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ABSTRACT

Let MDs(n) = {D | D is a primitive ministrong digraph with n vertices, and
the shortest cycle length of D is s}, and bs(n) = max{y(D) | D € MDs(n)},
where v(D) is the primitive exponent of D. Our main results are: (1) we give
explicit expressions for bs(n); (2) for s # 2,6, we give a necessary and sufficient
condition for a digraph D € MDs(n) with v(D) = bs(n).

1. INTRODUCTION

The terminology and notation used in this paper will basically follow
those in {3, 4, 6]. The definitions of strong digraphs, ministrong (minimally
strong) digraphs, primitive digraphs, and their exponents (D) can be
found in [4] and [6]. Let MD(n) = {D | D is a primitive ministrong digraph
with n vertices}, MDy(n) = {D € MD(n) | the shortest cycle length of D
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is s}, and bs(n) = max{y(D) | D € MD4(n)}, where v(D) is the primitive
exponent of D. In the following, we denote by E(D) the set of arcs of
D, and call a cycle of length ¢ a t-cycle. Also, we use d;(z) to denote the
shortest distance from a vertex z to the set of vertices of all t-cycles. When
z,y € V(D), let d(z,y) denote the distance from z to y as usual. If W is
a walk of D, then we denote by | W| the length of W.

Let
Wo(s,n) =n+s(n—3) — 352 (1.1)
and
Wi(s,n) = n+ s(rg — 2), (1.2)
where
ro=max{me Z{2<m<n-1, ged(m,s) = 1}. (1.3)

Let L(D) be the set of distinct lengths of cycles in digraph D, and let
1Ys(n) = {D € MD,(n) and D satisfies the following condition (**)}:

L(D) = {s,70,71,---,72}; 71,72, ..., 7 are all multiples of 5. (*x%)
In [6], R. A. Brualdi, and J. A. Ross showed that
y(D)<n?-4n+6 (D e MD(n)).

They also characterized the case of equality. In [4], J. A. Ross further
proved that v(D) < n+ s(n—3) for any D € MDg(n), with equality if and
only if ged(n — 1,s) = 1 and D is isomorphic to the digraph in Figure 1.
Therefore, in the case ged(n — 1,s) = 1, we have bs(n) = n+ s(rp — 2) =
n + s(n — 3) = Wi(s,n), and v(D) = bs(n) for a digraph D € MD,(n) if
and only if D is isomorphic to the digraph in Figure 1. But what is the
expression for bs(n) in the case ged(n — 1,s) # 17 We will consider this
problem in this paper.

In [1], Wei-Quan Dong, Jia-Yu Shao, and Chun-Fei Dong proved the
following theorem.

THEOREM 1.1.  ([1]). Let by(n) = max{y(D) | D is a primitive digraph
with n vertices and shortest cycle length s}, % = max{m | 1 < m <
n, ged(m,s) =1}. Then:

(a) Es(n) = n+ s(n — 2) when ged(n, s) = 1.

(b) bs(n) = n + s(7p — 2) when ged(n,s) > 1 and stn or n = ks, but
(k=1)1(s-2).

(¢) bs(n) = n+s(To—2)+1 whenged(n, s) > 1 and n = ks, (k—1)t(s—2).
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FiG. 1.

They also gave a necessary and sufficient condition for a primitive di-
graph D to have y(D) = bs(n) when s # 2,6([1]). In this paper, we obtain
the following three results for ged(n — 1,s) # 1:

(1) If ged(n — 1,s) > 1 and s > 3, then bs(n) = Wi(s,n).

(2) If ged(n —1,s) > 1 and s = 2, then by(n) = Wy(s,n) + 1.

(3) In Theorems 5.1 and 5.2, we characterize the digraph D € MD,(n)
with v(D) = bs(n) when ged(n —1,5) > 1 and s # 2,6.

To prove our main results, we need the following basic properties of
primitive ministrong digraphs.

THEOREM 1.2. [4,6]. Let D € MDs(n). Then the following properties
hold:

(1) D has no loops and no cycles of length n, so t < n — 1 for any
te L(D), and2 < s <n-—2.

(2) If (z,y) € E(D), then (z,y) is an arc of every path from z to y.

(3) No cycle of D has chords.

2. SOME SPECIAL UPPER BOUNDS FOR ~(D)

Let D be a primitive digraph with n vertices, and (D) be the exponent
of D. Also, let L(D) = {ry,m2,..., s} be the set of distinct lengths of the
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elementary cycles of D, where ry, = s is the shortest cycle length of D.
Then it is well known that D is strong and ged(ry, r2,...,7\) = 1, where
ged means the greatest common divisor.

DEFINITION 2.1. The (local) exponent from vertex z to y, denoted by
~v(z, ), is the least integer -y such that there exists a walk of length m from
z to y for all integers m > «.

From Definition 2.1 it is easy to see that

v(D) = max{y(z,y) | z,y € V(D)}.

