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a  b  s  t  r  a  c  t

To  study  the  electrophysiological  properties  of  neuronal  networks,  in  vitro studies  based  on  microelec-
trode  arrays  have  become  a viable  tool  for analysis.  Although  in  constant  progress,  a  challenging  task
still  remains  in  this  area:  the  development  of  an  efficient  spike  sorting  algorithm  that  allows  an  accurate
signal  analysis  at the  single-cell  level.  Most  sorting  algorithms  currently  available  only  extract  a specific
feature  type,  such  as  the principal  components  or Wavelet  coefficients  of  the  measured  spike signals  in
order  to  separate  different  spike  shapes  generated  by  different  neurons.  However,  due  to the great  variety
in  the  obtained  spike  shapes,  the  derivation  of an  optimal  feature  set  is  still  a very  complex  issue  that
current  algorithms  struggle  with.  To  address  this  problem,  we propose  a novel  algorithm  that  (i) extracts
a  variety  of  geometric,  Wavelet  and  principal  component-based  features  and  (ii) automatically  derives  a
feature  subset,  most  suitable  for sorting  an individual  set of  spike  signals.  Thus,  there  is a  new  approach
that  evaluates  the  probability  distribution  of  the  obtained  spike  features  and  consequently  determines
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the  candidates  most  suitable  for the  actual  spike  sorting.  These  candidates  can  be  formed  into  an  individ-
ually  adjusted  set  of spike  features,  allowing  a separation  of  the  various  shapes  present  in the  obtained
neuronal  signal  by  a subsequent  expectation  maximisation  clustering  algorithm.  Test  results  with  sim-
ulated  data  files  and  data  obtained  from  chick  embryonic  neurons  cultured  on  microelectrode  arrays
showed  an  excellent  classification  result,  indicating  the  superior  performance  of  the  described  algorithm
approach.
. Introduction

The most basic goal of neuroscience is undoubtedly to under-
tand the processes of the human brain, not only to comprehend
he thought process itself, but also to find methods that treat neu-
ological diseases such as epilepsy, depression and Alzheimer’s
isease. One way to study the behaviour of neuronal networks is
o monitor electric signals generated by various neurons in such

 network. In vitro experiments enable the analysis of cell–cell

nteractions in controlled laboratory conditions and further offer
mproved research opportunities because of a reduced network
omplexity, as well as better accessibility. The standard technique
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to derive neuronal signals is the patch-clamp method (Sakmann
and Neher, 2009). In recent years, however, the usage of micro-
electrode arrays (MEAs) has become increasingly popular, as this
technique allows non-invasive and label-free recordings from mul-
tiple positions in the neuronal network (Thomas et al., 1972).

However,  fundamental network analysis still faces certain dif-
ficulties, since it cannot be guaranteed that the recorded electrode
signal originates only from one single cell rather than from mul-
tiple neurons in the proximity of that specific electrode. Due to
this uncertainty, special methods are required to separate differ-
ent cell signals within the measured electrode signal. One possible
approach takes into account the fact that the derived shape of the
signal changes with respect to the position of the neuron and the

Open access under CC BY-NC-ND license.
corresponding electrode (see Fig. 1).
However, none of the proposed spike sorting methods can

be broadly established, mainly due to accuracy and performance
issues. In the following report, we  present an overview of spike
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Fig. 1. Schematic of the signal components that can participate in the generation of a measured electrode signal. The signal can contain spikes generated by different neurons.
T ween 

s

s
a
b
o
t
f
p
o
s
p

2

n
T
t
c
u
i
e
t

p
t
a
g
2
e
p
t
d
w
h

t

he  shapes of these neural spikes should vary due to different coupling qualities bet
ources, is usually picked up by the respective electrode.

orting algorithms already developed in this area. We  also present
 new approach to the spike sorting problem, focussing on possi-
le features that are used to describe the different shape patterns
f neuronal spikes. Instead of limiting the pool of possible features
o a certain type, such as principal components or Wavelet-based
eatures, the proposed algorithm calculates a variety of spike
arameters. With a newly developed evaluation method, based
n expectation maximisation (EM) approximation, the algorithm
elects features that are the most suitable for the spike sorting of a
articular dataset.

.  State of the art

An  analysis of the current literature on neuronal pattern recog-
ition reveals a wide variety of spike sorting approaches (see
able 1). Usually, most spike sorting algorithms can be divided into
wo major steps: feature extraction followed by classification or
lustering. In addition, Table 1 also includes information about the
sed spike detection technique, as this pre-processing step can also

nfluence the result of the spike sorting significantly. Many differ-
nt approaches have already been tested and introduced in order
o address the problem at hand.

In terms of spike detection, the most common methods use sim-
le thresholding techniques to extract the actual spike signals from
he noisy measurement data. More elaborated algorithms further
dd specific signal transformations, e.g. using the nonlinear or Tea-
er energy operator (NEO or TEO) (Kim and Kim, 2000; Choi et al.,
006) to the thresholding process in order to decrease the influ-
nce of noise or low frequency signal artefacts. Another approach
resented by Hulata et al. (2002) uses Wavelet-based decomposi-
ion to discriminate actual spike shapes from noise. Such extended
etection methods usually yield a more precise detection result,

hich facilitates the actual sorting process, but at the expense of a
igher computational complexity.

