On the Grassmann space representing the lines of an affine space

${ }^{\text {a }}$ Università degli studi di Napoli "Parthenope", Dipartimento per le Tecnologie - Centro Direzionale Isola C4, I-80143, Napoli, Italy
${ }^{\mathrm{b}}$ Seconda Università degli Studi di Napoli - S.U.N., Dipartimento di Matematica, via Vivaldi, 43, I-81100, Caserta, Italy
${ }^{\text {c }}$ Università degli Studi di Napoli "Federico II", Dipartimento di Matematica "R. Caccioppoli", via Cinthia, I-80126, Napoli, Italy

ARTICLE INFO

Article history:

Available online 31 July 2011

Keywords:

Affine Grassmann space

Abstract

In 1982, Bichara and Mazzocca characterized the Grassmann space $\operatorname{Gr}(1, \mathbb{A})$ of the lines of an affine space \mathbb{A} of dimension at least 3 over a skew-field K by means of the intersection properties of the three disjoint families Σ_{1}, Σ_{2} and \mathcal{T} of maximal singular subspaces of $\operatorname{Gr}(1, \mathbb{A})$. In this paper, we deal with the characterization of $\operatorname{Gr}(1, \mathbb{A})$ using only the family $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ of maximal singular subspaces.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A partial linear space is an incidence geometry $\Gamma=(\mathcal{P}, \mathcal{L})$, consisting of a non-empty set \mathcal{P}, whose elements are called points, and of a family \mathscr{L} of subsets of \mathcal{P}, called lines, satisfying the following properties:

- every point lies on at least one line;
- every two distinct points lie on at most one line;
- every line contains at least two points.

An irreducible partial linear space is a partial linear space where every line contains at least three points.
Two distinct points p and q of a partial linear space $\Gamma=(\mathcal{P}, \mathcal{L})$ are collinear if there exists a line $L \in \mathcal{L}$ containing them. The symbol $p \sim q$ means that p and q are collinear. For convenience, we also say that p is collinear to itself. More generally, two subsets X and Y are collinear $(X \sim Y)$ if each point of one of them is collinear with every point of the other.

If two distinct points p and q of a partial linear space $\Gamma=(\mathcal{P}, \mathcal{L})$ are collinear, we denote with $p \vee q$ the unique line $L \in \mathscr{L}$ containing them and we say that it is the line joining p e q.

A partial linear space Γ is proper if it contains two non-collinear points. When this is not the case, Γ is a linear space. For every point $p \in \mathscr{P}, p^{\perp}$ denotes the set of points of \mathcal{P} collinear with p, and, for every subset $X \subseteq \mathcal{P}, X^{\perp}$ denotes the set $\bigcap_{p \in X} p^{\perp}$.

A subspace of Γ is a subset W of \mathcal{P} such that for every two distinct collinear points of W, the line joining them is contained in W. Clearly, any intersection of subspaces is a subspace and \mathcal{P} is a subspace of Γ (the improper one); thus it is possible to define the closure $[X]$ of a subset X of \mathcal{P} as the intersection of all subspaces of Γ containing X. A clique is a subset of pairwise collinear points of \mathscr{P}. If a subspace W is a clique, then it is called singular subspace.

Bichara and Mazzocca characterized in [1] the Grassmann space of the lines of an affine space \mathbb{A} of dimension at least 3. This is the proper partial linear space $\operatorname{Gr}(1, \mathbb{A})$ whose points are the lines of \mathbb{A} and whose lines are the proper and improper pencils of lines of \mathbb{A}, a proper pencil being the set of all lines passing through a fixed point and contained in a fixed plane, and an improper pencil being the set of all pairwise parallel lines contained in a fixed plane. According to [1], a proper pencil

[^0]of lines of \mathbb{A} will be called a line of the first kind of $\operatorname{Gr}(1, \mathbb{A})$, and an improper pencil will be called a line of the second kind. It follows that the lines of $\operatorname{Gr}(1, \mathbb{A})$ are partitioned into two disjoint subsets \mathcal{L}_{1} and \mathcal{L}_{2}, consisting of lines of the first kind and the second kind, respectively. Two points of $\operatorname{Gr}(1, \mathbb{A})$ are collinear if, and only if, they are either two lines intersecting at a point, or two parallel lines of \mathbb{A}, and the line through them is a line of the first or the second kind, respectively.

Furthermore, $\operatorname{Gr}(1, \mathbb{A})$ contains three pairwise disjoint families of maximal singular subspaces, say Σ_{1}, Σ_{2} and \mathcal{T}. Every element of Σ_{1} is the family of all lines containing a fixed point (proper star), every element of Σ_{2} is the family of all pairwise parallel lines (improper star), and, finally, every element of \mathcal{T} is the family of all lines contained in a fixed plane of \mathbb{A} (ruled plane).

