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A pairing of the vertices of ordered trees
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Abstract

A combinatorial bijection of the terminal vertices (other than roots) of ordered (rooted plane)
trees with the internal vertices (including roots) is described (for ordered trees with at least one
edge). c© 2001 Elsevier Science B.V. All rights reserved.
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1. Shapiro’s problem

Let Pn be the set of all rooted plane or ordered trees with n + 1 vertices. Fig. 1
shows all the elements of P3 with roots at the bottom.
It is well known that |Pn|=Cn, where Cn is the nth Catalan number given by

Cn =
1

n+ 1

(
2n
n

)
:

In P3, we can easily check that there are 20 vertices, of which 10 are terminal vertices
other than roots or leaves. That half the vertices are leaves is no accident.

Theorem 1. Among the vertices of ordered trees in Pn; exactly half of them are
leaves for n¿ 0.

Shapiro presented a proof of this result using generating functions in [27], but 6nd-
ing it so attractive, and believing that there must be other, neater, more insightful
proofs, o8ered it also as a problem in The American Mathematical Monthly [26].
Our objective is to give a demonstration that is more combinatorial in spirit, although
we do so in the setting of Dyck paths, rather than that of ordered trees. We 6nd that
the factor of one half stems from the re;ection symmetry of unrestricted paths, and
show how this symmetry implicitly induces a bijection between terminal and internal
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Fig. 1. Ordered trees with 4 vertices.

Fig. 2. � :Pn → Dn.

Fig. 3. An elevated Dyck path and exposed triangles.

vertices. Moreover, as Shapiro suspected, the result is not entirely new, so we also
provide some discussion of its earlier appearances.

2. Bijective proof of Theorem 1 via Dyck paths

The notion of a Dyck path is a familiar one; see, in extenso [4]. By an elevated
Dyck path is meant a Dyck path in which, with the exception of the 6rst and last
steps, all steps are on or above level 1; and by an unrestricted path is meant a lattice
path in which the steps need not be on or above level 0.
Let Dn be the set of all the elevated Dyck paths from (0; 0) to (2n + 2; 0); and

let � :Pn → Dn be the familiar one-step-at-a-time bijection illustrated in Fig. 2 (for
a reference, consult [32]). We think of U and D as representing the upward and
downward passage of vertices. This leads to the identi6cation of vertices in trees in
Pn with certain triangles under the paths in Dn. To be more precise, the area between
a Dyck path and the x-axis can be divided into unit triangles, as shown in an example
in Fig. 3. A triangle in the division of a Dyck path is called exposed, if its northeast
boundary is a part of the path.
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Fig. 4. The map  .

Let V(Pn) be the set of vertices of all trees in Pn. An element of V(Pn) may be
thought of as a pair (v; �), where v is a vertex of a tree � in Pn. Similarly, let E(Dn)
be the set of all exposed triangles in the division of the area under a Dyck path in Dn

just illustrated (as marked by ⊗ in Fig. 3). An element of E(Dn) may be thought of
as a pair (t; �), where t is an exposed triangle in a path � in Dn. Triangles in E(Dn)
where the path is both the northeast and northwest boundary will be referred to peak
triangles. The following observation is then straightforward.

Lemma 2. The bijection � extends in a natural way to a bijection between V(Pn)
and E(Dn) in which leaves correspond to peak triangles.

We now draw on a bijection described in Lemma 3:2 of [21] to show that, for each
triangle in E(Dn) there is an unrestricted path from (0; 0) to (2n; 0). Again, it is easier
to illustrate this bijection, which we denote  . So, consider an exposed triangle in
E(Dn) situated in the path � from the origin O=(0; 0) to Z =(2n+2; 0). Let A be the
6rst point on the path after O; and let B and C be consecutive points on the downward
part of the path—refer to Fig. 4, noting how B and C de6ne a triangle in E(Dn). To ob-
tain an unrestricted path from (0; 0) to (2n; 0), we take C as the origin, identify A with
Z , and 6nish at B, which is then the point (2n; 0), because of the deletion of the upward
step from O to A and the downward step from B to C. In e8ect, we are just interchang-
ing sections of the path in Dn with which we started, and it is easy to undo this process.
The examples in Fig. 4 have been chosen to show the di8erent fates of peak triangles

and other triangles in E(Dn) under the bijection  . If B and C de6ne a peak triangle,
then the unrestricted path obtained under  ends on an upward step; and otherwise
this path ends on a downward step.

Lemma 3. There is a bijection  from E(Dn) to the unrestricted paths from (0; 0)
to (2n; 0) in which peak triangles correspond to paths whose 0nal step is upward.

