removed from P(A) in order to obtain A), then Gr(1, A) is the incidence structure induced by the well known Grassmann
space Gr(1, P(A)) of the lines of P(A) on the set of all lines of A. For every pair (A, π) consisting of a point A contained in
a plane π of P(A), let F(A, π) be the line of Gr(1, P(A)) coinciding with the pencil of lines of P(A) passing through A and
contained in π . If A ∈ H∞ and π ⊈ H∞, then F(A, π) \ {π ∩ H∞} is a line of the second kind of Gr(1, A) and, conversely,
every line of the second kind is of type F(A, π) \ {π ∩H∞}, with A ∈ H∞ and π ⊈ H∞. For every pair (A, π) consisting of a
point A contained in a plane π of P(A), F∗(A, π) will denote either F(A, π) ∈ L1 or F(A, π) \ {π ∩ H∞} ∈ L2, according to
A ∉ H∞ and π ⊈ H∞ or A ∈ H∞ and π ⊈ H∞. Furthermore, if A is a point of P(A), then SA will denote either the proper
or the improper star of Gr(1, A) consisting of all lines passing through A, according to A ∉ H∞ or A ∈ H∞, respectively.
Finally, for every plane π of P(A) not contained inH∞, Tπ will denote the subset of Gr(1, A) consisting of all lines contained
in π .

It is easy to see that through every line L = F∗(A, π) of Gr(1, A) exactly twomaximal singular subspaces pass, coinciding
with SA and Tπ , and every point p of Gr(1, A) is contained in exactly one improper star, coinciding with Sp∩H∞

.
Moreover, let p be a point of Gr(1, A), SA ∈ Σ1 and p ∉ SA. Then every star SX passing through p intersects SA at the point

of Gr(1, A) coinciding with the line A ∨ X of A, and these points trace out the line L(A, A ∨ p) of Gr(1, A), which is a line of
the first kind.

Finally, if p ∈ Gr(1, A), SA ∈ Σ2 and p ∉ SA, then Sp∩H∞
is the unique star of Σ2 passing through p. The star Sp∩H∞

is
disjoint from SA, every star SX with X ∈ p and X ∉ H∞ intersects SA at the point of Gr(1, A) coinciding with the line of
A passing through X and having the direction of the point at infinity A, and these points trace out the line L(A, A ∨ p) of
Gr(1, A), which is a line of the second kind.

In what follows, we will prove that these properties characterize Gr(1, A). More precisely, we will prove the following
result.

Theorem 1.2. Let Γ = (P , L) be a proper irreducible partial linear space whose lines are not maximal singular subspaces and
let Σ1 and Σ2 be two non-empty families of maximal singular subspaces of Γ . Let Σ = Σ1 ∪Σ2, and suppose that the following
axioms hold.
(P1) Every line L ∈ L is contained in at most two maximal singular subspaces of Γ .
(P2) For i = 1, 2, for every S ∈ Σi and for every point p ∉ S there exist exactly i − 1 elements of Σ passing through p and

disjoint from S. Furthermore, every S ′
∈ Σ passing through p and not disjoint from S intersects S at a unique point, and

these points trace out a line, coinciding with p⊥
∩ S.

(P3) There exists a point p̄ ∈ P which is contained in at most one element of Σ2.
Then, there exists an affine space A of dimension at least 3 such that Γ is isomorphic to the Grassmann space Gr(1, A) of the

lines of A.
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2. The proof

Let Γ = (P , L) be a proper irreducible partial linear space whose lines are not maximal singular subspaces and let Σ1
and Σ2 be two non-empty families of maximal singular subspaces of Γ . If Σ = Σ1 ∪ Σ2, then every maximal singular
subspace of Σ will be called a star of Γ , and suppose that the stars satisfy axioms (P2) and (P3). The following proposition
summarizes some properties of the stars of Γ .

Proposition 2.1. The stars of Γ satisfy the following properties.

(i) Two different non-disjoint stars of Γ intersect at a point.
(ii) Every point p ∈ P is contained in exactly one star of Σ2.
(iii) Every line L ∈ L is contained in exactly one star of Γ .
(iv) Every point p ∈ P is contained in at least two stars.
(v) For every star S and for every point p ∉ S, p⊥

∩ S is a line.

Proof. (i) This easily follows from condition (P2).
(ii) Step 1. Σ2 is a covering of P . Let p be a point of P and S be a star of Σ2. If p ∈ S we are done, otherwise, from property

(P2), there exists a star S ′ passing through p and disjoint from S. If S ′
∈ Σ1, then a fixed point q ∈ S is contained into a star

disjoint from S ′, contradicting property (P2). It follows that S ′
∈ Σ2.

