The Transcription Factor KLF2 Restrains CD4+ T Follicular Helper Cell Differentiation

Highlights
- KLF2 expression varies in distinct T helper cell subsets
- Downregulation of KLF2 and S1PR1 is required for Tfh cell differentiation
- KLF2 promotes expression of Blimp-1, T-bet, and Gata-3
- KLF2 enhances differentiation of functional Th1 cells

Authors
June-Yong Lee, Cara N. Skon, ..., Kristin A. Hogquist, Stephen C. Jameson

Correspondence
james024@umn.edu

In Brief
The factors that control T follicular helper (Tfh) cell lineage choice are incompletely understood. Jameson and colleagues find that low expression of the transcription factor KLF2 favors generation of Tfh cells, whereas high KLF2 expression impairs Tfh cell differentiation and promotes Th1 cell generation.
The Transcription Factor KLF2 Restrains CD4+ T Follicular Helper Cell Differentiation

June-Yong Lee, Cara N. Skon, You Jeong Lee, Soohwan Oh, Justin J. Taylor, Deepali Malhotra, Marc K. Jenkins, M. Geoffrey Rosenfeld, Kristin A. Hogquist, and Stephen C. Jameson

SUMMARY

T follicular helper (Tfh) cells are essential for efficient B cell responses, yet the factors that regulate differentiation of this CD4+ T cell subset are incompletely understood. Here we found that the KLF2 transcription factor serves to restrain Tfh cell generation. Induced KLF2 deficiency in activated CD4+ T cells led to increased Tfh cell generation and B cell priming, whereas KLF2 overexpression prevented Tfh cell production. KLF2 promotes expression of the trafficking receptor S1PR1, and S1PR1 downregulation is essential for efficient Tfh cell production. However, KLF2 also induced expression of the transcription factor Blimp-1, which repressed transcription factor Bcl-6 and thereby impaired Tfh cell differentiation. Furthermore, KLF2 induced expression of the transcription factors T-bet and GATA3 and enhanced Th1 differentiation. Hence, our data indicate KLF2 is pivotal for coordinating CD4+ T cell differentiation through two distinct and complementary mechanisms: via control of T cell localization and by regulation of lineage-defining transcription factors.

INTRODUCTION

During the immune response toward foreign antigens, the germinal center (GC) reaction represents a central mechanism for generating high-affinity antibodies of diverse isotypes (Victora and Nussenzweig, 2012). Fundamental in this process is the activity of CD4+ T follicular helper (Tfh) cells, which coordinate generation of the GC, initiate help for antigen-specific B cells, and promote selection of germinal-center B cell clones that have developed enhanced antigen recognition through somatic hypermutation (Crotty, 2011; Liu et al., 2013; Victora and Nussenzweig, 2012; Vinuesa and Cyster, 2011). Characteristic features of Tfh cells include expression of inducible T cell co-stimulator (ICOS), programmed death 1 (PD-1), the chemokine receptor CXCR5, and the cytokine interleukin-21 (IL-21), and these molecules are key for Tfh cell generation and function (Crotty, 2011; Liu et al., 2013; Victora and Nussenzweig, 2012; Vinuesa and Cyster, 2011). Cells with a Tfh cell phenotype accumulate around and enter B cell follicles, whereas cells that localize within GC are characterized by high expression of CXCR5, PD-1, and Bcl-6 (Crotty, 2011; Liu et al., 2013; Victora and Nussenzweig, 2012; Vinuesa and Cyster, 2011). Migration and retention of Tfh in the GC depends on CXCR5 and the sphingosine-1-phosphate receptor S1PR2 (Moriyama et al., 2014) Downregulation of CCR7 is also critical for Tfh cell accumulation in the follicle and normal GC responses (Haynes et al., 2007); however, other factors that negatively regulate Tfh cell trafficking are not well defined.

Multiple transcription factors, including c-Maf, Batf, Irf4, STAT1, STAT3, and Ascl2, are involved in development and function of Tfh cells (Crotty, 2011; Liu et al., 2014; Liu et al., 2013), but maintenance and full differentiation of Tfh critically requires expression of Bcl-6 (Choi et al., 2011; Crotty, 2011; Liu et al., 2014; Liu et al., 2013; Liu et al., 2012; Vinuesa and Cyster, 2011). The Tfh differentiation pathway is opposed by other factors, the best studied of which is Blimp-1. Bcl-6 and Blimp-1 are mutually antagonistic, making the balance in expression of these two factors a critical element in determining the fate of helper T cells. IL-2R signaling impairs Tfh generation in a mechanism involving Blimp-1 and STAT5 (Ballesteros-Tato et al., 2012; Johnston et al., 2012; Oestreich et al., 2012; Pepper et al., 2011). Furthermore, the transcription factors Foxo1 and Foxp1 both restrain Tfh cell generation, although the mechanisms involved are not fully defined (Kerdiles et al., 2010; Wang et al., 2014; Xiao et al., 2014). Activated CD4+ T cells that do not mature into Tfh cells can join one of several alternative “non-Tfh” subsets (including T helper 1 [Th1], Th2, Th17, and Treg cells) that are thought to not localize into the GC. Key transcription factors for several of these alternative fates are blocked by Bcl-6 (Crotty, 2011; Liu et al., 2013; Nurieva et al., 2009), further establishing this factor as central to reinforcing Tfh differentiation.