The most common method of feature extraction and reduc-
ion is still the principal component analysis (PCA) (Wood et al.,
the individual neuron and the electrode. In addition, noise, originating from various

2004;  Wang et al., 2006; Biffi et al., 2008). However, Wavelet-
or Wavelet packet-based features have also become quite popu-
lar as the resulting coefficients are also capable of describing the
differences of various spike signals (Oweiss and Anderson, 2002;
Hulata et al., 2002; Quiroga et al., 2004). A drawback of this com-
plex method is the necessity of an additional selection step to
identify the coefficients that most precisely discriminate between
the various spike shapes. In some cases, geometric features are
also obtained from the measured spike events (Fee et al., 1996;
Vogelstein et al., 2004) as an alternative or, more commonly, a com-
plement to standard PCA features. The variety of the used spike
sorting features indicates that no optimal feature set has yet been
established. This might be due to the fact that it is questionable
whether a fixed set of features exists that can generally guarantee
a suitable spike shape representation.

While  an analysis of common spike sorting features already
shows certain diversity, this is even more apparent in the area of
possible classification algorithms. Many different pattern recogni-
tion approaches, ranging from simple clustering techniques such
as k-means (Hulata et al., 2002; Sato et al., 2007), more elaborate
expectation maximisation (Kim and Kim, 2003; Wood et al., 2004)
and superparamagnetic clustering methods (Quiroga et al., 2004),
to trainable classification algorithms such as neural networks (Kim
and Kim, 2000) and support vector machines (SVMs) (Vogelstein
et al., 2004), have already been tested for neural spike sorting. How-
ever, none of these approaches has been able to provide generally
optimal results to be widely established. Whereas trainable algo-
rithms certainly provide a greater potential, their performance still
seems to suffer due to a lack of fundamental training data. Unlike in
other areas, for example voice recognition or person identification,
in which basic training databases already exist, such datasets have
not been established for neural patterns, thereby limiting actual

algorithm training.

In  addition, many spike sorting algorithms also include a
final template matching step to further refine the classifica-
tion result (Zhang et al., 2004; Wang et al., 2006; Sato et al.,
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Table  1
Overview of the published spike sorting algorithms.

Author/year Detection Features Classification

Hulata et al. (2002) Threshold; Wavelet
reconstruction

Wavelet coefficients based on
Shannon entropy

k-means clustering

Wang  et al. (2006) NEO + threshold PCA Subtractive; k-means clustering; template matching

Vargas-Irwin and Donoghue (2007) Threshold PCA Density grid contour clustering; template matching

Fee  et al. (1996) Threshold Waveform alignment based on
multi-electrode waveform pair

Bisection clustering; iterative fusion of cluster processes

Wood  et al. (2004) Threshold PCA Spectral clustering; EM with MoG

Sato et al. (2007) Peak–peak threshold PCA Iterative k-means using DBVI; template matching

Kim  and Kim (2003) – Projection pursuit/neg. entropy
maximisation

EM with MoG

Kim  and Kim (2000) NEO + threshold Spike shape Artificial neural network (MLP with RBFN)

Shoham et al. (2003) Threshold PCA EM with t-distributions

Biffi  et al. (2008) Adaptive noise filtering;
pos.  + neg. threshold detection

PCA  Hierarchical clustering

Zhang  et al. (2004) Threshold PCA Subtractive clustering; template matching

Horton et al. (2007) Threshold PCA + spike shape curve indices Kohonen network

Oweiss  and Anderson (2002) Threshold Wavelet packet
decomposition; best basis
evaluated by SVD

–

Quiroga  et al. (2004) Threshold Wavelet packet coefficients
(Lilliefors  test)

Superparamagnetic clustering

Choi et al. (2006) MTEO PCA Fuzzy c-means clustering

Vogelstein  et al. (2004) SVM Spike shapes SVM

Chen  et al. (2011) NEO + threshold Wavelet coefficients evaluated
by  PCA

Watershed algorithm

Takegawa  et al. (2010) Threshold Wavelet coefficients evaluated
tribut

Variational Bayes clustering using t-distributions
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007). However, since the result depends on prior template
xtraction methods, which usually include the already-mentioned
lustering techniques, inaccuracies cannot always be compen-
ated.

In conclusion, there still seems to be no optimal method that
s generally capable of sorting neural spike patterns. One reason
or this might be the lack of fundamental test datasets contain-
ng a principal spectrum of theoretically possible spike shapes that
ould be used to evaluate the different classification algorithms. As
his problem also prevents a thorough evaluation of the suitabil-
ty of different spike features, it is generally difficult to evaluate
he feasibility of specific types of features such as principal compo-
ents or Wavelet coefficients. Although certain studies have shown
hat Wavelet-based feature extraction potentially outperforms the
CA, this fact cannot be generalised to all possible datasets (Pavlov
t al., 2007). Therefore, an a priori exclusion of PCA features can
imit the ability to discriminate between certain spike forms. In
act, this is also true for other features that might be inferior in

ost cases but not in general. Hence, it might not be useful to focus
n a specific feature extraction technique, as other features might
e more suitable on specific occasions. Therefore, in contrast to
ost methods, the algorithm presented in this paper regards var-

ous possible features, such as principal components and different
avelet packet coefficients, as well as geometric features. As such

n approach requires a unique feature reduction step in order to
etermine the features most suitable for the particular spikes of
he signal, a newly developed feature evaluation step is proposed
n this paper. By analysing the probability distribution of the dif-
erent feature coefficients, the candidates with the most distinctive
ultimodal character can be found. Resembling the different spike
hape characteristics, this method allows the derivation of spike
orting feature sets that are customised for each individual set of
euronal data.
ion

3. Method

After the short overview of spike sorting algorithms given in the
previous chapter, the fundamental theory of the method presented
in this paper is described in the following.