Step 2. Every two distinct stars of Σ2 have empty intersection. By contradiction, let S and S ′ be two distinct stars of Σ2 having
non-empty intersection. From (i) above, S ∩ S ′ is a point p. Recall that, from property (P3), p̄ is a fixed point of P which is
contained in at most one star of Σ2, hence p̄ ≠ p. If either p̄ ∈ S or p̄ ∈ S ′, from (P2) there exists a unique star S̄ of Σ passing
through p̄ and disjoint from either S ′ or S, respectively. If S̄ ∈ Σ1, either the star S ′ or the star S contains p and is disjoint
from S̄, contradicting property (P2). It follows that S̄ ∈ Σ2, contradicting the assumption that p̄ is contained in at most one
star of Σ2. Hence p̄ ∉ S ∪ S ′. From property (P2) again, there exist a star S ′′ and a star S ′′′ passing through p̄ and disjoint
from S and S ′, respectively. The arguments of S̄ hold for S ′′ and S ′′′ too, thus S ′′, S ′′′

∈ Σ2. If S ′′
≠ S ′′′, we contradict (P3),

thus S ′′
= S ′′′. It follows that there exist two stars passing through p and disjoint from S ′′, contradicting property (P2).

(iii) From (i), the line L is contained in at most one star. Let p be a point of L and, from (ii) above, let S be a star of Σ2
passing through p. If L ⊆ S we are done, otherwise, let q be a point of L \ {p}. Since p ∈ q⊥

∩ S, from property (P2) there
exists a star S ′ passing through q and intersecting S at the point p. Thus L = p ∨ q is contained in S ′.

(iv) Let p be a point of P and, from (ii), let S be a star of Σ2 passing through p. Since Σ1 ≠ ∅ there exists a star S ′
∈ Σ1

and S ′ intersects S at a point, from property (P2). If p ∈ S ′ we are done, otherwise, p is collinear with the point S ∩ S ′ of
S ′; hence, from property (P2), p⊥

∩ S ′ is a line and there exists a star S ′′ passing through p and a point of the line p⊥
∩ S ′

different from S ∩ S ′.
(v) It comes directly from property (P2). �

As a consequence of the previous proposition, we have the following fundamental result.

Proposition 2.2. For every point p ∈ P and for every line L ∈ L, if |p⊥
∩ L| ≥ 2, then L ⊆ p⊥ (i.e. Γ is a gamma-space).

Proof. Let p be a point and L be a line such that p⊥
∩ L contains at least two distinct points a and b. From Proposition 2.1(iii),

L is contained in a unique star S. If p ∈ S, then p ∼ L, otherwise, from (v) of Proposition 2.1, p⊥
∩ S is a line M , and M

intersects L at least at the two distinct points a and b, thusM = L and p ∼ L. �

For every line L ∈ L, from Proposition 2.1(iii), there exists a unique star of Σ , say SL, passing through L.
For every point p and for every line L such that p ∼ L and p ∉ SL, we can consider the subspace [p, L]. The following

proposition characterizes [p, L], but its principal significance is in the assertion that [p, L] is singular.

Proposition 2.3. Let L ∈ L, SL be the unique star passing through L and p ∉ SL be a point of P collinear with L. Then [p, L] is
one of the following subsets.

(i) If SL ∈ Σ1, then [p, L] =


q∈L(p ∨ q).

(ii) If SL ∈ Σ2, then there exists a unique star Ŝ passing through p and disjoint from SL, L⊥
∩ Ŝ is a line R and [p, L] =

q∈L(p ∨ q) ∪ R.

In both cases, [p, L] is a singular subspace of Γ .

Proof. (i) Let T be


q∈L(p ∨ q). Clearly, {p}, L ⊆ T , thus we have to prove the following items:

(i)1 T is a subspace of Γ .
(i)2 Every subspaceW of Γ containing p and L contains T , too.
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(i)1 Let x and y be two distinct collinear points of T . If either x, y ∈ L, or x = p, or y = p, then x∨ y ⊆ T , thus we can suppose
that x, y ≠ p and {x, y} ⊈ L. Then, there exist q1, q2 ∈ L such that x ∈ p ∨ q1 and y ∈ p ∨ q2. It is not an essential restriction
if we suppose that y ≠ q2. Since q2 ∼ q1, p, from Proposition 2.2, q2 ∼ x. Let z ∈ x ∨ y \ {x, y}. From Proposition 2.2,
p ∼ z and, from Proposition 2.1(iii), there exists a star S passing through the line p ∨ z. Since SL ∈ Σ1, from property (P2), S
intersects SL at a point q of p⊥

∩ SL = L. From Proposition 2.2, x is collinear with L, hence x is collinear with p, z, q ∈ S and,
from Proposition 2.1(v), z ∈ p ∨ q ⊆ T .
(i)2 Since {p}, L ⊆ W , then for every point q of Lwe have p ∼ q and the line p ∨ q is contained inW . It follows that T ⊆ W .