Now suppose B = {a1,..., e} is a set of distinct positive integers with
ged(ay,...,ax) = 1. The Frobenius number ®(B) = ®(ay,...,a;) is de-
fined to be the least integer ® such that every integer m > & can be
expressed in the form m = cja7 + - -+ + cpag, where ¢, ..., ¢ are nonneg-
ative integers. A result due to Schur shows that ®(ay,..., a;) is finite if
ged(ay, ..., ax) = 1. In the case k = 2, we have ®(ay, a2) = (a1 —1)(a2—1).

DEFINITION 2.2. Let z,y € V(D) and B = {r;,,...,r.} C L(D).
The relative distance dg(z,y) from z to y is defined to be the length of
the shortest walk from z to y that meets (has a common vertex with ) at
least one cycle of each length r; for j =1,2,... k.

Let
dg = d(riy,...,ry) = max{dp(z,y) | z,y € V(D)},

where B = {r;,...,r } C L(D).
The following basic upper bound for v(z, y) will be used in the proof
of our main results.

THEOREM 2.1. ([5]). Let D be a digraph, and B = {r;,..., 1} C
L(‘D) with ng(rila-"»Tik) = 1. Then ’Y(z»y) < dB(xa y) +(I)(ri1’--‘,7'ik)
and v(D) < dg + ®(B).

3. IMPROVED ESTIMATIONS OF THE RELATIVE DISTANCES

It is not difficult to verify the following estimate for the relative dis-
tances: for a primitive digraph D with n vertices, we have ([2])

dp < Z(n—a)+(n—1), (3.1)

a€B
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where B C L(D). However, we want to improve the inequality (3.1) in the
case D € MD;(n). For this purpose we first give two lemmas.

LEMMA 3.1. Let D € MDy(n) with V(D) = {1,2,...,n} and t €L(D).
Then dggy(u,v) < n—t+n—2 for all u,v € V(D).

PrOOF. We consider the following two cases.

Case 1. u belongs to some t-cycle.  Then dg4)(u,v) = d(u,v) < n—1
<n—t+n-2

Case 2. u does not belong to any t-cycle. Let di(u) = d(u, z), where
z belongs to some t-cycle C. Then d(u,z) < n—tand v & V(C). We
want to show d(z,v) <n —2.

Suppose d(z,v) =n ~ 1. Let W(z,v) =123---n be a path from z to
v of length n — 1, where (we suppose) z = 1,v = n. Let W'(u,z) be a
path from u to z of length d(u, z); then W'(u, z) is the shortest path from
u to all vertices of all t-cycles. For D € MD,(n), D has no arcs (¢,5) such
that j — ¢ > 1. Hence C = 123---t1. Since u € V(C), there exists an
arc (z,z) on the path W'(u, z) such that ¢ ¢ V(C) and z > ¢. Thus a
cycle C'=123---tt+ 1---z1 is formed, and C’ has a chord (t,1). This
contradicts D € MD,(n). So d(z,v) <n — 2. Then

dipy(u,v) < d(u,2) +d(z,v) <n—t+n-2
The lemma is proved. n

Let Wy = mizp -2, and Wy = y1ya-- -y, be two walks. If z,, = y1,
then we denote by W; U W, the walk 125 - T Yoy - -+ 9.

LEMMA 3.2. Let D € MDy(n), B = {a1,0a2,...,am} C L(D), a1 <
ag < -+ < @y Then for any z,y € V(D), there exists a positive integer 1,
1 < i< m, such that

dp(z,y) < (n—2—-a)+(n—2—ag)+---+(n—2—a;_1)+(n—a;)+(n—2).

Proor. Let W(xr_1, ) be a path from zx_; to z of length dy, {(zx_1),
where z; is a vertex of some ai-cycle for K =1,2,...,m, and g = z. In
the following, we consider three different cases.

Case 1. There erists some integer 1,2 < i < m—1, such that dg,(z;-1) >
n—a;—1butdy (zx—1) <n—ay—2fork=12...,i—1. Let W(z;—1,¥)
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be a walk from z;_; to y of length di, ) (i1, y) which meets some a;-cycle.
Because dg, (2;-1) 2 n—a;—1 = n—(a;+1) > n~ g for any integer ¢ > 1,

W (z;-1, y) meets some a;y1-cycle, some a;4o-cycle,. .., and some a,,-cycle.
Thus W(zo,z1) U Wz, 22) U--- U W(zi—q,zi-1) U W(xi—1, y) meets at
least one cycle of each length a; for ¥k = 1,2,...,m. From Lemma 3.1,
we have

‘W(mi—l,y)l = d{a,}(iﬂz‘—hy) <n—a;+n-—2.

So dp(z,y) < |W(zo, 21)| + W (zr, @)l + -+ -+ W (ziz2, xi1)| + [W (21,
Y<(n~2-a)+(n—2—a)+--+(n—-2-a;i_1) +(n—aq) + (n-2).

Case 2. dg(zj—1) < (n—a; —2) forj =1,2,...,m — 1. For the
same reason as in case 1, we have

dp(z,y) < (n—-2—a)+(n—2—a)+- -+ (n—2—am_1)
+ (n~ am) + (n —2).

Here, taking ¢ = m, we obtain the result.