3.1. Feature extraction

The  implementation of a generalised feature evaluation step in
the spike sorting process does not only provide the opportunity to
use a mixture of PCA and Wavelet features for the classification
step, but also allows the inclusion of other features that are, for
example, based on the shape of the measured spikes themselves.
Certain characteristics of the spike, e.g. its negative or positive
amplitude, as well as various gradients or its signal energy can be
used as additional candidates. On the one hand, such geometry-
based features are usually vulnerable to noise signals and voltage
offsets. On the other hand, they can be very potent in particular
situations, in which such a feature can specifically highlight a dif-
ference between two  spike shapes. Furthermore, these features can
be quickly and easily calculated and represent no imminent threat
to the algorithm’s computational complexity (see Table 2).

3.1.1.  Geometric features
The  calculation of the positive and negative amplitude is basi-

cally self-explanatory. The left and right spike angles represent the
left and the right gradient of the characteristic spike minimum to
the point in the signal, at which it crosses the margin of 50% of
that value, as shown in Fig. 2. The choice of this particular margin

can be explained by low liability to the noise components of the
signal. The resulting value can easily be transformed into an angu-
lar measure, using basic trigonometric functions. In addition, the
spike duration can be approximated as the distance between the
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Table  2
Overview of neuronal signal features.

Feature Advantages Disadvantages

Negative amplitude Easy to interpret Vulnerable to signal offsets
Positive amplitude Stresses specific shape characteristics Only suitable in particular cases; vulnerable to signal

offset
Left/right  spike angle Stresses specific shape characteristics Only suitable in particular cases; vulnerable to noise

distortions
Neg./pos.  signal energy Robust features in terms of noise distortions or low

sample  rates
Naturally correlates with amplitude and angle
features; vulnerable to signal offsets

Core spike duration Stresses specific shape characteristics Only suitable in particular cases; vulnerable to noise
distortions

NEO  coefficient Higher resolution than negative amplitude in
particular cases

Naturally correlates with negative amplitude

Principal components Usually accurate description of datasets with a set of
uncorrelated parameters

Possible inaccuracies if more than two spike shapes are
present  in the dataset
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Distribution/Shannon  Wavelet coefficients Potent Wavelet scale features w
correlation

ntersection points of both gradients with the 0 V level. The posi-
ive and negative signal energy of a continuous-time signal s(t) can
e approximated based on the following equation (Ohm and Lüke,
010):

s =
∫ ∞

−∞
s2(t)dt (1)

ikewise, the signal energy can also be calculated for discrete-time

ignals by summing the squared discrete signal values. In this case,
he positive and negative energy components of the spike are calcu-
ated in particular to separate monopolar from bipolar spike shapes

ore accurately.

Fig. 2. Overview of the describ
o significant High computational complexity compared to other
methods; multi-resolution analysis limited by sample
rate

3.1.2. NEO coefficients
The  value of the NEO operator � (x[n]) is calculated for the char-

acteristic spike minimum value with the equation below (Choi et al.,
2006):

� (x[n]) = x2[n] − x[n − 1] × x[n + 1] (2)

The  resulting parameter � (x[n]) gives an estimate of the energy
content of the signal at the discrete time step n of the signal x(n).
3.1.3. Principal components
The  first four principal components are derived by the standard

principal component analysis (PCA) algorithm based on the eigen-
vectors and their corresponding eigenvalues of the covariance

ed spike sorting method.
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Fig. 3. Schematic of the W

atrix (Joliffe, 2002). The latter is computed with all the voltage
alues representing the shape of each spike, for all spike events
ound in the previous spike detection step.

.1.4. Wavelet coefficients
Two  different types of Wavelet coefficients are calculated using

he Wavelet packet decomposition (WPD), which is an extension
f the standard discrete multi-resolution Wavelet analysis. The
avelet transformation of a continuous-time signal can be written

s such (Stark, 2005):

� f (a, t) = 1√
(|a|)

∫ ∞

−∞
�

(
u − t

a

)
f (u) du (3)

here  the function � a,t(u) denotes the resulting Wavelet based on
 specific mother Wavelet and modified by the two  independent
ariables a and u. The latter is an additional time variable describing
he temporal shift of the Wavelet with respect to the actual signal,
hile the actual frequency or scale decomposition is varied by the
arameter a. In other words, different scaling values of a generate
ifferent daughter Wavelets, a modification of the mother Wavelet,
hich highlights specific frequency areas in the decomposed sig-
al. For discrete-time signals, an iterative Wavelet decomposition
rocess, also called multi-resolution analysis, is usually described
s a filtering process that breaks up the subjacent time signal at

 low-pass and a band-pass scale with each iteration. Hence, the
esulting frequency scale resolution increases with every step of the
rocess, whereas the time resolution decreases respectively with
ach splitting. As the ratio between frequency and time resolution
s predefined by the uncertainty principle, the standard discrete

avelet transform (DWT) multi-resolution analysis only focuses

n the low-pass component in subsequent iterations, since an accu-
ate frequency determination is especially crucial in this particular
ange. In contrast, the WPD  continues to decompose both the high-
nd low-pass component with each step of the analysis (see Fig. 3).
ulti-resolution analysis.