Hence, in order to effectively participate in the GC response, Tfh cells must (1) migrate into the B cell follicle and reside in the GC; (2) acquire specific functional properties needed for effective B cell help; and (3) exclude alternative differentiation fates. It is unclear, however, whether these three aspects are coordinately regulated and, if so, what factors are involved in that control.
The transcription factor KLF2 is essential for naive T cell trafficking, in part through promoting expression of CD62L (L-selectin) and S1PR1, which are critical for lymphocyte entry and egress, respectively, in secondary lymphoid tissues (Bai et al., 2007; Carlson et al., 2006; Hart et al., 2012; Takada et al., 2011). More recently, we reported that low expression of KLF2 associates with nonlymphoid tissues and does not recirculate via the resident memory CD8+ T (Trm) cells—a population that is prominent in nonlymphoid tissues and does not recirculate via the blood and lymph (Skon et al., 2013). Those studies suggested that T-lymphocyte residence and recirculation were characterized by low and high expression of KLF2, respectively. Similarly, in order to provide sustained help for GC B cells, Tfh cells must become a resident population within the responding lymphoid tissue. Hence, in this report we explore whether KLF2 impacts the capacity of activated CD4+ T cells to become Tfh cells. We found that KLF2 expression impairs Tfh cell differentiation and that KLF2 deficiency enhances Tfh cell generation. These effects relate to the capacity of KLF2 to induce expression of Blimp-1; however, we also showed that KLF2 promotes expression of T-bet and GATA3, indicating that KLF2 controls various aspects of Tfh cell differentiation.

RESULTS

Tfh Cells Exhibit a KLF2lo Phenotype

We initially studied KLF2 expression in antigen-specific CD4+ and CD8+ T cells responding to lymphocytic choriomeningitis virus (LCMV) by using a previously described KLF2-GFP reporter mouse strain (Skon et al., 2013; Weinreich et al., 2009). In keeping with our earlier findings (Skon et al., 2013), the vast majority of effector CD8+ T cells in lymphoid tissues expressed KLF2 (Figure 1A), yet we noted that KLF2 expression in effector CD4+ T cells was bimodal, in that some cells expressed KLF2 in amounts similar to those observed in the CD8+ T cell population, whereas other cells exhibited substantially reduced KLF2 expression (Figure 1A). We have reported that KLF2 downregulation characterized non-recirculating Trm (Skon et al., 2013), and the B cell helper function of Tfh cells obliges them to be retained within the priming lymphoid tissue (Crotty, 2011; Victora and Nussenzweig, 2012). Hence we investigated whether the amount of KLF2 expressed correlated with the Tfh cell subset. Indeed, we found that the KLF2lo subset was highly enriched for cells expressing a Tfh cell phenotype (CXCR5hi, PD-1hi, and Bcl-6hi), whereas non-Tfh-cell populations were more prevalent in the KLF2hi population (Figure 1B). Further analysis showed that cells with a Tfh cell phenotype were KLF2lo, whereas non-Tfh-cell populations expressed higher amounts of KLF2 (Figures 1B and 1C). Cells in the CXCR5hi, PD-1lo population are likely to be a mixture of developing Tfh cells and precursors for central memory CD4+ T cells (Crotty, 2011; Pepper and Jenkins, 2011) and hence are not further discussed. This expression pattern was not limited to CD4+ T cells responding to LCMV in light of the fact that we observed similar profiles for polyclonal CD4+ T cells responding to distinct epitopes during acute infection with the bacteria Listeria monocytogenes (Figure 1D).

To extend these findings and visualize differences in KLF2 expression in the context of lymphoid tissue architecture, we used immunohistochemistry to determine KLF2-GFP expression in situ in the draining lymph node after immunization with the...
protein Phycoerythrin (Figure S1). CD4+ T cells that were physically localized to the GC had significantly lower KLF2 expression than CD4+ T cells located in the T cell zone (Figures 2A and 2B). Indeed, GFP expression was clearly lower in the GC as a whole, indicating that both CD4+ T cells and B cells in this zone were KLF2lo (Figures 2B and 2C). Collectively, these data suggested that the reduced KLF2 expression is a signature feature of the Tfh cell population.

Dynamic Changes in KLF2 and S1PR1 Expression during the CD4+ T Cell Response

To further investigate the regulation and function of KLF2 during CD4+ T cell lineage commitment, we developed an adoptive transfer system by using TCR transgenic CD4+ T cells (TEa), specific for I-Aβ-DEL (Grubin et al., 1997). To enhance antigen-specific B cell interactions and optimize Tfh cell differentiation (Crotty, 2011; Victora and Nussenzweig, 2012), we co-transferred MD4 BCR transgenic B cells that recognize duck egg lysozyme (DEL) (Hartley et al., 1991), and immunized the recipient mouse subcutaneously with Phycoerythrin (PE) 14 days earlier.

(A) In the left image, the indicated stains were used for identification of B cell follicles (B220+) and the T cell zone (B220−; CD4+), whereas germinal centers (GCs) were identified by GL7 staining (and confirmed by PE co-staining: data not shown). Two GCs are indicated by white arrows. The right image is the same section, but only the KLF2-GFP staining signal is shown.

(B) The panels show the staining for KLF2-GFP (green) and CD4+ (red) for cells in the GC or T cell zone, as indicated. The upper two panels are from immunized KLF2-GFP mice, whereas the lower two panels are from immunized WT B6 mice. Colors are as follows: gray, DAPI; purple, B220; green, KLF2-GFP; red, CD4; and blue, GL7. The scale bars for the images are shown.