Case 3.  dg,{m) > n— a1 — 1, where 1y = x. Also, for the same
reason as in case 1, we obtain that dp(z,y) < (n — a1} + (n — 2). Here,
taking i = 1, we obtain the result.

Combining cases 1, 2, and 3, the proof of the lemma is completed. ®

From Lemma 3.2 we easily get the main theorem of this section, which
improves the inequality (3.1).

THEOREM 3.1. Let D € MD4(n), B ={ay,...,an} C L(D). Then

dg = d(ag,...,am)<(n—1—-a))+(n—1-a)
ot (n—1—ay)+(n—1)

= Z(n—l—aj)+(n—1).
j=1
4. THE EXPRESSIONS FOR bs(n) IN THE CASE ged(n —1,8) > 1

Throughout this section, we will assume that ged(n~1,s) > 1. We will
prove that v(D) < Wi (s, n) for any D € MD,(n)\¢s(n) from Lemmas 4.1
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to 4.6 when s > 3 [furthermore, v(D) < Wi(s,n) when s # 2,6]. We
will also prove from Lemmas 4.7 to 4.10 that v(D) < Wi(s,n) for any
D € ¢5(n) when s > 3. Finally we obtain bs(n) = Wj(s,n) with s > 3
in Theorem 4.1 and by(n) = W1(2,n) + 1 in Theorem 4.2. Recall that we
have defined ry, Wy(s, n), and Wi(s,n) in (1.1), (1.2), and (1.3).

LEMMA 4.1.  Ifged(n—1,s) > 1, then (n —1) — rp < s; furthermore,
(n—1)~1 < is when s # 2,6.

PROOF. See {1, Lemma 4.3]. u

LEMMA 4.2. Ifged(n —1,s) > 1, then Wy(s,n) < Wi(s,n); further-
more Wy(s,n) < Wi(s,n) when s # 2,6.

PROOF. See [1, Lemma 4.4]. [ |

LEMMA 4.3. Let D € MDy(n), L(D) = {r1,m2,..., 2}, where 1\ = s.
If ged(n — 1,8) > 1, and ged(r,s) > 1 for all r; € L(D), then (D)
<Wo(s, n).

ProoF. By the hypothesis and the primitivity of D we see that s is

not a prime power, so s > 6. Let pi,...,p: be distinct prime divisors
of s with ¢ > 2. Take ry,...,m, € L(D) such that ged(pg,r,) = 1
for k = 1,...,t. [Such an 7, exists because ged(ry,...,7r\) = 1, where
™ = S.]

Now, take B = {s,7i,,...,m,} € L(D); then ged(s,ry,...,7,) = 1.
We may use Vitek’s upper bound for the Frobenius number ®(R), since
ged(s, ) > 1 for k = 1,...,¢ means that R = {s,ry,...,r;,} satisfies
the hypothesis of [2, Theorem 4|, to obtain that ®(R) < s(r — 2)/2 <
s(n—3)/2, where r = maxi<g<:{73, } < n—1. Also, by using induction on
t (¢t >2), we have pipa---p, > 2(t +1),50 s 2 p1p2---py > 2(t + 1), e,
t < %s — 1. Now ged(n —1,s) > 1, s0 s < n — 3, and from Theorem 3.1
we have

dp < Y (n—-1-a)+(n—1)

a€R
< (n-1-8(+1)-2t—-1+n-1 (%)
=(n—-1-8)+t(n—-1-s—-2)+(n—-2)
< (n-1-s)+(3s—1)(n—-1-s-2)+n—-2

n+3s(n—3)— 352
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[(x) holds because |R| =t+1 >3 and ¢ > s+ 2 for all a € R\{s} by the
hypothesis ged(r;, s) > 1 for all r;, € L(D})]. So

YD) € dp+®(R) < n+is(n-3)- %52 + 3s(n —3)
= n+s(n—3)—1s? = Wo(s,n). -

The following lemma further improves the estimation of the relative
distance. It will be used in the proof of Lemma 4.5.

LEMMA 4.4. Let D € MD4(n), B ={r,n} C L(D), rp >, z,y €
V(D). If dpy(z) = n— 1 — (12 — 1), then dp(z,y) <n—rpg+n—2.

PROOF. Let 2P, 2Py be a walk from z to y of length d,,}(z, y) which
meets some 12-cycle, where z is the first vertex on this walk which belongs
to some my-cycle C, zP;z is the shortest path from z to z, and zPsy is the
shortest path from z to y. Then n — 1y > |zP1z| = d(z,2) > d,,(z) >
n—r1—(rp—1).

Case 1. |2Pay| = d(z,y) > n — . Then dg(z,y) < |zP12Ppy| =
d{’l‘g}(z’ y) <n-—rm+n-—2by Lemma 3.1.

Case 2. |zPay| = d(z,y) < n— 1 — 1. Since |zP1z U 2Cz| >
n—r—(ro—1)+m—1=n—rmr, zPiz U zCz meets some r-cycle. So
zP12z U 2Cz U 2Py meets some ri-cycle and some ry-cycle. Then we have

dp(z,y) < |zP1z U 2Cz U 2Pyl <n~m+r+n—-mn—1

=n-mn+n—1<n—n+n-2 (by n=mn+l).