This allows a more accurate signal analysis at the expense of
additional computational complexity. The result is usually referred
to as the Wavelet packet tree (see Fig. 3), with a different set of
Wavelet coefficients, called nodes, for each Wavelet filter. Each of
these coefficients describes the magnitude of a certain frequency
range in a specific time interval, which results in a considerable
amount of redundant information with every additional itera-
tion. As a consequence, the most crucial step with respect to
the spike sorting task is probably the derivation of the Wavelet
scale coefficients that describe the differences of the spike shapes
detected in the actual time signal.

The Shannon information criteria can be used to determine the
amount of information explained by each node of the Wavelet
packet tree (Hulata et al., 2002). Based on the resulting values cal-
culated for every decomposed spike, it is possible to evaluate the
divergence of explained information for all nodes throughout all
spike events. The most suitable node can be analysed based on the
distribution of the values of the Shannon information criteria across
every spike. Under the assumption that two  different spike shapes
produce a multimodal distribution at certain nodes, a determina-
tion of these can provide useful feature type for the spike sorting
process.

To obtain a second type of Wavelet-based features, the same
process can be implemented for the resulting Wavelet packet
coefficients themselves. Again, the goal is to find a coefficient that
shows a multimodal distribution considering its value across all
detected spikes. Therefore, the fundamental extraction algorithm
is identical and only the input variables are actually changed.

In  the proposed algorithm, three Wavelet coefficients for both
types with the most promising probability distribution were cho-
sen as spike sorting features. In other words, the best three Wavelet
coefficients calculated with the Shannon information criteria as

well as the best three Wavelet coefficients with respect to their
natural distribution were used. As only the resulting distribution
and not the calculated values themselves were of interest, the
Haar Wavelet (Stark, 2005) was chosen as the mother Wavelet for



R. Bestel et al. / Journal of Neuroscience Methods 211 (2012) 168– 178 173

F t. The 

s limite
b

t
i
o
c
E
t
c

p
c
t
a
t

3

t
i
r
p
u
i
W

t
c

F
a
s
s
a
d
w
i
o
t
o
G
t
l
E

ig. 4. Example of different feature distributions extracted from a neuronal datase
eem to be suitable, whereas the second native Wavelet coefficient in C only offers a 

ut  its distribution is less distinctive compared to that in B.

he multi-resolution analysis, since it provides the fastest comput-
ng time without significantly changing the outcome compared to
ther mother Wavelets. To avoid a highly redundant feature set, the
orrelation between the candidates was also taken into account.
ven a promising Wavelet coefficient was discarded if its correla-
ion value with respect to the superior coefficients already chosen
rossed a certain threshold value.

In conclusion, the distribution approach analyses the decom-
osition result in further detail; however, it also requires a
onsiderable amount of additional computation time compared
o the Shannon entropy-based method. Nevertheless, as each
pproach can identify distinct spike characteristics, it is beneficial
o extract both types of Wavelet features for further evaluation.

.2.  Feature evaluation and reduction

With every spike sorting feature calculated, the key is to find
he set that is most suitable for the task at hand. Therefore, it
s important to keep evaluating the feature’s distributions with
espect to their separability. In the following section, the crucial
art of the presented algorithm is described, which is used to eval-
ate and compare the extracted features. For the sake of clarity, this

s the same algorithm that was applied to identify the most suitable
avelet coefficients for both Wavelet feature types.
To  further specify the actual goal of the algorithm, it is helpful

o look at certain distribution functions that can be found in this
ontext (see Fig. 4).

Looking  at Fig. 4, it is quite obvious that the two features in
ig. 4A and B seem to be promising examples with a clearly identifi-
ble multimodal character, possibly allowing the separation of two
pike shapes. Thus, the desired feature distribution should not only
how at least two distinct maxima, but also ought to be clearly sep-
rated from each other. Therefore, as both criteria should be ideally
escribed in a single value, this inevitably leads to some blurriness
hen evaluating the various feature candidates. As a consequence,

t is crucial that both criteria are rated as accurately as possible in
rder to minimise the resulting uncertainty. Hence, the expecta-
ion maximisation (EM) method was chosen for this purpose, as it
ffers suitable parameters for assessment. An EM algorithm using

aussian basis functions was selected, assuming that the sum of

he noise components, usually present in every measurement data,
eads to a Gaussian distortion of generally stable spike shapes. The
M algorithm is used to approximate the calculated distribution of
“negative amplitude” and the “first principle component” in A and B, respectively,
d perspective. The first Shannon Wavelet coefficient in D may also be quite suitable,

each feature with a so-called mixture of Gaussians (MoGs) that can
be mathematically described with the following equation (Polanski
and Kimmel, 2007):

f mix(x, ˛1, . . . , ˛k, p1, . . . , pk) =
K∑

k=1

˛kfk(x, pk) (4)

where  ˛k specifies the weight of each function within the mixture
model and pk denotes its actual parameters. In turn, every Gaussian
component is specified with its characteristic formula:

fk(x, pk) = fk(x, �k, �k) = 1

�
√

(2n)
exp

(
(x − �)2

2�2
k

)
(5)

Therefore,  the EM algorithm needs to scale the values �k, �k and
˛k for each mixture component. To find a suitable approximation,
it iterates between two distinctive steps, the expectation (E-step)
and the maximisation (M-step). At the start of the process, either
a random or an a priori value is presumed for each parameter. On
this basis, the difference Q(p, pold) between the actual distribution
and the current approximation is calculated in the E-step, using the
log-likelihood function (Polanski and Kimmel, 2007):