(C) The KLF2-GFP fluorescence intensity of CD4+ T cells in the GC or T cell zone (according to the criteria defined in [A and B]). Each dot represents a single CD4+ T cell, and the red bar indicates the average fluorescence intensity of each group. All experiments were repeated three times with similar results. Graphs show accumulated data from three independent experiments as means ± SEM; ***p < 0.001 per a two-tailed t test.

Immunochemistry analysis of a draining lymph node (dLN) from KLF2-GFP reporter mice immunized subcutaneously with Phycoerythrin (PE) 14 days earlier. From day 5 of the response, however, cells without a Tfh cell phenotype showed sustained KLF2 re-expression, whereas cells with a Tfh phenotype maintained low KLF2 reporter expression well into the memory phase (day 30). S1PR1 reporter expression was also markedly lower in Tfh cells compared to non-Tfh cells (Figure 3A), consistent with the very low KLF2 expression in the Tfh cell population.

We also observed higher expression of the activation marker CD69 in Tfh cells than in non-Tfh-effector-cell populations (Figure 3B). Studies suggest TCR engagement is required for sustaining Tfh proliferation and maintenance (Choi et al., 2013), and it has been proposed that CD69 expression on Tfh cells is an indication of TCR stimulation (Fazilleau et al., 2009). This is relevant because TCR signals cause KLF2 downregulation (Cahalan et al., 2011; Cyster and Schwab, 2012; Skon et al., 2013). From day 5 of the response, however, cells without a Tfh cell phenotype showed sustained KLF2 re-expression, whereas cells with a Tfh phenotype maintained low KLF2 reporter expression well into the memory phase (day 30). S1PR1 reporter expression was also markedly lower in Tfh cells compared to non-Tfh cells. However, at an earlier time point (day 7), Nur77-GFP expression was similar in Tfh and non-Tfh cells (Figure 3C), suggesting that...
KLF2 expression and Tfh differentiation (Figure S2D). 5 days after ICOS-L blockade, initiated at day 7 of immunization, would impact this pathway for Tfh cell maintenance but limiting our capacity to extinguish KLF2 expression (Fabre et al., 2008; Sinclair et al., 2013). Hence, we tested how ICOS-L signaling by Tfh and non-Tfh TEa CD4+ T cells (shown as gMFI, calculated as above), (D and E) KLF2-GFP TEa and MD4 B cell recipient mice were immunized with Ex-SA-DEL and CFA and treated with anti-ICOSL (ICOS-L blocking) or isotype control immunoglobulin at day 7 as schematically shown in Figure S2D. KLF2-GFP expression in Tfh or non-Tfh cells was analyzed 9 days after immunization. (E) Data are presented as gMFI minus background gMFI of wild-type CD4 T cells of the recipient mice. Data are from three independent experiments with a total of nine recipient mice at each time point. Graphs show accumulated (A–C) or representative (D) data from the independent experiments as means ± SD (A) or ± SEM (B, C, and E). Statistical significance, determined with a two-tailed t test, is indicated as follows: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; and ***p < 0.001.

Loss of KLF2 Enhances Tfh Cell Generation and the GC B Cell Response

Although these results indicated that Tfh characteristically display reduced KLF2 and S1PR1 expression, the functional relevance of this expression pattern was unclear. Hence, we examined the consequences of dysregulated KLF2 expression. Analysis of KLF2-deficient naive T cells is compromised by their altered trafficking (Bai et al., 2007; Carlson et al., 2006), and so we utilized an inducible-knockout approach in which tamoxifen administration stimulates ERT2-Cre to mediate Klf2 ablation (monitored through a Cre-induced YFP reporter; Figures S3A and S3B) (Liu et al., 2014; Wang et al., 2014). Klf2 deletion in TEa T CD4+ T cells was initiated at day 2 of the response (when the KLF2 expression level is already low; Figure 4A) (Liu et al., 2014; Wang et al., 2014). Klf2 deletion in TEa T CD4+ T cells was initiated at day 2 of the response (when the KLF2 expression level is already low; Figure 4A).
controls, consistent with the hypothesis that KLF2 acts to restrain Tfh cell differentiation.

To test whether KLF2-deficient Tfh CD4+ T cells were functional, we tested their capacity to mediate antigen-specific B cell priming and the GC reaction. Klf2-inducible knockout TEa T cells were transferred into Tcrα- (or Tcrβ-)deficient recipients and primed with Eα-SA-DEL and CFA subcutaneous immunization. Tamoxifen was administrated daily from day 2, and the cells were analyzed at day 7. KLF2-deficient TEa CD4+ T cells were identified as YFP*.