The following result characterizes $\operatorname{Gr}(1, \mathbb{A})$ for $\operatorname{dim} \mathbb{A} \geq 3$.
Theorem 1.1 (Bichara and Mazzocca, [1], 1982). Let $\Gamma=(\mathcal{P}, \mathcal{L})$ be a proper partial linear space whose lines are not maximal singular subspaces satisfying the following axioms.
$\left(\mathrm{A}_{1}\right)$ Any three pairwise collinear points are contained in a singular subspace of Γ.
$\left(\mathrm{A}_{2}\right)$ There exist three families Σ_{1}, Σ_{2} and \mathcal{T} of maximal singular subspaces of Γ, and every maximal singular subspace of Γ belongs to exactly one of them. Furthermore, if $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, then the following hold:
(i) For every $S \in \Sigma, S^{\prime} \in \Sigma_{1}$ with $S \neq S^{\prime}$, we have $\left|S \cap S^{\prime}\right|=1$.
(ii) For every $S, S^{\prime} \in \Sigma_{2}$ with $S \neq S^{\prime}$, we have $S \cap S^{\prime}=\emptyset$.
(iii) For every $S \in \Sigma$ and $T \in \mathcal{T}, S \cap T$ is either empty or a line of Γ.
(iv) Every line of \mathcal{L} is contained in exactly one subspace of Σ and exactly one subspace of \mathcal{T}.
$\left(\mathrm{A}_{3}\right)$ Every point $p \in \mathscr{P}$ is contained in a maximal singular subspace of Σ_{2}.
Then, there exists an affine space \mathbb{A} of dimension at least 3 such that Γ is isomorphic to the Grassmann space $G r(1, \mathbb{A})$ of the lines of \mathbb{A}.

Tallini's paper [3] was the starting point of these types of characterizations of Grassmann spaces. Melone and Olanda, in [2], characterize the well known Grassmann space of the lines of a projective space of dimension at least 3 by using just properties of one family of maximal singular subspaces. More precisely, they prove that the axioms of Tallini [3] on the two families of maximal singular subspaces follow from their axioms. In this paper, similarly to Melone and Olanda, we prove that the axioms of Bichara and Mazzocca [1] for Grassmann spaces of the lines of an affine space follow from suitable axioms on the family Σ of maximal singular subspaces.

It is easy to see that if we denote by $\mathbb{P}(\mathbb{A})$ the projective extension of \mathbb{A} and by \mathscr{H}_{∞} the hyperplane at infinity of \mathbb{A} (removed from $\mathbb{P}(\mathbb{A})$ in order to obtain \mathbb{A}), then $\operatorname{Gr}(1, \mathbb{A})$ is the incidence structure induced by the well known Grassmann space $\operatorname{Gr}(1, \mathbb{P}(\mathbb{A}))$ of the lines of $\mathbb{P}(\mathbb{A})$ on the set of all lines of \mathbb{A}. For every pair (A, π) consisting of a point A contained in a plane π of $\mathbb{P}(\mathbb{A})$, let $F(A, \pi)$ be the line of $\operatorname{Gr}(1, \mathbb{P}(\mathbb{A}))$ coinciding with the pencil of lines of $\mathbb{P}(\mathbb{A})$ passing through A and contained in π. If $A \in \mathscr{H}_{\infty}$ and $\pi \nsubseteq \mathscr{H}_{\infty}$, then $F(A, \pi) \backslash\left\{\pi \cap \mathscr{H}_{\infty}\right\}$ is a line of the second kind of $G r(1, \mathbb{A})$ and, conversely, every line of the second kind is of type $F(A, \pi) \backslash\left\{\pi \cap \mathscr{H}_{\infty}\right\}$, with $A \in \mathcal{H}_{\infty}$ and $\pi \nsubseteq \mathscr{H}_{\infty}$. For every pair (A, π) consisting of a point A contained in a plane π of $\mathbb{P}(\mathbb{A}), F^{*}(A, \pi)$ will denote either $F(A, \pi) \in \mathcal{L}_{1}$ or $F(A, \pi) \backslash\left\{\pi \cap \mathscr{H}_{\infty}\right\} \in \mathcal{L}_{2}$, according to $A \notin \mathscr{H}_{\infty}$ and $\pi \nsubseteq \mathscr{H}_{\infty}$ or $A \in \mathscr{H}_{\infty}$ and $\pi \nsubseteq \mathscr{H}_{\infty}$. Furthermore, if A is a point of $\mathbb{P}(\mathbb{A})$, then S_{A} will denote either the proper or the improper star of $\operatorname{Gr}(1, \mathbb{A})$ consisting of all lines passing through A, according to $A \notin \mathscr{H}_{\infty}$ or $A \in \mathscr{H}_{\infty}$, respectively. Finally, for every plane π of $\mathbb{P}(\mathbb{A})$ not contained in $\mathscr{H}_{\infty}, T_{\pi}$ will denote the subset of $G r(1, \mathbb{A})$ consisting of all lines contained in π.