(ii) Since SL ∈ Σ2, from property (P2) there exists a unique star Ŝ passing through p and disjoint from SL. For every point
x ∈ L, x ∼ p; hence, from property (P2), x⊥

∩ Ŝ is a line Rx passing through p. Let y ∈ L \ {x} and z ∈ p ∨ y \ {p, y}. From
Proposition 2.2, x ∼ z; hence, from Proposition 2.1(iii), the line x ∨ z is contained into a star S passing through x. Since x is
contained into the star SL which is disjoint from Ŝ, from property (P2), the star S intersects Ŝ at a point w of the line Rx. It is
w ∈ x ∨ z, otherwise pwould be collinear with the three non-collinear points x, z, w in S, contradicting Proposition 2.1(v).
It follows that y is collinear with x, z ∈ S; hence, from Proposition 2.2, y ∼ w. Finally, y is collinear with p and w in Ŝ, thus,
Ry := y⊥

∩ Ŝ = Rx. Let R be the unique line of Ŝ collinear with all points of L. Then L⊥
∩ Ŝ = R, otherwise a point of Lwould

be collinear with more than a line in Ŝ. Let T̂ be


q∈L(p ∨ q) ∪ R. Clearly, {p}, L ⊆ T̂ , thus we have to prove the following
items:

(ii)1 T̂ is a subspace of Γ .
(ii)2 Every subspaceW of Γ containing p and L contains T̂ , too.

(ii)1 Let x and y be two distinct collinear points of T̂ .
First of all, let us suppose that x, y ∈


q∈L(p∨q). If either x, y ∈ L, or x = p, or y = p, then x∨y ⊆


q∈L(p∨q) ⊆ T̂ , thus

we can suppose that x, y ≠ p and {x, y} ⊈ L. Then, there exist q1, q2 ∈ L such that x ∈ p ∨ q1 and y ∈ p ∨ q2. Furthermore,
let us suppose that y ≠ q2. Since q2 ∼ q1, p, from Proposition 2.2, q2 ∼ x. Let z ∈ x ∨ y \ {x, y}. From Proposition 2.2,
p ∼ z and, from Proposition 2.1(iii), there exists a star S passing through the line p ∨ z. If S ≠ Ŝ, then, from property (P2),
S intersects SL at a point q of p⊥

∩ SL = L. From Proposition 2.2, x is collinear with L; hence x is collinear with p, z, q ∈ S
and, from Proposition 2.1(v), z ∈ p ∨ q ⊆


q∈L(p ∨ q) ⊆ T̂ . If S = Ŝ, since q2 ∼ x, y, from Proposition 2.2 q2 ∼ z; hence

z ∈ q⊥

2 ∩ Ŝ = R ⊆ T̂ .
If x, y ∈ R, then x ∨ y = R ⊆ T̂ .
Finally, we can suppose that x ∈ R \ {p} and y ∈


q∈L(p∨ q) \ {p}. Let z ∈ x∨ y \ {x, y}. From Proposition 2.2, p ∼ z and,

from Proposition 2.1(iii), there exists a star S, which is different from Ŝ, passing through the line p ∨ z. Since SL ∈ Σ2 and
p is contained into the star Ŝ which is disjoint from SL, from property (P2), S intersects SL at a point q of p⊥

∩ SL = L. Since
R = L⊥

∩ Ŝ, x is collinear with L; hence x is collinear with p, z, q ∈ S and, from Proposition 2.1(v), z ∈ p ∨ q ⊆ T̂ .
(ii)2 Since {p}, L ⊆ W , then for every point q of L we have p ∼ q and the line p ∨ q is contained in W . It follows that

q∈L(p ∨ q) ⊆ W . For every point x ∈ R \ {x}, let q be a fixed point of L. Since L ∼ R, x is collinear with q and, from
Proposition 2.2, p is collinear with the line x ∨ q. Let z be a point of x ∨ q \ {x, q}. From Proposition 2.1(iii), there exists
a star S passing through the line p ∨ z. Since SL ∈ Σ2 and p is contained into the star Ŝ which is disjoint from SL, from
property (P2), S intersects SL at a point q′ of p⊥