(B–E) WT or KLF2-inducible knockout KLF2 TEa cells were transferred (without MD4 B cells) into Tcrα−/− (B, C, and D) or Tcrβ−/− (E) recipients, which were immunized with Eα-SA-DEL in CFA and treated with tamoxifen from days 2 to 6. Animals were analyzed on day 7 (B–D) or days 14 and 30 (E) for phenotypic markers (defined in Figure S3). (B) Titers of Eα-SA-DEL-specific antibodies in serum from mice receiving wild-type (n = 5) or Klf2fl/fl (n = 5) TEa T cells. Serum samples were collected at the day of immunization (pre-immune), beginning of tamoxifen treatment (day 2 after immunization: "D + 2"), and after 5 days of tamoxifen treatment (day 7 after immunization: "D + 7"). (C and D) Quantification of endogenous Eα-SA-specific (C) plasma cells (intracellular immunoglobulin [Ig]; B220lo; left) and (D) GC B cells (B220hi, GL7hi; right) in Tcrα−/− knockout recipient mice at day 7 after immunization. (E) Quantification of endogenous Eα-SA-specific isotype-switched memory B cell (B220hi, CD38hi, IgMneg, IgDneg) in Tcrβ−/− knockout recipient mice at days 14 and 30 after immunization. Each symbol represents an individual mouse, and small horizontal lines indicate the mean. Data are from three independent experiments with a total of nine wild-type B6 recipient mice (A), with nine wild-type or six Klf2fl/fl Tcrα−/− recipient mice (B–D), or with 15 KLF2+/+ or 15 Klf2fl/fl Tcrβ−/− recipient mice (E). Graphs show accumulated data from the independent experiments as means ± SEM. Statistical significance, determined with a two-tailed t test, is indicated as follows: ns, not significant (p > 0.05); *p < 0.05; **p < 0.01; and ***p < 0.001.
isotype-switched memory B cells was substantially increased when KLF2-deficient TExa cells (rather than wild-type TExa cells) were present (Figure 4E). Taken together, these results showed that deletion of KLF2 in early-activated CD4+ T cells promoted polarization toward Tfh cells and that those T cell populations were functional and thus provided help for robust antigen-specific B cell priming, GC-dependent isotype switching, and generation of memory B cells.

Forced Expression of KLF2 or S1PR1 in CD4+ T Cells Impairs Generation of Tfh Cells

As a complementary approach, we assessed the impact of increased KLF2 expression on GC Tfh cell differentiation in vivo by using a retroviral overexpression system (Skon et al., 2013). At day 7 after immunization, forced expression of KLF2 in TExa CD4+ T cells resulted in a dramatic inhibition of Tfh cell differentiation (as compared to non-transduced and “empty” retroviral transduced controls) (Figures 5A and S4A), supporting the proposal that KLF2 plays a dominant-negative regulatory role in Tfh cell differentiation. KLF2 is required for S1PR1 expression in T cells, and previous studies have suggested that induction of S1PR1 is sufficient to substitute for KLF2 in promoting thymocyte egress (Zachariah and Cyster, 2010) and inhibiting Trm generation (Skon et al., 2013). Indeed, ectopic expression of S1PR1, like KLF2, significantly decreased generation of Tfh CD4+ T cells (Figures 5A and S4A). An important question was what Tfh cell subset was favored by KLF2 overexpression. To assess this, we analyzed the expression of lineage-defining transcription factors in responding CD4+ T cells by using a sequential gating strategy (Figure S4B), revealing that forced KLF2 expression caused a substantial increase in the frequency of T-bet+ cells (indicative of Th1 differentiation) and a reduction in the frequency of RORγt+ cells (associated with the Th17 subset) (Figure 5B). A small increase in the frequency of T-bet+, GATA3+ cells was also observed. Forced expression of S1PR1 had a minimal effect on the frequency of T-bet+, GATA3+, or RORγt+ populations, but KLF2 and S1PR1 overexpression each resulted in a reduced frequency of Bcl-6+ cells, in keeping with impaired Tfh differentiation (Figure 5B). These results suggest that down-regulation of KLF2 and its target S1PR1 are obligatory steps in the production of Tfh CD4+ T cells and that enforced KLF2 expression favors generation of cells expressing the canonical Th1 cell transcription factor T-bet.

KLF2 Inhibits Tfh cell Production Independently of S1PR1 Regulation

These findings might suggest that the critical function of KLF2 in controlling Tfh cell production is through control of S1PR1 expression. To test this, we neutralized S1PR1 functional activity with the drug FTY720 (Cyster and Schwab, 2012). Although S1PR1 overexpression led to reduced generation of Tfh, this effect was substantially reversed by treatment with FTY720 (Figures 5C and S4C), consistent with the hypothesis that S1PR1 expression blocks Tfh cell generation. Surprisingly, however, FTY720 treatment had no effect on the skewed Tfh cell differentiation induced by forced KLF2 expression (Figures 5C and S4C). This implied that the effects of forced KLF2 expression were not limited to induction of S1PR1. It is unlikely this is simply a consequence of insufficient FTY720 dosage because mRNA expression for S1PR1 was lower in KLF2-transduced than in...
S1PR1-transduced CD4+ T cells (see Figure 6A). Furthermore, FTY720 treatment did not impact CD4+ T cell differentiation in the control-transduced population (Figures 5C and S4C), suggesting that S1PR1 function alone was not regulating generation of the Tfh cell subset in normal cells. These data indicate that S1PR1 downregulation is necessary but not sufficient to permit Tfh differentiation but that S1PR1 regulation was not the dominant pathway through which KLF2 regulates generation of the Tfh cell subset.