Combining cases 1 and 2, we complete the proof of Lemma 4.4. u

LEMMA 4.5. Let D € MD4(n), ged(n — 1,s) > 1. If there exists
r € L(D) with r < ry (19 as defined above) such that ged(r,s) = 1, then
v(D) < Wi(s,n); furthermore, when s # 2,6, we have (D) < Wi(s,n).

PRrROOF. Take B = {r,s} C L(D), and let z,y be arbitrary vertices of
D. We estimate the upper bounds of dg(z, y) by considering the following
two cases.

Case 1. n—s~-2<ds(z) <n—3s. Sincer >s+1ands>2, we
have dg(z) > n—~s~2>n-r—1>n—-r—(s—1). From Lemma 4.4 we
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have that
dp(z,y) <n—-s+n-2<3n-s—-r-35 (by r<rn<n-2).
Case 2. ds(z) <n—s—3. Then by Lemma 3.1 we have
dp(z,y) < (n—s-3)+n—-r+n-—2
= 3n—-s—r—>5.

Combining cases 1 and 2, and using r < rp and Lemma 4.1, we have
ds(z,y) +2(B)
3In—s—r—5+(s—1)(r—1)
n+2n—s—6+(r—1)s—2)
n+2n—s—6+ (10— 2)(s - 2)
n+s(rn—2)+2(n—1—1) —s
n+ s(ro — 2) = Wi(s,n).

v(z, y)

(1 VAN I VAN VAN

IN

Furthermore 2(n — 1 — rp) < s for s # 2,6, so v(z,y) < Wj(s,n) when
s # 2,6. So y(D) < Wi(s,n), and v(D) < Wi(s,n) when s # 2,6. The
lemma is proved. [ |

LEMMA 4.6. Let D € MD4(n), ged(n —1,5) > 1, s > 3. If o € L(D)
and ged(r,s) > 1 for all r € L(D)\{ro}, but there exists ry, € L{(D)\{ro}
such that s{ry,, then (D) < Wi(s, n); furthermore, v(D) < Wi(s, n) when
s # 6.

Proor. Take B = {s, ry,, 70}. Because ged(ry,, 8) > 1, 7o is not a non-
negative integral combination of r;, and s. Since r;, <n —-1< 1y + %s <
0 +§ < 2r9 and stry, 7, is not a nonnegative integral combination of
1o and s. Hence B = {s, 1y, 1o} satisfies the hypothesis of [2, Theorem 4].
So we have ®(B) < 1s(n — 3). Let z,y be arbitrary vertices of D. We
estimate upper bounds of y(z, y) by considering the following three cases.

Case 1. d(z,y)>n-—s. Thendg(zr,y)=d(z,y)<n-1<n+mn
—s5—1. Sousing 7o < n—2and s < n - 3, we have

v(z,y) < dp(z,y) + &(B)
< n4rm—s—1+3s(n—3)
< n+s(n—3)—3s(n-3)+(n—-2)—s—1
=n+s(n-3)—3(n—-3)(s—2)—s
< n+s(n—3)—1s(s—2)~s

i

WO(S7 TL) S Wl(sa ’Il).
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Case 2. n—my < d(z,y) <n—s—1. Becauserg+s>n—1—1s+s=
n—1+1s>nbys>3 wehave dg(z,y) < d(z,y)+r0<n—s+mn—1
So using similar arguments to case 1, we have

7<I7y) S WO(Svn) S Wl(S,ﬂ)~

Case 8. d(z,y) < n - g — 1. Suppose z belongs to a cycle of
length b.

Subcase 8.1. b+ s > n. Then

dp(z,y) <d(z,y)+b<n—r—-1+b<n—-rn—-14+n—-1=2n—-nr3—2.

So by n — 3 > s we have

Y(z,y) < 2n—19—2+ 3s(n —3)
= n+s(n-3)—3s(n—3)+n—r —~2
= n+s(n—3)-3(n-3)(s-2)—rn+1
< n4s(n-3)—3s(s—2)-mp+1
= Wo(s,n)+s+1—r1g
< Wy(s,n) € Wi(s,n).

Subcase 3.2. b+ s < n. Because ged(ry,,s) > 1 and s{ry,, s is not a
prime number, s0 s > 4, and r;,, > s+ 2> 6.

(1) b=sand 1, > n—s. Then
dp(z,y)<d(z,y)+b<n—-—rn—-1+s5<2n—-mr -2
So using similar arguments to subcase 3.1, we have
v(z,y) £ Wo(s,n) < Wi(s,n).
(2) b=sand 1y, <n—s. Then

dp(z,y) < d(z,y)+b+mn<n—rn-1l+s+mn=n+s~1
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Since 7, < n — s and ry, > 6, we have n — s > 6. So

Yz,y) < n+s—1+31s(n-3)
=n+s(n—3)—3s2-32s(n-3-5)+s-1
=n+s(n-3)—3s?—1s(n—s-5)—1
< n+s(n—3)— 352 = Wo(s,n) < Wi(s, n).

