
JOURNIZL OF hIATHEhIATITAL .4NALYSIS AND APPLICATIONS 76, 209-212 (1980) 

A Generalized Mean 

P. T. LANDSBERG 

Deppnrtment of Mathematics, University of Southampton, Southampton, Hampshire, Englatld 

Submitted by G.-C. Rota 

X class of means is defined and an inequality is established for them. Some 
standard inequalities, as well as new ones, can be obtained as special cases. 

1. INTRODWTI~N 

Let .f(T, ,..., T,) be an n-parameter function and gi(T,) be IZ one-parameter 
functions. Then a mean, T, of the Ti with respect to f  may be defined by 

(a) f(Tl ,..., T,) = f(T ,..., T). 

This is the definition of Chisini [I]. X somewhat more specialized definition 
occurs if one chooses 

f  (Tl v..., Tn) = f  g,P”,) 
i=l 

in the above definition. Then the equation for T is 

(b) f  cATi) ~- t gi(T). 
i=l i=l 

This is still a little more general than the Hardy et al. definition in Ref. [2, 
Chap. 31, which utilizes, in effect. 

.f(T, ,...> Tn) = i P,g(T,), 
i=l 

the pi being probabilities. The equation for T is then 

Cc) i iu(Ti) = g(T). 
i=l 

We shall here pursue the intermediate case (b). 
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Let C(T) (i = l,..., n), C(T) be positive functions of a real positive variable T, 
and let 4(T) be non-decreasing. Define 

S = TKCi), 4; {Till by z$l j; $+ dt = 0. 

This definition is of type (b) with 

g,(T,) = :’ $$ dt, 
s 

A being a constant. 

2. AN INEQUALITY 

We prove next 

4 = T[(Ci), 1; lTi)l 2 TKC,), 6 Vi>1 = km . 

Clearly for general R > 0 

(3) 

I f  we chose k = k, then 1. = 0 by (1) so that X > 0 by (3). I f  we chose next 
k = k, , then X = 0 by (I). This reduction in X is produced by a reduction 
in k since dX/dk > 0. It follows that kd < k, as stated in (2). 

3. SPECIAL CAKES 

As usual, let 

G(T,p) _ [T~I . . . T:]l!h 

G(T) = [Tl **a T,]lln 
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Then M(T), G(T), &(T) are the usual arithmetic, geometric and harmonic 
means; Mi( T, p), G( T, p) and K,( T, p) are the corresponding weighted means. 
Standard means can be obtained from (1) by appropriate choices of functions 
Ci and 4. By chasing 4 = 1 as well, inequality (2) can be used, as seen from 
Table I. 

Another special case is the following. If I > 0 is fixed and K > I is a variable 
upper limit, the function 4 can be used to define a monotonic function of k, 

This function is concave provided only 4 is differentiable and 4 3 0 in the range 
of integration. Using C,(T) = pJ, the equation for $ and k, give 

Since k, 3 k6 and D’(k) > 0 it follows that 

This result corresponds to Eq. (3.4.3), p. 70, of Ref. [I] (stated there for convex 
functions). 

TABLE I 

Inequalities Implied by (2) 

CAT) 

1. Api T;+“-’ 

2. $5 

See 
Ref. [I] 

4(T) Constraints h z k$ page 

T” r#O M,+s(T, P) > MJT, P) 26 

r+s#O 

s>o 

T case 1 G(T> P) > M-dT, P) 13 

with r = - 1, 

s=l 

3. AP~ T case 1 with M,(T, P) z G(T, P) 13 

Y = 0,s = 1 

a A and p, ,..., pn are positive constants. 
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4. CONCLUSION 

One of many new inequalities which can be otained by this method is the 
following. Consider, for example, k, given by 

(y E [(Ly(y . . . (+,“]‘” 

and 

Then K, > k, , and to prove it one may use (2) with Ci( T) = In T and $( T) = T. 

ACKNOWLEDGMENTS 

I am grateful for discussions with colleagues, notably Drs. C. L. Thompson and 
V. J. D. Baston (Southampton). The context in physics of this work is discussed in 
Refs. 3 and 4. 

REFERENCES 

1. B. DE FENETTI, “Theory of Probability,” Vol. 1, Wiley, London, 1974, p. 56. 
2. G. H. HARDI’, J. E. LITTLEWOOD, AND G. P~)LYA, “Inequalities,” Cambridge Univ. 

Press, Cambridge, 1934. 
3. A. SOEVIMERFELD, “Thermodynamics and Statistical Mechanics” (F. Bopp and J. 

Meixner, Eds.), Academic Press, New York, 1956. (Translated from the German 
by J. Kestin.) Dr. P. Couchman (Rutgers University) kindly drew my attention to 
problem 1.4 in this book. 

4. P. T. LANDSBERG, Phys. Lett. A 67 (1978), 1; S. S. SIDHU, Phys. Lett. A 76 (1980), 107. 