∩ SL = L. Since x is collinear with p, z, q′
∈ S, from Proposition 2.1(v),

z ∈ p ∨ q′
⊆


q∈L(p ∨ q) ⊆ W . Finally, since q and z are two collinear points of the subspace W , the line through them is

contained inW , hence x ∈ W .
Finally, we have to prove that both T and T̂ are cliques.
Let x and y be two distinct points of


q∈L(p ∨ q). If either x, y ∈ L, or x = p, or y = p, then x ∼ y, thus we can suppose

that x, y ≠ p and {x, y} ⊈ L. Then, there exist q1, q2 ∈ L such that x ∈ p ∨ q1 and y ∈ p ∨ q2. It is not an essential restriction
if we suppose that y ≠ q2. Since q2 ∼ q1, p, from Proposition 2.2, q2 ∼ x. It follows that x is collinear with p, q2 and, from
Proposition 2.2 again, x ∼ y. This proves that T is a clique.

Furthermore, in case (ii), if x, y ∈ R the assumption easily follows. Finally, let x ∈ R and y ∈


q∈L(p∨q)\ {p}. Then, there
exists a point q ∈ L such that y ∈ p ∨ q. Since x ∼ p, q, from Proposition 2.2 it is x ∼ y. �

For every line L ∈ L, let TL be the set (L⊥
\ SL) ∪ L and T be the family {TL : L ∈ L}. The following proposition holds.

Proposition 2.4. For every line L of L, the following holds.

(i) L⊥
\ SL is non-empty.

(ii) TL is a subspace of Γ .
(iii) TL is a maximal singular subspace of Γ if, and only if, property (P1) holds.

Proof. (i) Let p0 be a fixed point of the line L. From Proposition 2.1(iv), there exists a star S passing through p0 and different
from SL. From Proposition 2.1(v), a point q ∈ L \ {p0} is collinear with a lineM of S; hence, from Proposition 2.2, every point
ofM \ {p0} is collinear with L, thus M \ {p0} ⊆ L⊥

\ SL.



R. Di Gennaro et al. / Discrete Mathematics 312 (2012) 699–704 703

(ii) Let x and y be two distinct and collinear points of TL. If x, y ∈ L, then x ∨ y = L ⊆ TL, thus we can suppose that
{x, y} ⊈ L. From Proposition 2.2, every point of L is collinear with x ∨ y, hence every point z ∈ x ∨ y is contained in L⊥.
Moreover, if x∨ y intersects SL at a point w, then w ∈ L, otherwise a point of x∨ y different from w would be collinear with
L and w ∉ L in SL, contradicting (v) of Proposition 2.1. It follows that x ∨ y ⊆ TL.

(iii) Suppose that TL is a maximal singular subspace of Γ . Then L is contained in SL and TL. If W is a maximal singular
subspace of Γ passing through L and different from SL, from Proposition 2.1(v) W ∩ SL = L; hence every point x ∈ W \ L is
a point of L⊥

\ L. It follows that W \ L ⊆ L⊥
\ L and, from maximality of W , W = TL. Thus, the line L is contained in SL and

TL, and property (P1) holds.
Conversely, suppose that (P1) holds. From (ii), TL is a subspace, thus we have to prove the following steps.

Step 1. TL is a clique. Let x and y be two distinct points of TL. If either x or y lies on L, then x ∼ y, thus we can suppose that
x, y ∈ TL \ L = L⊥

\ SL, which is non-empty, from (i). From Proposition 2.3, [x, L] and [y, L] are two singular subspaces of Γ .
If x ≁ y, then there exist two different maximal singular subspaces X and Y of Γ containing [x, L] and [y, L], respectively.
Furthermore, neither X nor Y coincides with SL, otherwise, either x or y is contained in SL, a contradiction, since x, y ∈ L⊥

\SL.
It follows that L is contained into three different maximal singular subspaces of Γ , contradicting property (P1).
Step 2. TL is a maximal singular subspace. Let X be a singular subspace containing TL and let us consider a point x ∈ X \L. Then,
from {x}, L ⊆ X we have x ∼ L. Furthermore, x ∉ SL, otherwise a fixed point y ∈ TL \ SL (whose existence is guaranteed by
(i)) would be collinear with L and x ∉ L in SL, contradicting (v) of Proposition 2.1. It follows that x ∈ L⊥

\ SL ⊆ TL, thus X ⊆ TL
and X = TL. �

From the previous proposition, the family T = {TL : L ∈ L} consists of maximal singular subspaces of Γ . In what
follows, we will prove that the three families Σ1, Σ2 and T satisfy the hypotheses of Theorem 1.1. We explicitly observe
that property (P1) is a necessary and sufficient condition in order that every TL is a maximal singular subspace of Γ .