(3 b>s. Thenn>b+s>2s+1,ie,n—12>2s, and

b+r02b+n—1—%s>s+n-1—%s=n—1+%52n.

So
dp(z,y) < d(z,y)+b+m
<n—-rn-14+b+mn
=n+b-1<2n—-s-1,
v(z,y) < 2n—s—1+%s(n—3)

=n+s(n—-3)—5(s—2)(n—3)—s+2
n+s(n—3)—1(s—2)(25s-2)—s+2
n+s(n—3)—(s—1)2+1
n+s(n—3) — 15 *
Wo(s,n) < Wi(s,n)

IA I IA

[where (%) holds because (s — 1)? > £5% + 1 for s > 4].
Combining cases 1, 2, and 3, we have
v(D) < Wi(s,n), and ~(D) < Wi(s,n) if s#6.
The lemma is proved. [ ]

Lemmas 4.3, 4.5, and 4.6 imply that v(D) < Wi(s,n) for any D €
MD,(n)\vs(n) if s > 3; furthermore y(D) < Wi(s,n) if s # 2,6. In the
following we discuss the cases for D € ¢4 (n).

First we have

It

Wi(s,n) — ®(s, rg) n+s(rg—2)—(s—1)(rp—1)

n+sg—2s—srg+s+m—1

It

= n—1+7r —s.
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Therefore, if dp(z,y) <n -1+ — s Jor dg(z,y) < n—~1+ 1m0 — s,
then 7(x7 y) < Wl(S, n) [OI‘ ’Y(xvy) < Wl(svn)]v where D € ws("), T,y €
V(D), B = {ry, s}.

LEMMA 4.7. Let D € i4(n), ged(n —1,s) > 1, z,y € V(D). If
d(mv y) Zn—s, then ’Y(I,y) < Wl(sv Tl)-

PrROOF. Let B = {1y, s}; thenby using d(z,y) > n — s we have
dp(z,y)=d(z,y) <n—-1<n—-14+mr—s,sov(z,y) < Wi(s,n). n

LEMMA 4.8. Let D € ¢s(n) with s > 3, ged(s,n~1) > 1, z,y €
V(D). If n—ro < d(z,y) <n—s—1, then v(z,y) < Wi(s,n).

PROOF. Take B = {ry,s}. We know s > 3,s0 1o+ s > n. We

have dp(z,y) < d(z,y)+ 1 < n—s—-1+4+m =n—-1+r7mr — s, and
v(z,y) < Wis,n). n

The following lemma gives a property of primitive ministrong digraphs.
It will be used in Lemma 4.10.

LEMMA 4.9. Let D € MDy(n), s > 3, ged(n ~1,s) > 1. If D has
an elementary cycle C of length n — 2, x,y are two distinct vertices which
don’t belong to C, and no s-cycle contains both  and y, then there exist
no arcs which join ¢ and y.

PROOF. Suppose there is an arc which joins z and y, say, (z,y) €
E(D); then (y,z) € E(D) (by s > 3).

Let W be the shortest path from the cycle C to the vertex z. Since
|C| = n~—2, we have | W| < 2. On the other hand, from (y,z) ¢ E(D), we
know the vertex y does not belong to the path W. So |W| = 1, and there
exists a vertex ¢ € V(C) such that (¢,z) € E(D).

Similarly, there is a vertex j € V(C) such that (y,5) € E(D). Thus D
has a spanning subgraph D' = C U {(z,y), (i,z),(y,7)} which is strong,
and we obtain D = D’ because D € MD4(n) is minimally strong. Let
C' = zyjCiz; then C and C’ are all the cycles of D. From hypothesis we
have |C'| # s. Since ged(n — 1,s) > 1, we have |C| =n ~2 # 5. So D
has no cycles of length s; namely, s ¢ L(D). This contradicts the fact that
D € MD,(n). Hence, the lemma is proved. [ ]

LEMMA 4.10. Let D € ¢4(n), ged(n — 1,8) > 1, s > 3, z,y €
V (D), B ={rg,s}. Let b be the length of one of the cycles which contains
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z ory. Ifd(z,y) <n—rg—1, then we have:

(1) b+ s #n.

(2) v(z,y) < Wi(s,n) when b+ s > n.

(3) v(z,y) < Wi(s,n) when b+s <n—1.

(4) y(z,y) < Wi(s,n) whenb+s=n-~1 and s{(n—1).

(5) v(z,y) < Wr(s,n) whenb+s=n—-1ands|(n—1).

(6) v(z,y) < Wi(s,n) whenb+s=n—-1,n—1=ks and (k—1) | (s—2).

PROOF. (1): Suppose b+s = n. From b+ s = n and ged(n—1,s) > 1
we obtain that b is not a multiple of s, and so b = 1y by D € ¢4(n), so
10 + s = n. On the other hand, by s > 3 we have rg+ s > n—l—%s+s =
n—1+ %s > n. This is a contradiction. Hence b + s # n.

(2): Since b+ s > n, we have

dp(z,y) <d(z,y)+b<n—mn—1+0.