It is easy to see that through every line $L=F^{*}(A, \pi)$ of $\operatorname{Gr}(1, \mathbb{A})$ exactly two maximal singular subspaces pass, coinciding with S_{A} and T_{π}, and every point p of $G r(1, \mathbb{A})$ is contained in exactly one improper star, coinciding with $S_{p \cap \mathcal{H}_{\infty}}$.

Moreover, let p be a point of $\operatorname{Gr}(1, \mathbb{A}), S_{A} \in \Sigma_{1}$ and $p \notin S_{A}$. Then every star S_{X} passing through p intersects S_{A} at the point of $\operatorname{Gr}(1, \mathbb{A})$ coinciding with the line $A \vee X$ of \mathbb{A}, and these points trace out the line $L(A, A \vee p)$ of $G r(1, \mathbb{A})$, which is a line of the first kind.

Finally, if $p \in \operatorname{Gr}(1, \mathbb{A}), S_{A} \in \Sigma_{2}$ and $p \notin S_{A}$, then $S_{p \cap \mathcal{H}_{\infty}}$ is the unique star of Σ_{2} passing through p. The star $S_{p \cap \mathcal{H}_{\infty}}$ is disjoint from S_{A}, every star S_{X} with $X \in p$ and $X \notin \mathscr{H}_{\infty}$ intersects S_{A} at the point of $\operatorname{Gr}(1, \mathbb{A})$ coinciding with the line of \mathbb{A} passing through X and having the direction of the point at infinity A, and these points trace out the line $L(A, A \vee p)$ of $\operatorname{Gr}(1, \mathbb{A})$, which is a line of the second kind.

In what follows, we will prove that these properties characterize $\operatorname{Gr}(1, \mathbb{A})$. More precisely, we will prove the following result.

Theorem 1.2. Let $\Gamma=(\mathcal{P}, \mathcal{L})$ be a proper irreducible partial linear space whose lines are not maximal singular subspaces and let Σ_{1} and Σ_{2} be two non-empty families of maximal singular subspaces of Γ. Let $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, and suppose that the following axioms hold.
$\left(\mathrm{P}_{1}\right)$ Every line $L \in \mathcal{L}$ is contained in at most two maximal singular subspaces of Γ.
$\left(\mathrm{P}_{2}\right)$ For $i=1,2$, for every $S \in \Sigma_{i}$ and for every point $p \notin S$ there exist exactly $i-1$ elements of Σ passing through p and disjoint from S. Furthermore, every $S^{\prime} \in \Sigma$ passing through p and not disjoint from S intersects S at a unique point, and these points trace out a line, coinciding with $p^{\perp} \cap S$.
$\left(\mathrm{P}_{3}\right)$ There exists a point $\bar{p} \in \mathcal{P}$ which is contained in at most one element of Σ_{2}.
Then, there exists an affine space \mathbb{A} of dimension at least 3 such that Γ is isomorphic to the Grassmann space $G r(1, \mathbb{A})$ of the lines of \mathbb{A}.

2. The proof

Let $\Gamma=(\mathcal{P}, \mathscr{L})$ be a proper irreducible partial linear space whose lines are not maximal singular subspaces and let Σ_{1} and Σ_{2} be two non-empty families of maximal singular subspaces of Γ. If $\Sigma=\Sigma_{1} \cup \Sigma_{2}$, then every maximal singular subspace of Σ will be called a star of Γ, and suppose that the stars satisfy axioms $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$. The following proposition summarizes some properties of the stars of Γ.

Proposition 2.1. The stars of Γ satisfy the following properties.
(i) Two different non-disjoint stars of Γ intersect at a point.
(ii) Every point $p \in \mathscr{P}$ is contained in exactly one star of Σ_{2}.
(iii) Every line $L \in \mathcal{L}$ is contained in exactly one star of Γ.
(iv) Every point $p \in \mathcal{P}$ is contained in at least two stars.
(v) For every star S and for every point $p \notin S, p^{\perp} \cap S$ is a line.

Proof. (i) This easily follows from condition $\left(\mathrm{P}_{2}\right)$.
(ii) Step 1. Σ_{2} is a covering of \mathcal{P}. Let p be a point of \mathcal{P} and S be a star of Σ_{2}. If $p \in S$ we are done, otherwise, from property $\left(\mathrm{P}_{2}\right)$, there exists a star S^{\prime} passing through p and disjoint from S. If $S^{\prime} \in \Sigma_{1}$, then a fixed point $q \in S$ is contained into a star disjoint from S^{\prime}, contradicting property $\left(\mathrm{P}_{2}\right)$. It follows that $S^{\prime} \in \Sigma_{2}$.