Q (p,  pold) =
N∑

n=1

K∑
k=1

p(k|xn, pold)ln ˛k

+
N∑

n=1

K∑
k=1

p(k|xn, pold)ln fk(xn, pk) (6)

The  parameter N equals the number of data points of the feature
distribution, while K still denotes the number of Gaussians in the
mixture. In the subsequent M-step, a new set of parameters is deter-
mined to improve the parity between approximation and feature
distribution. In this case, the parameters pk, �new

k
, �new

k
and ˛new

k
can be calculated with the following set of equations (Polanski and
Kimmel, 2007):

�new
k =

∑N
n=1xn × p(k|xn, pold)∑N

p(k|x , pold)
(7)
n=1 n

(�new
k )2 =

∑N
n=1(xn − �new

k
)2 × p(k|xn, pold)∑N

n=1p(k|xn, pold)
(8)
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new
k =

∑N
n=1(k|xn, pold)

N
(9)

hese  new parameters can be evaluated and refined with another
teration of the E-step and M-step, respectively, either until Q(p,
old) cannot be improved any further or until a certain threshold
riterion is met.

To  facilitate the approximation process, each native feature dis-
ribution, derived with its histogram, is smoothed in order to limit
he effects of outlying data points. Furthermore, the number and
orresponding positions of existing maxima are determined by
imple curve sketching and serve as initial values for the EM pro-
ess.

Once the final approximation result is acquired, the obtained
arameters provide a suitable basis for evaluation. Whereas the
istance between each Gaussian component in the mixture is
xpressed by �new

k
, ˛new

k
models the distinction of the individual

unctions, while �new
k

can be used to determine the overlapping
f the identified Gaussians. As it is hard to determine any hierar-
hy among these parameters, their values have to be transformed
nto an overall rating for the examined features. For this purpose,
he following equation has been specifically designed to provide a
olution to the resulting problem:

(k) =
∑K

k /=  1Cov(i, k)

(�(max) − �(k)) × ˛(k)
(10)

he value v(k) rates the distinctiveness of an individual Gauss-
an function, k, present in the mixture compared to the Gaussian
urrounding its global maximum, denoted by �(max). Only the
ovariance measure puts every mixture component into account,
o accurately express the actual overlap. As described in Section
.3, the presented spike sorting algorithm is specifically designed
o separate two specific clusters. Therefore, the features showing a
imodal characteristic are of particular interest. As a consequence,

n the first step v(k) is calculated individually for every Gaussian
omponent of each mixture. Afterwards, the minimum value for
(k) over all components of the mixture is determined and serves
n as an overall rating for the corresponding feature. In addition,
eatures that appear to have only a unimodal distribution are also
valuated by the variance they explain, but are treated as secondary
andidates.

It is this rating that allows the derivation of a unique fea-
ure set for each individual dataset. The particular candidates that

inimise v(k) are selected, although again with the correlation as
n additional criterion. In this algorithm, the maximum subset size
as adjusted to six, simply to limit the computational complexity

f the subsequent clustering process. However, it is possible that
his number is not reached, as the correlation criteria can further
imit the size of the determined subset.

.3. Clustering

As  the final step in the spike sorting process, the resulting fea-
ure set has to be classified into distinct clusters that contain the
articular spikes of an individual neuron. For this purpose, the
erived subset is first used to span a multidimensional feature
pace. In order to identify the clusters involved, the EM algorithm
s used once again. On the one hand, this clustering method has the
dvantage of providing a soft classification result, which allows the
xclusion of outliers, unlike, for example, the k-means algorithm
Clarke et al., 2009). On the other hand, as a plain clustering algo-
ithm, it does not require any training process in advance, which is

specially advantageous in this case.

Similarly to the feature evaluation step described in the previ-
us chapter, the EM algorithm approximates the data distribution
f a given space, using Gaussian basis functions. Consequently, each
 Methods 211 (2012) 168– 178

data  point, resembling a specific spike event, is sorted into the
resulting mixture components based on the probability associated
with each Gaussian. As mentioned before, the algorithm is designed
to specifically separate the data into two Gaussian clusters. First of
all, this eliminates the problematic task of determining the number
of clusters, i.e. the number of spiking cells. Secondly, this gives the
opportunity to derive feature sets that can resemble the difference
in shape of the remaining spike signals more accurately, thereby
enhancing the separability. The described algorithm is generally
able to cluster the data into more than just two  classes. Neverthe-
less, in the proposed algorithm, an iterative approach is favoured,
as it gives the opportunity to separate one specific class from the
rest of the signal in each iteration. Thus, the derivation of suitable
features becomes significantly easier, improving the subsequent
clustering result. As a final consequence this approach basically
minimises the chance of oversorting, which means the separation
of the spikes of one individual cell into multiple clusters, since
the feature evaluation primarily credits the distinctiveness of the
Gaussians in the mixture of a feature rather than the number of
Gaussians in it. Though MoG’s with more than two  Gaussian com-
ponents are not excluded in general, the covariance criteria of Eq.
(10) ensures that such features are picked, only if these components
can be clearly separated.

4.  Results and discussion

The  algorithm described in the previous chapter was  imple-
mented in a self-made Matlab©-based software. To test the
feasibility of the developed algorithm, both simulated data and
recorded data derived from 3D neuronal cell cultures, so-called
spheroids (Layer and Willbold, 1993; Layer et al., 2002), were used.