Proposition 2.5. The partial linear space Γ = (P , L) satisfies the following properties.

(i) Any three pairwise collinear points of P are contained in a maximal singular subspace of Σ ∪ T .
(ii) No subspace of T is contained in a star of Σ .
(iii) If S ∈ Σ and T ∈ T , then S ∩ T either is empty or it is a line.
(iv) Every line of L is contained in exactly one subspace of Σ and exactly one subspace of T .
(v) Every maximal singular subspace belongs to Σ ∪ T .

Proof. (i) Let a, b and c be three pairwise collinear points of P , and let L be the line of L passing through a and b. From
Proposition 2.2, c ∈ L⊥; hence either c ∈ SL, or c ∈ L⊥

\ SL ⊆ TL.
(ii) If there exists a subspace TL ∈ T which is contained into a star S ∈ Σ , then, from Proposition 2.1(iii), S coincides with

the unique star SL containing L, a contradiction, since L⊥
\ SL ≠ ∅ from (i) of Proposition 2.4.

(iii) Clearly, for every S ∈ Σ and T ∈ T , S ∩ T is at most a line, otherwise we can consider a point x ∈ T \ S (from (ii))
and x would be collinear with more than a line into the star S, contradicting Proposition 2.1(v). Since T ∈ T , there exists a
line L ∈ L such that T = TL. From Proposition 2.1(iii), let SL be the unique star passing through L. If S = SL, then SL ∩ TL = L,
and we are done. Thus, we can suppose that S ≠ SL. From Proposition 2.1(i), S ∩ SL either is empty or is a point y. Moreover,
let S ∩ T ≠ ∅, and let p be a point of S ∩ T .

Let p ∈ L. For every w ∈ L \ {p}, from Proposition 2.1(v), w⊥
∩ S is a lineM passing through p. It follows that every point

z ∈ M \ {p} is collinear with both p and w in L; henceM \ {p} ⊆ L⊥
\ SL and M ⊆ TL, thus S ∩ TL = M .

Now, suppose that p ∉ L. Moreover, let us suppose that S ∩ SL = ∅. From property (P2), SL ∈ Σ2; hence, from
Proposition 2.3(ii), L⊥

∩ S is a line R passing through p. It follows that R ⊆ L⊥
\ SL ⊆ TL, thus S ∩ TL = R.

Finally, let us suppose that p ∉ L and S ∩ SL = y. Clearly, p ≠ y, otherwise TL ∩ SL contains L ∪ {p}, contradicting the
fact that a star and a subspace of T intersect in at most a line. If y ∉ L, pwould be collinear with y and L in SL, contradicting
Proposition 2.1(v). It follows that y ∈ L; hence S ∩ TL = p ∨ y.

(iv) FromProposition 2.1(iii), every line L is contained in exactly one star SL ofΣ .Moreover, themaximal singular subspace
TL = (L⊥

\ SL) ∪ L of T contains L. If T is a maximal singular subspace of T passing through L and different from TL, then L is
contained in at least three maximal singular subspaces of Γ , contradicting property (P1).

(v) LetW be amaximal singular subspace ofΓ , let us suppose thatW ∉ Σ , and let L be a line ofW . From (iv) and property
(P1), it isW ∈ T . �

Let Γ = (P , L) be a proper partial linear space whose lines are not maximal singular subspaces and let Σ1 and Σ2 be
two non-empty families of maximal singular subspaces of Γ such that the family Σ = Σ1 ∪Σ2 satisfies property (P1), (P2)
and (P3) of Theorem 1.2. From Proposition 2.1(iii), every line L ∈ L is contained in exactly one maximal singular subspace
SL ∈ Σ and, from (iii) of Proposition 2.4, the subset TL = (L⊥

\ SL) ∪ L is a maximal singular subspace. Denoted by T , the
family of all maximal singular subspaces TL, L ∈ L, from Proposition 2.5(v) every maximal singular subspace of Γ belongs
to exactly one of the families Σ1, Σ2, T . Axiom (A1) of Theorem 1.1 follows from (i) of Proposition 2.5. Item (i) of Axiom
(A2) easily follows from property (P2), and items (ii), (iii) and (iv) follow from Proposition 2.1(ii), and from (iii) and (iv) of
Proposition 2.5. Finally, Axiom (A3) follows from (ii) of Proposition 2.1.

Since all the hypotheses of the Theorem 1.1 of Bichara and Mazzocca are satisfied, we can conclude that there exists an
affine space A of dimension at least 3 such that Γ is isomorphic to the Grassmann space Gr(1, A) of the lines of A.
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