Step 2. Every two distinct stars of Σ_{2} have empty intersection. By contradiction, let S and S^{\prime} be two distinct stars of Σ_{2} having non-empty intersection. From (i) above, $S \cap S^{\prime}$ is a point p. Recall that, from property (P_{3}), \bar{p} is a fixed point of \mathscr{P} which is contained in at most one star of Σ_{2}, hence $\bar{p} \neq p$. If either $\bar{p} \in S$ or $\bar{p} \in S^{\prime}$, from (P_{2}) there exists a unique star \bar{S} of Σ passing through \bar{p} and disjoint from either S^{\prime} or S, respectively. If $\bar{S} \in \Sigma_{1}$, either the star S^{\prime} or the star S contains p and is disjoint from \bar{S}, contradicting property $\left(\mathrm{P}_{2}\right)$. It follows that $\bar{S} \in \Sigma_{2}$, contradicting the assumption that \bar{p} is contained in at most one star of Σ_{2}. Hence $\bar{p} \notin S \cup S^{\prime}$. From property $\left(\underline{\mathrm{P}}_{2}\right)$ again, there exist a star $S^{\prime \prime}$ and a star $S^{\prime \prime \prime}$ passing through \bar{p} and disjoint from S and S^{\prime}, respectively. The arguments of \bar{S} hold for $S^{\prime \prime}$ and $S^{\prime \prime \prime}$ too, thus $S^{\prime \prime}, S^{\prime \prime \prime} \in \Sigma_{2}$. If $S^{\prime \prime} \neq S^{\prime \prime \prime}$, we contradict (P_{3}), thus $S^{\prime \prime}=S^{\prime \prime \prime}$. It follows that there exist two stars passing through p and disjoint from $S^{\prime \prime}$, contradicting property $\left(\mathrm{P}_{2}\right)$.
(iii) From (i), the line L is contained in at most one star. Let p be a point of L and, from (ii) above, let S be a star of Σ_{2} passing through p. If $L \subseteq S$ we are done, otherwise, let q be a point of $L \backslash\{p\}$. Since $p \in q^{\perp} \cap S$, from property (P_{2}) there exists a star S^{\prime} passing through q and intersecting S at the point p. Thus $L=p \vee q$ is contained in S^{\prime}.
(iv) Let p be a point of \mathcal{P} and, from (ii), let S be a star of Σ_{2} passing through p. Since $\Sigma_{1} \neq \emptyset$ there exists a star $S^{\prime} \in \Sigma_{1}$ and S^{\prime} intersects S at a point, from property $\left(\mathrm{P}_{2}\right)$. If $p \in S^{\prime}$ we are done, otherwise, p is collinear with the point $S \cap S^{\prime}$ of S^{\prime}; hence, from property $\left(\mathrm{P}_{2}\right), p^{\perp} \cap S^{\prime}$ is a line and there exists a star $S^{\prime \prime}$ passing through p and a point of the line $p^{\perp} \cap S^{\prime}$ different from $S \cap S^{\prime}$.
(v) It comes directly from property $\left(\mathrm{P}_{2}\right)$.

As a consequence of the previous proposition, we have the following fundamental result.
Proposition 2.2. For every point $p \in \mathcal{P}$ and for every line $L \in \mathcal{L}$, if $\left|p^{\perp} \cap L\right| \geq 2$, then $L \subseteq p^{\perp}$ (i.e. Γ is a gamma-space).
Proof. Let p be a point and L be a line such that $p^{\perp} \cap L$ contains at least two distinct points a and b. From Proposition 2.1(iii), L is contained in a unique star S. If $p \in S$, then $p \sim L$, otherwise, from (v) of Proposition 2.1, $p^{\perp} \cap S$ is a line M, and M intersects L at least at the two distinct points a and b, thus $M=L$ and $p \sim L$.

For every line $L \in \mathcal{L}$, from Proposition 2.1(iii), there exists a unique star of Σ, say S_{L}, passing through L.
For every point p and for every line L such that $p \sim L$ and $p \notin S_{L}$, we can consider the subspace $[p, L]$. The following proposition characterizes $[p, L]$, but its principal significance is in the assertion that $[p, L]$ is singular.

Proposition 2.3. Let $L \in \mathcal{L}, S_{L}$ be the unique star passing through L and $p \notin S_{L}$ be a point of \mathcal{P} collinear with L. Then $[p, L]$ is one of the following subsets.
(i) If $S_{L} \in \Sigma_{1}$, then $[p, L]=\bigcup_{q \in L}(p \vee q)$.
(ii) If $S_{L} \in \Sigma_{2}$, then there exists a unique star \hat{S} passing through p and disjoint from $S_{L}, L^{\perp} \cap \hat{S}$ is a line R and $[p, L]=$ $\bigcup_{q \in L}(p \vee q) \cup R$.