But clearly the set of unrestricted paths from (0; 0) to (2n; 0) has a mirror symmetry,
�, say: to any such path p, the mirror image, �(p), in the x-axis is another unrestricted
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Fig. 5. The map �∗.

path between the same endpoints. Moreover, if p ends on an upward step, �(p) ends
on a downward step. Thus, exactly half these unrestricted paths end on an upward
step, and exactly half end on a downward step. Tracing back through the bijections
delineated in our lemmas, we see, in turn, that exactly half of the triangles in E(Dn)
are peak triangles, and then that half the vertices in V(Pn) are leaves. This completes
our proof of Theorem 1 (Fig. 5).

3. Commentary

First of all, bearing in mind the inspiration given by [21] for our bijective proof
of Theorem 1 via Dyck paths, we note that a similar approach yields a combinatorial
interpretation for the identity

∑
k¿0

(
2n
k

)
=4n:

Indeed, the cardinality of the collection of all triangles in the Dyck paths in Dn is 4n,
a fact closely related to the problem given publicity in [34]. Bijections related to the
area under Dyck paths have been explored further very recently in [20].
Secondly, as we hinted at the end of our opening section, Theorem 1 is not without

antecedents, and we take this opportunity to mention some earlier references of cognate
interest, without making any claim to have traced the history of this result in its entirety.
Riordan, in a study [23] in generating functions published in 1975, investigated, among
other distributions, the number t(n; k) of ordered trees with n edges and k leaves.
Riordan shows, in e8ect, that

t(n; k)=
1
n

(
n
k

)(
n

k − 1

)
; 16 k6 n
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and concludes that this distribution is therefore the same as a more familiar one for
ballot paths by length of horizontal segments. However, it is clear, from this expression
for t(n; k), that we have the symmetry

t(n; k)= t(n; n+ 1− k); 16 k6 n

from which Theorem 1 follows as an easy consequence, noting that a tree on n edges
with n+ 1− k leaves has k internal vertices, for n¿ 0. Both this expression and the
associated symmetry appeared again, in 1977, in a study [24] of so-called connective
relations: explicit correspondences are given between these relations and ordered trees,
thereby explaining why the distributions are the same for these two types of structure;
and implicit in these correspondences is a bijection on the vertices of ordered trees
with n edges, for n¿ 0.
The result enjoyed a good year in 1980, appearing in one form or another in at

least three places. Dershowitz and Zaks, in [7], gave several combinatorial proofs of
the above symmetry for t(n; k), inferring as a corollary that expected number of leaves
in a tree on n edges is (n + 1)=2, as is the expected number of internal nodes. They
returned, in [8], published the following year, to deduce the symmetry for t(n; k) from
a more general result. Interestingly enough, Shapiro, in collaboration with Rogers, came
close to Theorem 1 in a discussion of picture counting, in [25]. They use this approach
to investigate the number of ordered trees with n edges of which k are what they call
eldest branches, that is, a leftmost, upward edge at a vertex. The distribution is the
same as that for t(n; k), which is no surprise, since, as they go on to note, eldest
branches correspond to internal vertices. They then use another instance of picture
counting to obtain the distribution of ordered trees by edges and leaves more directly.
Dasarathy and Yang [6], also in 1980, start from a ordered tree, T , put it in corre-

spondence with a binary ordered tree, re;ect this to obtain another binary ordered tree,
and reverse the correspondence to get back to another ordered tree, R(T ), say. They
then show that the total number leaves in T and R(T ) is n+ 1, when T has n edges,
and they observe that the average number of leaves in such trees is (n + 1)=2. Our
approach here, through the induced map �∗ and re;ection of unrestricted paths, seems
similar in spirit. Clearly, the factor of one half might most plausibly be explained in
terms of a re;ection. The problem is to 6nd an involution on the ordered trees that
will do the trick that re;ection does for binary ordered trees or for unrestricted paths.
However, we revisit Theorem 1 in a sequel [28] in terms of the structure of ordered
trees. Moreover, a short survey of combinatorial occurrences of 1

2 (
2n
n ) is given in [12].

For completeness, we also note that Deutsch mentions Theorem 1 in terms of Dyck
paths, in [4], where attention is also drawn to [33]. Of related interest here, is the more
recent note [5] of Deutsch giving a neat pictorial proof that among ordered trees with n
edges the distribution by vertices of degree q is the same as that by vertices at odd level
of degree q− 1. Rogers has pointed out that, in a rather similar way, internal vertices
(including roots) at one level can be put into one-to-one correspondence with leaves at
the next higher level, again leading to a proof of Theorem 1 (personal communication).
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Of course, no one can now write on the Catalan numbers without citing what must
be considered the current locus classicus, the 66 instances gathered by Stanley in
exercise 6.19 in [30]. However, articles featuring this sequence occur frequently in
the more popular journals, not always cross-referenced. So, in default of an updated
bibliography, we list a selection of expository articles from the last 3 years, by year
of publication: [34,1,13,31,2,3,22]. A further interesting development in this period has
been the emergence of studies of the history of this sequence and its relatives (again
listed by year of publication): [29,9,19,10,11,14–18].
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