Also,
9 > b—1 (41)

[for otherwise b > rp +2, b € L(D), and D € ;(n) means that b is a
multiple of s; hence ged(b —1,s) = 1 with 6 — 1 > r9 + 1. This contradicts
the definition of 7] and

ro > s+ 1. (4.2)

It follows that
2r9 > b+ s. (4.3)

But if 29 = b + s, then equalities also hold in (4.1) and (4.2), so rp =
b—1=s+landb=s+2,s0s=2(sincerp=>b-1=b#mr=s]|b).
This contradicts the fact that s > 3. Therefore, the strict inequality in (4.3)
holds, namely b < 2ry —s. So dp(z,y) <n—-rp—-1+b<n—-141 -3,
and y(z,y) < Wi(s,n).

(3): Because b+ s <n—1,wehave b<n—-1-s<n-1-1s<rn,
so s |b. By using b+ s+1<n—1and ged(s+ b+ 1,s) =1, we obtain
that 0 > b+ s+ 1,s0 b < 19 —s. Hence d(z,y) < d{z,y) +b+1mn <
n+b—1<n—1+r1—s,and y(z,y) < Wi(s,n).

(4): Since b+ s =n—1and sfn — 1, we have s{b and thus b = ry by
D € ¢s(n). Sodp(z,y) < d(z,y)+r < n—rp—1+r = n—1 < n—1+r—s,
and y(z,y) < Wy(s, n).

(5): First, we have that b = n —1—s, ip = n — 2 and d(z,y) <
n — 19 — 1 = 1. In the following we consider three different cases.
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Case 1. z or y belongs to some s-cycle. Then dg(z,y) < d(z,y)+s <
stl<n—14+m—s. So~vy(z,y) < Wi(s,n).

Case 2. z or y belongs to some ry-cycle. Then dp(z,y) < d(z,y) +
rn<r+l<n-—1+rmr~—s,and y(z,y) < Wi(s,y) < Wi(s,n).

Case 3. mneither x nor y belongs to any s-cycle or rg-cycle. Then
by using Lemma 4.9 we obtain that (z,y) € E(D). But d(z,y) < 1, so
d(z,y) =0. Hence dg(z,y) < b+ry = n~14+r9—s, and y(z,y) < Wi(s, n).

(6): Since n — 1 = ks and ged(ks ~1,s) =1, then g = ks~ 1=n—2.

We have
(i%i—+s+1)b = b+<s+£——:—i—>(k—1)s
= b+ (ks —2)s
= b+ (ks—1)+(s—-1)(ks —2) -1
= b+ 19+ D(rg, s} — 1, (a)
b+ro+(k(s—1)—2)s = b+ro+(s~1)(ks —2) —2
= b+ g+ P(rp,5) — 2. (b)

We also have:

(I) V(Qy y) S d(l’, y) + b+ o + Q(T07S)~
(II) By (a) there is a walk from z to y of length d(z, y) + b + 1o +

®(s, r9) — 1.
(II1) By (b) there is a walk from z to y of length d(z, y) + b + 1o +
D (rg, s} — 2.
So
V(Ivy) d(iE,y)+b+7‘0+®(’f0,S)—2

IA A

n—mo—1+b+r+ ®(r,s)—2
n—1+1r—s+ ®(rp,5) -1
= Wi(s,n) —1< Wi(s,n). -

i

Lemmas 4.7, 4.8, and 4.10, imply that v(D) < Wi(s,n) for any D €
s(n) for s > 3 [so y(D) < Wy(s,n) for any D € MD,(n) with s > 3], and
when s{(n —1) or n — 1= ks, but (k — 1) | (s — 2), if v(z,y) = Wi(s,n),
then n — 5 < d(z,y) < n—s—1fors#2,6.
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THEOREM 4.1.  Let ged(n — 1,s) > 1, s > 3. Then:

(1) bs(n) = Wi(s,n).
(2) If D € MDy(n) and v(D) = Wi(s,n), then D € v4(n) when
s # 6.

PROOF. (1): We already know that v(D) < Wi(s,n) for any D €
MD;(n) with s > 3. Now we construct the digraph Dy shown in Figure 2.
Clearly, Do € MD4(n) and L(Dp) = {ro, s}.

It is easy to compute that v(Dp) = (U, + s -~ n+1,U,,) = 10 +
n—s—1+(rg—1)(s —1) = Wi(s,n) (see [5, Lemma 4.1]). So we have
bs(n) = Wi(s,n).

(2): This follows from Lemma 4.3, Lemma 4.5, and Lemma 4.6. [ |

For the case s = 2, the following theorem gives the expression for by(n)
when ged(n —1,2) = 2.

THEOREM 4.2. Ifs =2 and ged(n—1,2) = 2, then by(n) = Wi(2,n)+
=3n-T.

PROOF. Firstly, we can easily see that o = n—2 > s+ 1,s0 n > 5.
Let D € MDz(n). From Lemmas 4.3 and 4.5 we have v(D)} < W1(2,n)
when 1y & L{D). In the following, we discuss the case ry € L(D).