4.1. Results with simulated data

Simulated datasets were primarily applied to validate the results
of the described spike sorting algorithm. Such simulated data sam-
ples have the advantage of being labelled and better suited for the
testing of a general algorithm. Hence, simulated data published for
such purposes by the University of Leicester was used (cf. Quiroga
et al., 2004). It offered various examples of neuronal data, simu-
lated at a sample rate of 24 kHz. The different sets also varied in
their signal-to-noise ratio (SNR), allowing an evaluation of the sor-
ting results as a function of SNR. As an exemplary dataset, the file
c difficult2 noise01 with a SNR of 10 was applied (see Fig. 5).

The  dataset contained three basic spike shapes that were ran-
domly distorted by Gaussian noise components. As a preliminary
step, the spike events were detected at a simple voltage threshold
that was  calculated based on the standard deviation of the noise
contained in the signal (Chiappalone et al., 2005). To exclude any
unwanted noise events that were detected, a first sorting iteration
was performed.

Next, the actual spike sorting task was  met  with a second iter-
ation of the spike sorting algorithm. Various spike features were
calculated for each spike event, based on a 1 ms  window (24 data
points) around the detected time-stamp at its voltage minimum.
In the first attempt, the data were clustered via the EM algorithm,
applying Wavelet-based features exclusively and in another sor-
ting attempt, principal components only (see Fig. 6). In order to
improve clarity, the clustering result was projected only on the
first two  dimensions of the multidimensional feature space. To
exclude outlying data points usually originating from highly dis-

torted or overlapping spikes, a confidence probability interval of
5% was  used. In other words, data points belonging to a certain
cluster with a probability of less than 5% were separated into a spe-
cial cluster. Neither combination, although mainly used in common
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Fig. 5. 150 ms  section of the simulated data sample of data from the University of Leicester. The signal, sampled at a rate of 24 kHz, contains three basic spike shapes with
an  SNR value of 10. In order to process the data with the analysis framework, the normalised sample was  multiplied with an offset value of 70 �V. Furthermore, the signal
was  inverted, as the spike detection algorithm of our Matlab© interface generally expects neuronal spikes with negative amplitudes. The different spike shapes are marked
with  their respective cluster number.

Fig. 6. Clustering result of the dataset c difficult2 noise01 using the EM algorithm only with Wavelet-based features, in detail the three Wavelet packet coefficients with the
m ompo
o ures. N
c  clust

a
f

e
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f
s

F
fi
s
a

ost  suitable probability distribution (left) and only with the first three principal c
nly  show a projection of the multidimensional feature space onto the first two  feat
lusters could be determined. Outlying data points were separated into a particular

lgorithms, could separate all three spike shapes in the particular
eature space correctly.

Hence,  the subsequent spike sorting result was  not satisfying

ither. In the next step, the novel automated feature evaluation
lgorithm was used to find a suitable mixture of spike shape
eatures. The determined set of features was then fed into the sub-
equent clustering step. Fig. 7 shows the result of the EM algorithm

ig. 7. Clustering result of the dataset c difficult2 noise01 using the (1) Wavelet coef-
cient (distribution) and the (1) principal component. The sorting algorithm could
eparate the three distinct clusters, while outlying data points were separated into

 particular cluster using a confidence probability interval of 5%.
nents, describing 90% of the data’s variance (right). For improved clarity, the plots
either combination correctly separated all three spike shapes, as only two distinct

er using a confidence probability interval of 5%.

in the two-dimensional feature space spanned by the two  best fea-
tures, namely the first principal component and the first Wavelet
coefficient evaluated from its distribution.

In the feature space seen in Fig. 7, three clusters instead of two
were identified. Hence, the feature combination found by the algo-
rithm clearly described the particular dataset more accurately than
the sets of the two previous approaches.

Therefore, the mixture of different types of features provides a
better clustering result compared to the common attempts with
one particular type only used in most of the algorithms already
established. To look at the results in further detail, the sorting
result was  evaluated for each spike by comparing the calculated
classification result and the original label (see Table 3).

If  the events of overlapping spikes are excluded, the spike sor-
ting algorithm almost yields a perfect result, with only nine falsely
clustered events. This number, however, is significantly decreased,
once overlapping events are taken into account. In order to exam-
ine the algorithm’s results in more detail, the errors made between
missing and incorrectly assigned spikes in a certain cluster are
summarised in Table 4.

Most spikes classified in one of the three clusters were sorted
correctly, even when considering overlapping events. This phe-
nomenon can be explained by two separate errors. First, spikes that
follow too closely after one another were detected not as two dif-

ferent but one single event. Hence, one of the two contained spikes
was basically omitted and therefore, lost before the sorting step.
Second, if both spikes were detected separately, but distorted each
other’s shape too drastically, they were usually discarded into a
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Table  3
Comparison of original and calculated spike sorting results, using the dataset c difficult2 noise01 with a SNR of 10.

Classes No. of original spikes (with
overlapping spikes)

No. of correctly sorted spikes
(with  overlapping spikes)

% of correctly sorted spikes
(with  overlapping spikes)

Overall 2742  (3462) 2733 (3351) 99.67 (96.79)
Cluster  1 957  (1187) 953 (1146) 99.58 (96.55)
Cluster  2 898 (1136) 898 (1113) 100 (97.98)
Cluster  3 887  (1139) 882 (1092) 99.44 (95.87)

Table 4
Classification of the resulting clustering errors of the algorithm, using the dataset c difficult2 noise01 with a SNR of 10.