KLF2 Induces Blimp-1 to Reduce Bcl-6 Expression

Our findings suggested that KLF2 might have additional downstream targets that affect Tfh cell generation. We assessed the impact of KLF2 overexpression or deletion on the expression of known factors in the Tfh differentiation pathway by using in-vitro-stimulated CD4+ T cells maintained in non-polarizing culture conditions (Figures 6A–6C and S5A). Quantitative RT-PCR data showed that KLF2 overexpression led to significantly increased expression of **Prdm1** (the gene encoding Blimp-1) and reduced expression of **Bcl6** (Figures 6A and 6C). In contrast, KLF2 ablation led to a reduction in Blimp-1 expression and induction of Bcl6 (Figure 6B). Hence, these data indicate that KLF2 regulates the expression of transcription factors that dominantly regulate Tfh cell differentiation (Crotty, 2011; Johnston et al., 2009; Oestreicher et al., 2012). In contrast, we did not observe effects of KLF2 manipulation on mRNA expression of Ascl2, CXCR5, ICOS, or IL-21 in these in-vitro-cultured cells (Figures 6A and 6B and data not shown). Forced expression of S1PR1 had no effect on Blimp-1 or Bcl-6 expression (Figures 6A and 6C). Although these data showed that KLF2 impacts the balance of
Blimp-1 and Bcl-6 expression, the transcriptional antagonism between those two factors complicates defining how KLF2 regulates this expression profile. To test whether KLF2 directly binds to promoters for these genes, we performed chromatin immunoprecipitation (ChIP) assays for KLF2-GFP on both naive and activated CD4+ T cells by using PCR probes for regions close to proposed transcriptional start sites (Figure S5B). As expected, we found KLF2 at the promoter of S1pr1 in naive and activated CD4+ T cells (Figure 6D). In addition, we found that KLF2 bound the promoter region of Prdm1, the gene encoding Blimp-1, after T cell activation, but we did not observe a significant ChIP signal for KLF2 at the Bcl6 promoter (Figure 6D). These findings are consistent with the idea that changes in Bcl6 mRNA expression (Figures 6A and 6B) are secondary to KLF2 induction of the repressor Blimp-1, and they raised the question of whether the ability of KLF2 overexpression to impair Tfh differentiation required Blimp-1. To explore this question, we used a retroviral co-transduction system, allowing for both overexpression of KLF2 and expression of Cre recombinase in cells with floxed Prdm1 alleles, to induce Prdm1 deletion (Johnston et al., 2012). Transduction with KLF2 and Cre retroviruses was monitored by the markers Thy-1.1 and mAmetrine, respectively (Figure S5C). SMARTA TCR transgenic Prdm1fl/fl cells were used, and the response to LCMV infection was monitored at day 7 after infection (Figure S5C). Cells transduced with Cre alone showed increased Tfh cell differentiation, consistent with Prdm1 deletion, whereas cells transduced with KLF2 alone exhibited reduced Tfh generation, as expected (Figures 6E and S5C). However, the Tfh population frequency in cells transduced with both retroviruses was considerably higher than that of those transduced with KLF2 alone, indicating that Blimp-1 is critical for the effects of KLF2 overexpression on Tfh differentiation (Figure 6E). Still, a trend toward lower Tfh frequency in dual-transduced cells compared to those transduced with Cre alone suggested that forced KLF2 expression might also operate through Blimp-1-independent pathways to impair Tfh generation.

KLF2 Promotes Expression of T-bet and Gata3 and Th1 Generation

Our studies showed that KLF2 overexpression in vivo leads to an increased frequency of T-bet- and Gata3-expressing CD4+ T cells (Figure 5B), and so we also explored how expression of transcription factors that define other T helper (Th) cell subsets was affected by KLF2 manipulation (Figures 7A and 7B). Overexpression of KLF2 in vitro led to a substantial increase in expression of T-Bet (Tbx21) and Gata3 genes and proteins, but it did not affect expression of the gene for Rorγt (Rorc) or Foxp3 (Figures 7A and 7C and data not shown). We saw an increase in the frequency of cells co-expressing T-bet and Gata3 (Figure 7D), and ChIP assays revealed that KLF2 occupies the regulatory regions of the genes for T-bet (Tbx21) and Gata3 (Gata3) after T cell activation (Figure 7E). However, induced KLF2 deficiency did not lead to reduced expression of Tbx21 or Gata3 (Figure 7B), in contrast with the decline in Prdm1 expression (Figure 6A), suggesting KLF2 is not required for Tbx21 or Gata3 expression.

Next we assessed whether KLF2 manipulation led to altered effector function. TEa CD4+ T cells were activated and transduced with empty, KLF2, or S1pr1 retroviruses, cultured in non-polarizing (“Th0”) or Th1-polarizing conditions, and then assayed for production of IFN-γ or IL-4 after restimulation. Forced expression of KLF2 (but not of S1pr1) led to a substantial increase in the frequency of IFN-γ-producing cells from the Th0 cultures, and increased IFN-γ expression levels in cells from both Th0 and Th1-polarized cultures (Figure 7F). In contrast, induced deletion of KLF2 in Th1-polarized CD4+ T cells led to both a reduced frequency of IFN-γ-producing cells and reduced IFN-γ expression levels in those cells (Figure 7F). IL-4 production was not detected from any groups under these culture conditions (Figures S6A and S6B). Forced KLF2 expression also led to enhanced Th1 differentiation in vivo, as indicated by the increased frequency of IFN-γ-producing cells and elevated IFN-γ expression levels induced in cells recovered 7 days after immunization (Figure 7G).