In both cases, $[p, L]$ is a singular subspace of Γ.
Proof. (i) Let T be $\bigcup_{q \in L}(p \vee q)$. Clearly, $\{p\}, L \subseteq T$, thus we have to prove the following items:
(i) ${ }_{1} T$ is a subspace of Γ.
(i) $)_{2}$ Every subspace W of Γ containing p and L contains T, too.
(i) ${ }_{1}$ Let x and y be two distinct collinear points of T. If either $x, y \in L$, or $x=p$, or $y=p$, then $x \vee y \subseteq T$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \nsubseteq L$. Then, there exist $q_{1}, q_{2} \in L$ such that $x \in p \vee q_{1}$ and $y \in p \vee q_{2}$. It is not an essential restriction if we suppose that $y \neq q_{2}$. Since $q_{2} \sim q_{1}, p$, from Proposition $2.2, q_{2} \sim x$. Let $z \in x \vee y \backslash\{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star S passing through the line $p \vee z$. Since $S_{L} \in \Sigma_{1}$, from property (P_{2}), S intersects S_{L} at a point q of $p^{\perp} \cap S_{L}=L$. From Proposition $2.2, x$ is collinear with L, hence x is collinear with $p, z, q \in S$ and, from Proposition 2.1(v), $z \in p \vee q \subseteq T$.
(i) $)_{2}$ Since $\{p\}, L \subseteq W$, then for every point q of L we have $p \sim q$ and the line $p \vee q$ is contained in W. It follows that $T \subseteq W$.
(ii) Since $S_{L} \in \Sigma_{2}$, from property $\left(\mathrm{P}_{2}\right)$ there exists a unique star \hat{S} passing through p and disjoint from S_{L}. For every point $x \in L, x \sim p$; hence, from property $\left(\mathrm{P}_{2}\right), x^{\perp} \cap \hat{S}$ is a line R_{x} passing through p. Let $y \in L \backslash\{x\}$ and $z \in p \vee y \backslash\{p, y\}$. From Proposition 2.2, $x \sim z$; hence, from Proposition 2.1(iii), the line $x \vee z$ is contained into a star S passing through x. Since x is contained into the star S_{L} which is disjoint from \hat{S}, from property $\left(\mathrm{P}_{2}\right)$, the star S intersects \hat{S} at a point w of the line R_{x}. It is $w \in x \vee z$, otherwise p would be collinear with the three non-collinear points x, z, w in S, contradicting Proposition $2.1(\mathrm{v})$. It follows that y is collinear with $x, z \in S$; hence, from Proposition $2.2, y \sim w$. Finally, y is collinear with p and w in \hat{S}, thus, $R_{y}:=y^{\perp} \cap \hat{S}=R_{x}$. Let R be the unique line of \hat{S} collinear with all points of L. Then $L^{\perp} \cap \hat{S}=R$, otherwise a point of L would be collinear with more than a line in \hat{S}. Let \hat{T} be $\bigcup_{q \in L}(p \vee q) \cup R$. Clearly, $\{p\}, L \subseteq \hat{T}$, thus we have to prove the following items:
(ii) ${ }_{1} \hat{T}$ is a subspace of Γ.
(ii) $)_{2}$ Every subspace W of Γ containing p and L contains \hat{T}, too.
(ii) ${ }_{1}$ Let x and y be two distinct collinear points of \hat{T}.

First of all, let us suppose that $x, y \in \bigcup_{q \in L}(p \vee q)$. If either $x, y \in L$, or $x=p$, or $y=p$, then $x \vee y \subseteq \bigcup_{q \in L}(p \vee q) \subseteq \hat{T}$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \nsubseteq L$. Then, there exist $q_{1}, q_{2} \in L$ such that $x \in p \vee q_{1}$ and $y \in p \vee q_{2}$. Furthermore, let us suppose that $y \neq q_{2}$. Since $q_{2} \sim q_{1}, p$, from Proposition 2.2, $q_{2} \sim x$. Let $z \in x \vee y \backslash\{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star S passing through the line $p \vee z$. If $S \neq \hat{S}$, then, from property (P_{2}), S intersects S_{L} at a point q of $p^{\perp} \cap S_{L}=L$. From Proposition 2.2, x is collinear with L; hence x is collinear with $p, z, q \in S$ and, from Proposition 2.1(v), $z \in p \vee q \subseteq \bigcup_{q \in L}(p \vee q) \subseteq \hat{T}$. If $S=\hat{S}$, since $q_{2} \sim x, y$, from Proposition $2.2 q_{2} \sim z$; hence $z \in q_{2}^{\perp} \cap \hat{S}=R \subseteq \hat{T}$.