Take B = {ry, s} = {n—2,2}; then (B) = n—3. For any z,y € V(D)
we now estimate the upper bounds of ¥(z, y) by classifying d»(z) into the
following two cases.
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Case 1. da{(x) > n—ry = 2. Then from Lemma 3.1 we have dg(z,y) <
n—-2+n—-2=2n-4. So

Y(z,y) <2n—4+n—-3=3n—"T.

Case 2. dy(z) < n—r19—1=1. Then again from Lemma 3.1 we have
dp(z, ) <1l4+n—-rn+n—-2=n+1<2n~-4 (by n >5).
Soy(z,y)<2n—-44+n-3=3n-T.

Combining cases 1 and 2, we get v(D) < W1(2,n)+1 = 3n — 7 for any
D € MDsy(n) when 19 = n — 2 € L(D). Therefore, v(D) < W1(2,n)+ 1=
3n — 7 for any D € MDy(n) with ged(2,n — 1) = 2.

Next, we consider the digraph D; shown in Figure 3. Clearly D; €
MD32(n) and L(D;) = {2, n—2}. It is easy to prove that y(D1) = y(n,n) =
Wi(2,n)+1 =3n—7. Hence bp(n) = W1(2,n)+1 = 3n—7. The theorem
is proved. |

5. CHARACTERIZATION OF THE DIGRAPHS D € MD,(n) WITH
¥(D) = bs(n) WHEN s # 2,6

In this section, we always assume s # 2,6 and ged(n — 1,s) > 1. In
Section 4, we got the expressions for bs(n). Here, we characterize those
digraphs D € MDg(n) with v(D) = bs(n) and s # 2,6.

LEMMA 5.1. Let D € MDy(n), ged(n - 1,5) > 1, s # 2,6, B =
{7‘0’5}’ z,y € V(D) If’Y(I,y) = Wl(S,Tl) andn—ro _<_ d(fE, y) _<. n——s—l,
then:
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(1) D€ ys(n).

(2) de(z,y)=n—-14+m—sandd(z,y)=n—s-1

(3) There is a unique elementary path P(z,y) from x to y, where |P(z, y)|
=n —s—1, and P(z,y) does not meet any s-cycle.

(4) D contains a unique s-cycle.

PROOF. (1): Using Theorem 4.1.
(2): By using n — g < d{z,y) <n—s—1, we have

dp(z,y) <d(z,y)+mn<n—-14+r—s.
On the other hand, since v(z, y) = Wi(s, n), we have
dp(z,y) > Wi(s,n) —®(s,n)=n—1+mr —s.

So dg(z,y) =n—1+r—s,and d(z,y) =n—s—1.

(3): Let P(z,y) be a shortest elementary path from z to y of length
n—s—1. Since dg(z,y) = n—1+ 1 — s, P(z,y) does not meet any
s-cycle. Suppose there exists another elementary path P'(z,y) # P(z,v)
from z to y. Then P’(z,y) must meet some s-cycle and some ry-cycle,
because |V (P'(z,y))| = |V(P(z,y))l =n—s>n—r1 and V(P'(z,y)) #
V(P(z,y)). So dg(z,y) < |P(z,y)] <n—-1<n—1+mr —s This
contradicts the fact that dg(z,y) = n — 1 + 19 — s. Hence there is a
unique elementary path P(z,y) from z to y, and P(z,y) does not meet
any s-cycle.

(4): Suppose there exist two different cycles C; and C; of length s.
Then |V(Cy) U V(C;3)| > s+ 1, since s is the shortest cycle length of D,
so P(z,y) as a path of length n — s — 1 will meet the cycle C; or Cs. This
contradicts (3). So D has a unique s-cycle. [ |

It is easy to prove the following property of primitive ministrong di-
graphs.

LEMMA 5.2. If D € MDy(n) andged(n—1,s) > 1, thenn—1 ¢ L(D).

PrOOF. Ifn-—1 € L(D), then we must have L(D) = {n — 1, s}, (since
D is ministrong)}, and ged(n — 1, s) = 1, a contradiction. ]

COROLLARY 5.1. Let D € MD,(D) with s # 2,6, ged(n — 1,s) >
1, b > rg. If ¥(D) = Wi(s,n), then b ¢ L(D).
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PROOF. Suppose b € L(D). By v(D) = Wi(s,n) we have D € 1;(n),
so s | b (since b > rp). Thus ged(b+1,8) =land b+1>mn-—1, so
b=n—1¢€ L(D). But from Lemma 5.2 we have n — 1 ¢ L(D). This is a
contradiction. Hence b ¢ L(D): the corollary is proved. [ ]

Denote by T, the set of digraphs D which satisfy the following five
conditions:

(5.1) V(D) = V(Cs) U V(Pn_s_1), where C; is a cycle of length s,
and P,_s_; is a elementary path of length n — s — 1 with V(C;)
N V(Pp—s—1) = @. Furthermore, E(D) = E(Cs) U E(Pp_5_1) U
E’, where E’ is an arc subset of D such that P, _;_; is a unique path
from the starting vertex (say, z) of Pn_5_1 to the end vertex (say, y)
of Pn—s—l-

(5.2) D € s(n).

(5.3) D contains a unique cycle of length s.