KLF2 overexpression might induce non-physiological gene-expression patterns. Hence, we also evaluated whether endogenous KLF2 expression correlated with expression of lineage-defining transcription factors in differentiating TEa CD4+ T cells. KLF2 expression was lowest in the Bcl6hi pool, corresponding to Thf cells (Figure 7H). In contrast, TEa CD4+ T cells co-expressing T-Bet and Gata3 exhibited high KLF2 expression (Figures 7H and S6E). Other transcription-factor-defined subsets showed intermediate expression of endogenous KLF2 (Figure 7H). These data support the hypothesis that physiological KLF2 expression levels correspond with expression of the Th-lineage-defining transcription factors that are direct targets of KLF2.

DISCUSSION

The factors regulating Tfh cell differentiation and localization within the GC are still being defined. In this report, we show that one transcription factor, KLF2, influences both activated CD4+ T cell trafficking (through regulation of S1PR1) and Th subset differentiation (through control of Blimp-1, T-bet, and Gata3), such that KLF2 expression directs differentiating CD4+ T cells away from the Tfh cell fate. Our findings are consistent with studies showing low expression of KLF2 and S1pr1 transcripts in Tfh cells (Kitano et al., 2011; Xiao et al., 2014), although those reports did not explore the significance of those findings. Furthermore, KLF2 does not simply block Tfh cell differentiation but, through regulation of multiple key transcription factors, serves to shape alternative Th-cell-differentiation choices. Indeed, we find that the amount of endogenous KLF2 expression correlates with expression of lineage-defining transcription factors, suggesting that KLF2 levels can tune the Th-cell-subset differentiation fate.

We and others have reported that KLF2 regulates expression of S1PR1, which is critical for lymphocyte recirculation (Bai et al., 2007; Carlson et al., 2006; Skon et al., 2013; Zachariah and Cyster, 2009). Indeed, with regard to thymocyte egress and establishment of Trm, expression of S1PR1 largely accounts for the role of KLF2 (Skon et al., 2013; Zachariah and Cyster, 2009, 2010). We found that forced expression of S1PR1 in activated CD4+ T cells led to a dramatic reduction in generation of Tfh cells. S1PR1 expression might impair migration of activated T cells into the B cell follicle, thereby blunting the signals that normally sustain Tfh cell differentiation. S1PR1 signals override migration induced by CXCR5 in MZ B cells (Amon et al., 2013).
Figure 7. KLF2 Induces T-bet and GATA3 Expression and Enhances Th1 Polarization during CD4+ T Cell Lineage Commitment In Vivo

(A and B) RT-PCR analysis of CD4+ T-cell-lineage-specific transcription-factor expression (horizontal axis) for in-vitro-cultured retrovirus-transduced (A) or KLF2 knockout (B) TEa CD4+ T cells after cells were sorted on the basis of the expression of retroviral transduction marker (Thy1.1) or Cre-reporter signal (for Klf2−/− YFP*). Detailed in vitro culture conditions are described in Figure S5A.

(C) Fluorescence-activated cell sorting (FACS) analysis of T-Bet and GATA3 expression in retrovirally transduced TEa cells (identified by Thy1.1+ expression).

(D) Frequency of T-bet+, GATA3+ TEa CD4+ T cells within the T-bet+ population (Th1; T-bet+FoxP3−RORγT−).

(E) ChIP-PCR analysis of naive or in-vitro-activated KLF2-GFP reporter TEa CD4+ T cells, followed by chromatin immunoprecipitation with rabbit IgG (control) or anti-GFP and quantitative PCR analysis of binding at the promoter regions of Tbx21 (T-bet) and Gata3 (GATA3) (primers are listed in the Supplemental Experimental Procedures).

(legend continued on next page)
and counteract responses through a related chemokine receptor, CCR7, in T cells (Cyster and Schwab, 2012; Pham et al., 2009). In addition, S1PR2 was shown to cooperate with CXCR5 for efficient Tfh cell generation (Moriyama et al., 2014); because S1PR1 and S1PR2 signal through distinct G protein complexes, they could have opposing effects on cell migration (Cyster and Schwab, 2012). Nevertheless, our data indicated that S1PR1 regulation is insufficient to explain the effects of KLF2 expression on Tfh cell differentiation.

Further studies showed that KLF2 affected several T-cell-lineage-defining transcription factors. Overexpression of KLF2 led to increased expression of Blimp-1, whereas induced ablation of klf2 led to the opposite outcome. Bcl-6 expression changed in the reciprocal direction, as expected from the known mutual repression exerted between Bcl-6 and Blimp-1 (Crotty, 2011; Johnston et al., 2009; Oestreicher et al., 2012), but our data from ChIP suggested that Blimp-1 was a direct target for KLF2 binding. Furthermore, studies with inducible Prdm1-deficient cells demonstrated that the capacity of forced KLF2 to impair Tfh generation was largely dependent on Blimp-1. Previous studies on CD8+ T cells showed that forced KLF2 caused elevated Blimp-1 expression (Hu and Chen, 2013; Preston et al., 2013), consistent with our results. However, recent studies on pre-B cells found that KLF2 dramatically repressed (rather than promoted) expression of Blimp-1 (Winkelmann et al., 2014), suggesting the nature of Blimp-1 regulation by KLF2 might be specific to cell type or developmental stage. We did not note changes in gene expression in Ascl-2, CXCR5, ICOS, or IL-21 when KLF2 expression was manipulated, but it is possible that our in vitro studies would not reveal those changes, and analysis of KLF2 binding to other genes involved in Th cell differentiation and migration will be important. Nevertheless, our data on the impact of KLF2 on the balance between Blimp-1 and Bcl-6 expression provides a ready explanation for KLF2’s ability to derail the Tfh cell differentiation pathway.