If $x, y \in R$, then $x \vee y=R \subseteq \hat{T}$.
Finally, we can suppose that $x \in R \backslash\{p\}$ and $y \in \bigcup_{q \in L}(p \vee q) \backslash\{p\}$. Let $z \in x \vee y \backslash\{x, y\}$. From Proposition 2.2, $p \sim z$ and, from Proposition 2.1(iii), there exists a star S, which is different from \hat{S}, passing through the line $p \vee z$. Since $S_{L} \in \Sigma_{2}$ and p is contained into the star \hat{S} which is disjoint from S_{L}, from property $\left(\mathrm{P}_{2}\right), S$ intersects S_{L} at a point q of $p^{\perp} \cap S_{L}=L$. Since $R=L^{\perp} \cap \hat{S}, x$ is collinear with L; hence x is collinear with $p, z, q \in S$ and, from Proposition $2.1(\mathrm{v}), z \in p \vee q \subseteq \hat{T}$.
(ii) $_{2}$ Since $\{p\}, L \subseteq W$, then for every point q of L we have $p \sim q$ and the line $p \vee q$ is contained in W. It follows that $\bigcup_{q \in L}(p \vee q) \subseteq W$. For every point $x \in R \backslash\{x\}$, let q be a fixed point of L. Since $L \sim R, x$ is collinear with q and, from Proposition 2.2, p is collinear with the line $x \vee q$. Let z be a point of $x \vee q \backslash\{x, q\}$. From Proposition 2.1(iii), there exists a star S passing through the line $p \vee z$. Since $S_{L} \in \Sigma_{2}$ and p is contained into the star \hat{S} which is disjoint from S_{L}, from property $\left(\mathrm{P}_{2}\right), S$ intersects S_{L} at a point q^{\prime} of $p^{\perp} \cap S_{L}=L$. Since x is collinear with $p, z, q^{\prime} \in S$, from Proposition $2.1(\mathrm{v})$, $z \in p \vee q^{\prime} \subseteq \bigcup_{q \in L}(p \vee q) \subseteq W$. Finally, since q and z are two collinear points of the subspace W, the line through them is contained in W, hence $x \in W$.

Finally, we have to prove that both T and \hat{T} are cliques.
Let x and y be two distinct points of $\bigcup_{q \in L}(p \vee q)$. If either $x, y \in L$, or $x=p$, or $y=p$, then $x \sim y$, thus we can suppose that $x, y \neq p$ and $\{x, y\} \nsubseteq L$. Then, there exist $q_{1}, q_{2} \in L$ such that $x \in p \vee q_{1}$ and $y \in p \vee q_{2}$. It is not an essential restriction if we suppose that $y \neq q_{2}$. Since $q_{2} \sim q_{1}, p$, from Proposition 2.2, $q_{2} \sim x$. It follows that x is collinear with p, q_{2} and, from Proposition 2.2 again, $x \sim y$. This proves that T is a clique.

Furthermore, in case (ii), if $x, y \in R$ the assumption easily follows. Finally, let $x \in R$ and $y \in \bigcup_{q \in L}(p \vee q) \backslash\{p\}$. Then, there exists a point $q \in L$ such that $y \in p \vee q$. Since $x \sim p, q$, from Proposition 2.2 it is $x \sim y$.

For every line $L \in \mathcal{L}$, let T_{L} be the set $\left(L^{\perp} \backslash S_{L}\right) \cup L$ and \mathcal{T} be the family $\left\{T_{L}: L \in \mathcal{L}\right\}$. The following proposition holds.
Proposition 2.4. For every line L of \mathcal{L}, the following holds.
(i) $L^{\perp} \backslash S_{L}$ is non-empty.
(ii) T_{L} is a subspace of Γ.
(iii) T_{L} is a maximal singular subspace of Γ if, and only if, property $\left(\mathrm{P}_{1}\right)$ holds.

Proof. (i) Let p_{0} be a fixed point of the line L. From Proposition 2.1(iv), there exists a star S passing through p_{0} and different from S_{L}. From Proposition 2.1(v), a point $q \in L \backslash\left\{p_{0}\right\}$ is collinear with a line M of S; hence, from Proposition 2.2, every point of $M \backslash\left\{p_{0}\right\}$ is collinear with L, thus $M \backslash\left\{p_{0}\right\} \subseteq L^{\perp} \backslash S_{L}$.
(ii) Let x and y be two distinct and collinear points of T_{L}. If $x, y \in L$, then $x \vee y=L \subseteq T_{L}$, thus we can suppose that $\{x, y\} \nsubseteq L$. From Proposition 2.2, every point of L is collinear with $x \vee y$, hence every point $z \in x \vee y$ is contained in L^{\perp}. Moreover, if $x \vee y$ intersects S_{L} at a point w, then $w \in L$, otherwise a point of $x \vee y$ different from w would be collinear with L and $w \notin L$ in S_{L}, contradicting (v) of Proposition 2.1. It follows that $x \vee y \subseteq T_{L}$.
(iii) Suppose that T_{L} is a maximal singular subspace of Γ. Then L is contained in S_{L} and T_{L}. If W is a maximal singular subspace of Γ passing through L and different from S_{L}, from Proposition $2.1(\mathrm{v}) W \cap S_{L}=L$; hence every point $x \in W \backslash L$ is a point of $L^{\perp} \backslash L$. It follows that $W \backslash L \subseteq L^{\perp} \backslash L$ and, from maximality of $W, W=T_{L}$. Thus, the line L is contained in S_{L} and T_{L}, and property $\left(\mathrm{P}_{1}\right)$ holds.