(5.4) V(C) N V(Cy) = ¢, where Cj is any cycle of length b which is not
equal to s or rp.

(5.5) o —14# Ef‘zl a;r;/ s, where L(D) = {s, 19,71, 72,...,T\}, and a; is a
nonnegative integer, 1 = 1,2,..., A (i.e., 1y — 1 is not a nonnegative
integral combination of ry/s,m/s,...,r2/$).

Clearly the digraph Dy in Figure 2 belongs to T ., so Ts, # ¢. If
D € Ts, and b € L(D) with b # s, then P,_,_1 meets a b-cycle of D,
because |Pp_s_1|=n—-s—1>n—b.

THEOREM 5.1. Let D € MDg(n) with s # 2,6, ged(n — 1,s) >
1, s{(n—1), orn—1=ks, but (k—1) | (s —2). Then v(D) = bs(n) =
Wi(s,n) if and only if D € T, ,.

PROOF. Necessity:

(1) By Theorem 4.1 we see that D € ,(n). So the condition 5.2 is
satisfied.

(2) Let v(D) = ~v(z,y) = Wi(s,n), where z,y € V(D). By using Lem-
mas 4.7 and 4.10 we obtain that n—ry < d(z,y) < n—s—1. So from
Lemma 5.1 we see that the conditions (5.1) and (5.3) are satisfied,
and d{(z,y) = n—1— s, so the shortest path from z to y meets every
cycle of D whose length is not equal to s.

(3) Suppose V(Cs) N V(Cy) # ¢ for some cycle Cy of length b (b #
s, b # 1rg). Take B = {ry, s}, and add the cycle C; to a shortest
path P(z,y) from z to y; we obtain a walk from z to y of length
d(z,y) + b which meets some s-cycle [while P(z,y) already meets
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any rp-cycle]. By using Corollary 5.1, we have b < ry. So dp(z,y) <
d(z,y) + b < n— 14 15 —s. On the other hand, from Lemma 5.1
we get dg(z,y) = n — 1+ 15 — s. This is a contradiction. Hence
V(Cs) N V(Ch) = ¢, namely, the condition (5.4) is satisfied.

(4) Suppose 15 — 1 = Z;\zl a;r;/s for some nonnegative integers oi,
ag,..., ax, where L(D) = {ry,s,7m1,72,...,7a}. Then s(rp — 1) +
n—s—lzn—s—l-l—zl).‘:lain,i.e.,

Wi(s,n)—1 = ®(rg,s)—14+n—-1+m—35s

A A
n—s—l-i—Zain = d(z,y)+Za¢n.
i=1 i=1

Since the shortest path P(z,y) from z to y has length n — s — 1, it

already meets all cycles of length r; (¢ =1,2,...,A). So there exists

a walk from z to y of length d(z, y) +Z;\=1 a;r; = Wi(s,n) -1, and

y(z,y) < Wi(s,n). This contradicts the fact that y(z, y) = Wi(s, n).

Hence 1y — 1 # Z;\=1 a;7;/s, namely, the condition (5.5) is satisfied.

Thus the necessity is proved.
Sufficiency: Since D € T, we have V(D) = V(C;) U V(Pp_s-1) and
E(D) = E(Cs) U E(Pp_s—1) U E’. In the following we want to show
v(z,y) = v(D) = Wi(s,n), where z is the starting vertex of P,_s_1, and
y is the end vertex of P, 1.

Since v(z,y) < Wi(s,n), we need only to prove that there doesn’t exist

a walk of length W;(s,n) — 1 from z to y. Otherwise, Wi(s,n) —1 can be
expressed as follows:

A
Wl(s,n)—l=n—sﬂ1+2ain+aoro+a,\+ls, (5.6)

=1
where g; is a nonnegative integer (¢ = 0,1,2,...,A + 1), and by using the

condition (5.4), if ag = 0, then ay4+1 =0.
Case 1. ag = 0. Then ay4; = 0, and from the equality (5.6) we have

n+s(ro—2) =n-—s+ Z?:] a;m;. Hence s(rg — 1) = Ei;l a;r; and
(ro—1)= Z;\=1 a;r;/s. This is in contradiction with (5.5).

Case 2. ag > 0. Then by the equality (5.6) we have

A

s(ro—1) = Z a;7; + agro + ax+15. (5.7)
i=1
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Sinces | r; (¢ = 1,2,...,A), we have s | agrp. Again because ged(s, rp) =
1, we get that s | ag, s0 ag > s, and

A
S(T‘() - 1) < srp < ggrg < Z ;7 + pTp + axr4+18,

i=1

which contradicts (5.7).

Combining cases 1 and 2, we obtain that there does not exist a walk
of length Wi(s,n) —1 from z to y, and y(D) = y{z,y) = Wi(s,n). This
completes the proof of the sufficiency part. n

By an argument similar to the proof of Theorem 5.1, we can obtain the
following theorem.

THEOREM 5.2. Let D € MD;(n), ged(n—1,8) > 1, s#2,6, n—1=
ks, (k —1){(s — 2). Then v(D) = Wi(s,n) if and only if D € Ts, or
D = Dy, where D, is the digraph in Figure 4.
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