Classes No. of correctly sorted spikes
(with  overlapping spikes)

No. of missed spikes (with
overlapping spikes)

No. of false positives (with
overlapping  spikes)

Overall 2733 (3351) 9 (111) 9 (14)
Cluster  1 953  (1146) 4  (41) 5  (5)
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Cluster  2 897  (1112) 

Cluster  3 883 (1093) 

pecial remnant cluster (see red cluster in Fig. 7). In other words,
nly overlapping spikes that still showed a certain amount of its
istinctive shape could actually be processed correctly.

One way of facing the challenge of overlapping spikes is by
mplementing an additional template matching step, which refines
he discarded spike events. By finding a combination of the discov-
red spike shapes in the spike sorting step that matches the shape
f an event inside the remnant cluster, the spikes involved can be
dentified (cf. Zhang et al., 2004).

In order to evaluate the influence of different noise levels, the
lgorithm was also tested with another dataset with a SNR of 6.67.
he used set c difficult2 noise015 basically consists of the same
hree spike shapes as the data above, yet the distribution of the
ifferent spikes is changed slightly. Due to the increased noise
istortion it is more difficult to find suitable spike features that
an discriminate all three shapes in just one feature extraction
tep. Hence, using the first two Wavelet coefficients (distribution)
nd the first two principal components, the algorithm could only
eparate one of the cell signals from the other, but not all signal
hapes in the initial process. In this case the advantage of the iter-
tive structure of the proposed algorithm comes into effect. As it
s much easier to find features that specifically describe the dif-
erences of the two remaining spike shapes, the sorting result is
reatly improved once the first cell signal is excluded from the
ataset. Using the adjusted first and second Wavelet coefficients

distribution) as well as the adapted first principal component the
wo remaining cell signals can be separated from each other. In a
nal iteration the remaining spike shape can be excluded from the
bligatory remnant cluster. The result of this process is summarised

able 5
omparison of original and calculated spike sorting results, using the dataset c difficult2 n

Classes No. of original spikes (with
overlapped spikes)

No
(w

Overall 2631 (3440) 257
Cluster  1 858 (1142) 83
Cluster  2 851 (1113) 82
Cluster  3 922 (1185) 91

able 6
lassification of the resulting clustering errors of the algorithm, using the dataset c difficu

Classes No. of correctly sorted spikes
(with  overlapped spikes)

N
o

Overall 2577 (3243) 54
Cluster  1 858 (1065) 1
Cluster  2 851  (1040) 2
Cluster  3 922 (1138) 
0 (23) 1 (1)
5 (47) 3 (8)

in  Tables 5 and 6, which are structured similar to Tables 3 and 4 of
the first dataset.

As  expected the accuracy of the spike sorting process deterio-
rates with increasing signal-to-noise ratios. In this case both the
result discarding overlapping spikes as well as result that includes
these events are effected by about the same margin. Even though
the increased signal-to-noise ratio poses an additional challenge,
the majority of the spikes contained in the data were successfully
sorted in the correct clusters. Thus the novel feature extraction and
evaluation steps of the described algorithm show significant advan-
tages compared to the methods common in most established spike
sorting algorithms, especially when used in an iterative process.

4.2.  Results with spheroid data

To further assess the presented spike sorting algorithm, data
obtained from chick embryonic neurons coupled to microelectrode
arrays were used.

For  this purpose chick neuroepithelial tissue (stages 28 and 29,
Hamburger and Hamilton (1951)) was  chopped and enzymatically
dissociated with Trypsin/EDTA (all chemicals: CCPro, Oberdorla,
Germany, unless stated otherwise), similarly as described for
cardiac tissue in Egert and Meyer (2005). Approximately 2 mil-
lion cells were transferred to 35 mm Petri dishes containing 2 ml

of cell culture medium (DMEM with 10% FCS, 2% CS (Sigma,
Munich, Germany), 0.5 mM glutamine, 50 U/ml penicillin, and
50 �g/ml streptomycin). The cells were re-aggregated into three-
dimensional spherical in vitro networks, so called spheroids, by

oise015 with an SNR of 6.67.

. of correctly sorted spikes
ith  overlapped spikes)

% of correctly sorted spikes
(with  overlapped spikes)

7 (3243) 97.95 (94.27)
9 (1065) 97.78 (93.28)
4 (1040) 96.83 (93.44)
4 (1138) 99.13 (96.03)

lt2 noise015 with an SNR of 6.67.

o. of missed spikes (with
verlapped spikes)

No. of false positives (with
overlapped  spikes)

 (197) 53 (92)
9 (77) 34 (49)
7 (73) 7 (26)
8 (47) 12 (17)
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F he spikes were labelled according to the clustering result of the subsequent classification
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Fig. 9. Scatterplot of the spheroid data in the feature space spanned by the negative
amplitude  and the (2) Wavelet coefficient (distribution). Again the scatterplot shows
a projection of the clustering results onto the two  dimensional feature space of first
and second feature. The data can be sorted into two spike shape clusters using the
(2) principal component as additional feature. The data points in red again highlight
ig. 8. 100 ms  section of the recorded spheroid data sample, recorded with 50 kHz. T
cf. Fig. 9).

lacing the Petri dishes on a gyratory shaker (72 rpm) within an
ncubator (37 ◦C, 5% CO2) (Daus et al., 2011).