Conversely, suppose that $\left(\mathrm{P}_{1}\right)$ holds. From (ii), T_{L} is a subspace, thus we have to prove the following steps.
Step 1. T_{L} is a clique. Let x and y be two distinct points of T_{L}. If either x or y lies on L, then $x \sim y$, thus we can suppose that $x, y \in T_{L} \backslash L=L^{\perp} \backslash S_{L}$, which is non-empty, from (i). From Proposition 2.3, [x,L] and $[y, L]$ are two singular subspaces of Γ. If $x \nsim y$, then there exist two different maximal singular subspaces X and Y of Γ containing $[x, L]$ and $[y, L]$, respectively. Furthermore, neither X nor Y coincides with S_{L}, otherwise, either x or y is contained in S_{L}, a contradiction, since $x, y \in L^{\perp} \backslash S_{L}$. It follows that L is contained into three different maximal singular subspaces of Γ, contradicting property $\left(\mathrm{P}_{1}\right)$.
Step 2. T_{L} is a maximal singular subspace. Let X be a singular subspace containing T_{L} and let us consider a point $x \in X \backslash L$. Then, from $\{x\}, L \subseteq X$ we have $x \sim L$. Furthermore, $x \notin S_{L}$, otherwise a fixed point $y \in T_{L} \backslash S_{L}$ (whose existence is guaranteed by (i)) would be collinear with L and $x \notin L$ in S_{L}, contradicting (v) of Proposition 2.1. It follows that $x \in L^{\perp} \backslash S_{L} \subseteq T_{L}$, thus $X \subseteq T_{L}$ and $X=T_{L}$.

From the previous proposition, the family $\mathcal{T}=\left\{T_{L}: L \in \mathcal{L}\right\}$ consists of maximal singular subspaces of Γ. In what follows, we will prove that the three families Σ_{1}, Σ_{2} and \mathcal{T} satisfy the hypotheses of Theorem 1.1 . We explicitly observe that property $\left(\mathrm{P}_{1}\right)$ is a necessary and sufficient condition in order that every T_{L} is a maximal singular subspace of Γ.

Proposition 2.5. The partial linear space $\Gamma=(\mathcal{P}, \mathcal{L})$ satisfies the following properties.
(i) Any three pairwise collinear points of \mathcal{P} are contained in a maximal singular subspace of $\Sigma \cup \mathcal{T}$.
(ii) No subspace of \mathcal{T} is contained in a star of Σ.
(iii) If $S \in \Sigma$ and $T \in \mathcal{T}$, then $S \cap T$ either is empty or it is a line.
(iv) Every line of \mathcal{L} is contained in exactly one subspace of Σ and exactly one subspace of \mathcal{T}.
(v) Every maximal singular subspace belongs to $\Sigma \cup \mathcal{T}$.

Proof. (i) Let a, b and c be three pairwise collinear points of \mathcal{P}, and let L be the line of \mathcal{L} passing through a and b. From Proposition 2.2, $c \in L^{\perp}$; hence either $c \in S_{L}$, or $c \in L^{\perp} \backslash S_{L} \subseteq T_{L}$.
(ii) If there exists a subspace $T_{L} \in \mathcal{T}$ which is contained into a star $S \in \Sigma$, then, from Proposition 2.1(iii), S coincides with the unique star S_{L} containing L, a contradiction, since $L^{\perp} \backslash S_{L} \neq \emptyset$ from (i) of Proposition 2.4.
(iii) Clearly, for every $S \in \Sigma$ and $T \in \mathcal{T}, S \cap T$ is at most a line, otherwise we can consider a point $x \in T \backslash S$ (from (ii)) and x would be collinear with more than a line into the star S, contradicting Proposition $2.1(\mathrm{v})$. Since $T \in \mathcal{T}$, there exists a line $L \in \mathcal{L}$ such that $T=T_{L}$. From Proposition 2.1(iii), let S_{L} be the unique star passing through L. If $S=S_{L}$, then $S_{L} \cap T_{L}=L$, and we are done. Thus, we can suppose that $S \neq S_{L}$. From Proposition 2.1(i), $S \cap S_{L}$ either is empty or is a point y. Moreover, let $S \cap T \neq \emptyset$, and let p be a point of $S \cap T$.