Surprisingly, we also observed that elevated KLF2 expression induced the T-bet and Gata3 transcription factors, and ChIP assays suggested that KLF2 directly bound to the regulatory regions for the genes encoding these factors. Our data suggest that this regulation is not simply an artifact of overexpression studies because analysis of normal Tfh cells responding in vivo showed that the populations expressing T-bet and Gata3 had significantly higher levels of endogenous KLF2. T-bet and Gata3 are frequently co-expressed in human Th1 cells (Palliard et al., 1988), but analysis in mouse T cells suggests that these two factors are normally differentially expressed (i.e., Th1 cells express T-bet, and Th2 cells express Gata3) (Zhu et al., 2010). Although some studies have suggested that restimulating Th1 cells in Th2 conditions can provoke T-bet+Gata3+ cells with hybrid Th1 and Th2 properties (Hegazy et al., 2010), our studies found that KLF2-overexpressing CD4+ T cells were potently for production of the Th1 cytokine IFN-γ but did not exhibit detectable production of the Th2 cytokine IL-4. Studies on the characteristics of T-bet+Gata3+ CD4+ T cells suggest that T-bet typically co-opts Gata3 to support Th1-lineage gene expression (Kanhere et al., 2012), consistent with our findings. Although Blimp-1 has been reported to directly repress expression of T-bet and IFN-γ in activated CD4+ T cells (Cimmino et al., 2008), our studies indicate that, when induced by KLF2, Blimp-1 and T-bet can be co-expressed. The significance of KLF2hi cells’ expressing T-bet and Gata3 will require further study, but these findings suggest that KLF2 expression not only restrains Tfh differentiation but also can foster differentiation into other Th cell lineages (Th1 and potentially Th2). We observed that the frequency of RORγt-expressing cells was reduced by forced KLF2 expression (although whether this reflects active impairment of Th17 cell differentiation versus preferential skewing toward Th1 cell differentiation is not clear), and an intriguing recent study showed that KLF2 is also critical for effective induction of Foxp3 in induced Treg cells (Pabbisetty et al., 2014). Hence, accumulating data suggest that KLF2 acts as a critical element in differentiation into Th cell subsets.

What factors inhibit KLF2 expression during Tfh differentiation? ICOS-ICOSL interactions are critical for Tfh cell generation, and our studies showed that ICOS-L blockade led to increased KLF2 expression in cells with a Tfh cell phenotype. ICOS signaling induces the PI3K pathway (Crotty, 2011; Gigoux et al., 2009), and several studies indicate that strong PI3K-Akt activation impairs KLF2 expression, at least in part because of degradation of the transcription factor Foxo1 (Fabre et al., 2008; Kerdiles et al., 2009; Kerdiles et al., 2010; Sinclair et al., 2008; Skon et al., 2013). Foxo1 ablation leads to substantially enhanced Tfh differentiation (Kerdiles et al., 2010; Xiao et al., 2014), and recent studies indicate that degradation of Foxo1 through action of the E3 ubiquitin ligase Ithc was important for Tfh differentiation and that Ithc deficiency led to elevated expression of Foxo1 target genes (including KLF2) (Xiao et al., 2014). Although we found that ICOS engagement is important for repression of KLF2, this is unlikely to be the only relevant factor. TCR signaling also induces loss of KLF2 expression, and we find evidence of sustained TCR signaling in cells with a Tfh cell phenotype. Furthermore, studies with CD8+ T cells reveal that exposure to various cytokines—including TGF-β, IL-33, IL-12, IFN-I, and TNF—impairs KLF2 expression (Bai et al., 2007; Sinclair et al., 2008; Skon et al., 2013). Hence, the specific cytokine milieu surrounding an activated CD4+ T cell could dictate its KLF2 expression. Defining how disparate signals coordinate to regulate KLF2 expression during Tfh cell differentiation will require further investigation.

Kruppel-like factors play diverse roles in multiple tissues, often related to late differentiation steps (Hart et al., 2012; Skon et al., 2013). The studies reported here demonstrate a significant

(F) Percentage of IFN-γ producing population (left) or level of IFN-γ production (right) upon PMA/ionomycin stimulation for 3 hr in the retrovirus-infected (top) or KLF2 KO (bottom) Tfh cells in vitro (FACS plots in Figures S6A and S6B).
(G) Percentage of IFN-γ-producing population (left) or level of IFN-γ production in T-bet+ population (right) upon ex vivo PMA and lonomycin stimulation for 3 hr in the retrovirus-infected Tfh cells in vivo (FACS plots in Figure S6C).
(H) KLF2-GFP expression (gMFI) within Tfh cells expressing the indicated transcription factors at day 7 after immunization. Data are from at least three independent experiments, and graphs show accumulated data from the independent experiments as means ± SEM. Statistical significance, determined with a two-tailed t test, is indicated as follows: ns, not significant (p > 0.05); *p < 0.05; and ***p < 0.001.
impact of KLF2 expression on helper CD4+ T cell subset differentiation in two separate ways: Through trafficking (via S1PR1) and through regulation of three lineage-defining transcription factors (Blimp-1, T-bet, and GATA3). Hence, KLF2 serves a hitherto unsuspected function in dictating the lineage fate of CD4+ T cells.