The resulting spheroids were then plated on microelec-
rode arrays (MEA; Multichannel Systems, Reutlingen, Germany)
or extracellular recording. The MEA  chips consisted of 60
ubstrate-embedded titanium nitride electrodes (30 �m in diam-
ter) arranged in an 8 × 8 matrix. Extracellular field potentials,
o-called spikes, were recorded (25–50 kHz sampling rate) and
aved for offline analysis. The timestamps of the spikes were
etermined by a threshold separating neuronal signals from noise
Chiappalone et al., 2005). These data pose an additional difficulty,
s multiple neurons contribute to the electrode signal. However,
ost of these neurons had an insufficient coupling with the elec-

rode, which significantly hampered the ability to separate the
articular spike shapes of the emitting neurons (see Fig. 8).

The  spike detection process for this type of data was  as described
bove. However, due to the signal’s complexity, a supplementary
orting step was necessary to exclude any shapes originating from
istant neurons that could not be satisfyingly processed and only
cted as additional noisy artefacts.

Similar to the evaluation process using the simulated data, the
pikes of the spheroid signal were sorted using either Wavelet-
ased features, principal components or the feature mixture
erived by our novel approach. All methods could identify two
ifferent spike shapes in the spheroid signal, which means that
he recorded spheroid signal contained at least the signals of two
eurons, with a tight coupling to the electrode (cf. Fig. 9). Yet the
ifferent feature extraction approaches show a varying ability to
iscriminate between the two shapes. The resulting clusters of the
avelet-based approach showed a significant overlap, unlike the

ther two methods. The result using principal components how-
ver was quite similar to the clustering of our proposed mixture
pproach, only with slight differences at the border between the
wo identified clusters. Even though the result using the feature

ixture of the proposed algorithm might be considered marginally
ore accurate, such improvement would be quite difficult to assess,
ue to the lack of labelling for the recorded spheroid data.
In  general, even though both Wavelet and principal compo-

ent based feature extraction techniques are capable of producing
cceptable spike sorting results, they usually fail to achieve an
the  remnant cluster containing outliers in the spheroid data. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of the article.)

optimal discrimination between different cell signals, simply due
to their lack of variability. Whereas our algorithm includes the
strength of principal components without neglecting the potency
of other features, the methods using only a single feature type suf-
fer from their respective weaknesses. Hence, it is most feasible to
include both feature types in order to preserve their strengths and
to compensate their weaknesses respectively.

5. Conclusion and outlook

In summary, the described algorithm yields accurate results for

simulated and recorded neuronal datasets. The concept of eval-
uating a broad set of extracted features to find a suitable subset
that describes a particular dataset most accurately seems to have
certain advantages. Instead of relying on the potency of a single
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eature type, the different capabilities of various feature extrac-
ion techniques become available for the subsequent sorting stages
nd therefore, significantly facilitate the clustering task. Therefore,
his enables even a comparably simple EM classification method to
roduce a precise clustering result.

Based on this feature evaluation technique, it is also possible
o identify the features that explicitly discriminate between two
ifferent spike shapes, which is advantageous in neural recordings
hat include more than just two signal shapes. This ability is used
y the presented algorithm, given that an iterative subtraction pro-
ess of particular spike shapes from the rest of the signal can be
erformed if necessary. This allows the identification of a new fea-
ure subset most suitable for the remaining spikes in the dataset
fter excluding a certain shape.

The only issue that could be identified is the lack of an ade-
uate handling of overlapping spike events. Nevertheless, this can
e fixed quite easily with an additional template matching step
ased on the algorithm’s clustering result.

There might still be some room for useful adaptations. One pos-
ible approach, for example, is the use of t-distributions instead of
aussians as a basis function (Shoham et al., 2003). With an addi-

ional adjustment parameter, the degrees of freedom (DOF), these
unctions might be more robust to any non-Gaussian noise distort-
ons. However, as a drawback, this additional parameter could also
esult in a significantly higher computational complexity.

On  the other hand, the EM algorithm itself could be substi-
uted with the Variational Bayes (VB) algorithm (Takegawa et al.,
010). Being a more general approach than EM,  it offers the same
dvantages, but also disadvantages, as the switch from Gaussian to
-distributions.

Another issue necessary to address is the computational com-
lexity of the algorithm itself. The time required to approximate the
istribution of a certain feature significantly depended on the par-
icular distribution characteristics. Therefore, it is hard to generate

 generalised statement regarding the processing time needed by
he algorithm. However, the current version of the algorithm has
o be modified in order to function in an online signal analysis pro-
ess. For this purpose, it is possible to compute explicit operations
n parallel, using multiple CPU or GPU cores (cf. Chen et al., 2011).
hus, the approximation of different features via the EM algorithm
an be calculated simultaneously, effectively speeding up the spike
orting algorithm altogether.

Although there might be some possible adaptations of the algo-
ithm, its general feasibility and advantages compared to most
ommon spike sorting algorithms are quite obvious. The rea-
on for this is the improved feature extraction approach that
nables an adaptive determination of suitable spike sorting fea-
ures. This allows the inclusion of a variety of different feature types,
hich increases the chance of identifying particular key differences

etween a set of unique spike shapes.
In conclusion, the disadvantage of only being able to use a

imited subset of feature types that most established spike sorting
ethods face can be overcome with the novel approaches pre-

ented in this paper. Hence, it is also possible to enhance already
xisting algorithms with these ideas, improving their clustering or
lassification significantly.
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