Let $p \in L$. For every $w \in L \backslash\{p\}$, from Proposition $2.1(\mathrm{v}), w^{\perp} \cap S$ is a line M passing through p. It follows that every point $z \in M \backslash\{p\}$ is collinear with both p and w in L; hence $M \backslash\{p\} \subseteq L^{\perp} \backslash S_{L}$ and $M \subseteq T_{L}$, thus $S \cap T_{L}=M$.

Now, suppose that $p \notin L$. Moreover, let us suppose that $S \cap S_{L}=\emptyset$. From property $\left(\mathrm{P}_{2}\right), S_{L} \in \Sigma_{2}$; hence, from Proposition 2.3(ii), $L^{\perp} \cap S$ is a line R passing through p. It follows that $R \subseteq L^{\perp} \backslash S_{L} \subseteq T_{L}$, thus $S \cap T_{L}=R$.

Finally, let us suppose that $p \notin L$ and $S \cap S_{L}=y$. Clearly, $p \neq y$, otherwise $T_{L} \cap S_{L}$ contains $L \cup\{p\}$, contradicting the fact that a star and a subspace of \mathcal{T} intersect in at most a line. If $y \notin L, p$ would be collinear with y and L in S_{L}, contradicting Proposition 2.1(v). It follows that $y \in L$; hence $S \cap T_{L}=p \vee y$.
(iv) From Proposition 2.1(iii), every line L is contained in exactly one $\operatorname{star} S_{L}$ of Σ. Moreover, the maximal singular subspace $T_{L}=\left(L^{\perp} \backslash S_{L}\right) \cup L$ of \mathcal{T} contains L. If T is a maximal singular subspace of \mathcal{T} passing through L and different from T_{L}, then L is contained in at least three maximal singular subspaces of Γ, contradicting property $\left(\mathrm{P}_{1}\right)$.
(v) Let W be a maximal singular subspace of Γ, let us suppose that $W \notin \Sigma$, and let L be a line of W. From (iv) and property $\left(\mathrm{P}_{1}\right)$, it is $W \in \mathcal{T}$.

Let $\Gamma=(\mathcal{P}, \mathcal{L})$ be a proper partial linear space whose lines are not maximal singular subspaces and let Σ_{1} and Σ_{2} be two non-empty families of maximal singular subspaces of Γ such that the family $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ satisfies property $\left(\mathrm{P}_{1}\right),\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$ of Theorem 1.2. From Proposition 2.1(iii), every line $L \in \mathcal{L}$ is contained in exactly one maximal singular subspace $S_{L} \in \Sigma$ and, from (iii) of Proposition 2.4, the subset $T_{L}=\left(L^{\perp} \backslash S_{L}\right) \cup L$ is a maximal singular subspace. Denoted by \mathcal{T}, the family of all maximal singular subspaces $T_{L}, L \in \mathcal{L}$, from Proposition 2.5(v) every maximal singular subspace of Γ belongs to exactly one of the families $\Sigma_{1}, \Sigma_{2}, \mathcal{T}$. Axiom $\left(\mathrm{A}_{1}\right)$ of Theorem 1.1 follows from (i) of Proposition 2.5. Item (i) of Axiom $\left(\mathrm{A}_{2}\right)$ easily follows from property $\left(\mathrm{P}_{2}\right)$, and items (ii), (iii) and (iv) follow from Proposition 2.1(ii), and from (iii) and (iv) of Proposition 2.5. Finally, Axiom $\left(A_{3}\right)$ follows from (ii) of Proposition 2.1.

Since all the hypotheses of the Theorem 1.1 of Bichara and Mazzocca are satisfied, we can conclude that there exists an affine space \mathbb{A} of dimension at least 3 such that Γ is isomorphic to the $\operatorname{Grassmann}$ space $\operatorname{Gr}(1, \mathbb{A})$ of the lines of \mathbb{A}.

References

[1] A. Bichara, F. Mazzocca, On a characterization of Grassmann space representing the lines in an affine space, Simon Stevin 56 (3) (1982) 129-141.
[2] N. Melone, D. Olanda, A characteristic property of the Grassmann manifold representing the lines of a projective space, European J. Combin. 5 (1984) 323-330.
[3] G. Tallini, On a characterization of the Grassmann manifold representing the lines of a projective space, in: Proc. of the Second Isle of Thorns Conf., 1980, in: London Math. Soc. Lecture Note Series 49, Cambridge University Press, Cambridge, 1981.

[^0]: * Corresponding author.

 E-mail addresses: roberta.digennaro@uniparthenope.it (R. Di Gennaro), eva.ferraradentice@unina2.it (E. Ferrara Dentice), pialore@unina.it (P.M. Lo Re).