EXPERIMENTAL PROCEDURES

Mice
C57BL/6 (B6) and B6.SJL mice were purchased from the National Cancer Institute, and ERT2-Cre, Rosa26-YFP, Blimp1-YFP, and Tcra−/− mice were obtained from Jackson Laboratories. Mice expressing the Tcra TCR transgene, specific for a peptide from the I-Ek MHC II molecule bound to I-Ak (I-Ak-Ek), or the M4D BCR transgene, which recognizes duck egg lysozyme (DEL), were maintained at the University of Minnesota. Cells from Rprt1fl/fl;B6-Cre
SMARTA mice were provided by Drs. Phil Nance and Shane Crotty (La Jolla Institute for Allergy and Immunology) and were crossed to TEa mice at the University of Minnesota. Mice expressing the TEa TCR transgene, or control empty vector (MiT-Empty) as described previously (Cahalan et al., 2011; Moran et al., 2011; Skon et al., 2013; Weinreich et al., 2010; Weinreich et al., 2009) and were crossed to TEa mice at the University of Minnesota. Animals were maintained under specific-pathogen-free conditions at the University of Minnesota. All experimental procedures were approved by the institutional animal care and use committee at the University of Minnesota.

Infections and MHC-II-Tetramer-Based Cell Enrichment
Mice were injected intravenously with 1 × 107 colony-forming units of Acta-deficient LM-2W1S bacteria or intraperitoneally (i.p.) with 2 × 105 plaque-forming units of the LCMV Armstrong strain. Tetramers composed of both 2W1S, LO190-201, or LCMV glycoprotein (GP) 66–77 peptides and I-Ak were made as described previously (Moon et al., 2009; Tubo et al., 2013).

Adoptive Transfer and E−SA-DEL Immunization
For adoptive transfer experiments, 1 × 105 Tcra−/− CD4+ T cells were typically co-transferred with 5 × 104 MD4 B cells into WT B6, B6.SJL, or Tcra−/− mice, depending on the CD45 congenic marker expression of the donor cells.

Inducible KLF2 Deletion and B Cell GC Reaction
In vivo KLF2 deletion of Klf2fl/fl (KLF2h/; KLF2h/; ERT2-Cre; Rosa26-YFP TEa) cells in wild-type B6.SJL, Tcra−/−, or Tcra−/− mice was achieved by administration of tamoxifen (10 cmg/ml) in sunflower seed oil i.p. for 5 consecutive days from day 2 after immunization. At day 7 after immunization, the spleen and inguinal, axillary, brachial, cervical, and mesenteric lymph nodes (LNs) were harvested and analyzed. Sera from immunized mice were collected at days 0, 2, and 7 after immunization, and antigen-specific antibodies were measured by ELISA as previously described (Pape et al., 2011).

Retroviral Transduction Approaches
Naïve CD4+ T cells from Tcra or Blimp1-YFP mice were isolated and activated by plate-bound anti-CD3 and anti-CD28 with recombinant IL-2 (20 ng/ml). 24 hr after activation, cells were spin-infected with retroviruses MiT-KLF2, MiT-S1PR1, or control empty vector (MiT-Empty) as described previously (Skon et al., 2013).

Chromatin Immunoprecipitation and Quantitative RT-PCR
Chromatin immunoprecipitation (CHIP) was performed as previously described (Li et al., 2013). Detailed procedures and primer information are described in Supplemental Information.

Immunohistochemistry
KLF2-GFP or WT B6 mice were subcutaneously immunized with PE (15 μg in CFA) at the base of the tail and were sacrificed after 14 days. Draining LNs were fixed with 4% PFA and incubated in 30% sucrose solution. 5 μm sections were cut and stained with anti-GFP antibody (Life Technology). GFP fluorescence intensities were quantified in GC (GL7 and B220 abundant) or T cell zone (CD4+ abundant and B220 negative) CD4+ T cells with ImageJ software according to histocytometric algorithms as previously described (Gerner et al., 2012).

Statistical Analysis
Data were analyzed with Prism software 4.0 (GraphPad). For standard data sets, an unpaired two-tailed Student’s t test was used. For values that differed by more than 10-fold, the data were log10-transformed before t test analysis. When data were normalized (by the appropriate control samples), normalization involved division of all values by the overall mean of the control values so that t test would be avoided. Data sets (in Prism format) are available on request.

SUPPLEMENTAL INFORMATION
Supplemental Information include Supplemental Experimental Procedures and six figures and can be found with this article online at http://dx.doi.org/10.1016/j.immuni.2015.01.013.

AUTHOR CONTRIBUTIONS
C.N.S., Y.J.L., and S.O. contributed equally to this report. J.Y.L., C.N.S., Y.J.L., and S.O. performed the experiments; J.Y.L., C.N.S., and S.C.J. designed the experiments; J.J.T., D.M., M.K.J., M.G.R., and K.A.H. provided essential reagents and resources for the studies; and J.Y.L. and S.C.J. wrote the manuscript, with input from all authors.

ACKNOWLEDGMENTS
We thank Hugh Rosen (Research Institute of Scripps Clinic) for S1PR1-GFP reporter mice; Kathy Pape, and Jessica Yang (UMN) for practical advice; Phil Nance and Shane Crotty (La Jolla, CA) for reagents and wise suggestions, and the Jamequest lab for intellectual input. This work was supported by NIH award R37 AI38903 (to SCJ).

REFERENCES

