Rank in Noetherian Rings*

Evan G. Houston, Jr.
University of Oklahoma, Norman, Oklahoma 73069
AND
Stephen McAdam
University of Texas, Austin, Texas 78712
Communicated by N. Jacobson

Received December 27, 1973

Introduction

Let R be a commutative Noetherian ring with 1 . Nagata has shown that it is possible for there to exist primes $P \subset Q$ in R such that rank $Q>\operatorname{rank}$ $(Q / P)+\operatorname{rank} P$. If we call such a pair $P \subset Q$ abnormal, the main result of this paper is as follows: for a fixed prime P there is a strictly increasing chain of ideals $P=I_{0} \subset I_{1} \subset \cdots \subset I_{n}$ with the property that for any prime Q containing $P, P \subset Q$ is abnormal if and only if the largest $j=0,1, \ldots, n$, with $I_{j} \subset Q$, is odd. The second part of this paper investigates when in a finitely generated extension of Noetherian rings, $R \subset T$, a prime of T contracts to a prime of R having larger rank.

1. The Behavior of Rank

Definitions. A containment $P_{1} \subset P_{2}$ of prime ideals in some ring will be said to be normal if rank $P_{2}=\operatorname{rank}\left(P_{2} / P_{1}\right)+\operatorname{rank} P_{1}$. Otherwise it will be said to be abnormal. More specifically, if $\operatorname{rank} P_{2}=\operatorname{rank} P_{2} / P_{1}+\operatorname{rank} P_{1}+k$ then we will say that $P_{1} \subset P_{2}$ is k-abnormal. Alternatively we will call k the degree of abnormality. We allow the case $k=0$, thus equating 0 -abnormality with normality. The phrase "almost all" will mean all but finitely many.
The proof of the next lemma is straightforward and is left to the reader.

[^0]Lemma 1.1. Let $P_{1} \subset P_{2} \subset P_{3}$ be prime ideals in some ring. If the degrees of abnormality of $P_{1} \subset P_{2}, P_{2} \subset P_{3}, P_{1} \subset P_{3}$ and $P_{2} / P_{1} \subset P_{3} / P_{1}$ are respectively k_{1}, k_{2}, k_{3}, and k_{4} then $k_{1}+k_{2}=k_{3}+k_{4}$.

Proposition 1.2. Let P be a prime in a Noetherian ring R. Let $W=$ $\{Q \mid Q$ is prime, $P \subset Q$ and $P \subset Q$ is abnormal $\}$. Then P is a proper subset of $\cap\{Q \in W\}$.

Proof. Suppose that rank $P=r$ and that a_{1}, \ldots, a_{r} are elements of R such that P is minimal over $\left(a_{1}, \ldots, a_{r}\right),\left[1\right.$, Theorem 153]. Let $P=P_{1}, P_{2}, \ldots, P_{n}$ be all the primes of R minimal over $\left(a_{1}, \ldots, a_{r}\right)$. We will show that each $Q \in W$ contains one of P_{2}, \ldots, P_{n}. This will show that $\cap\{Q \in W\}$ contains not only P but also $P_{2} \cap \cdots \cap P_{n}$, and so prove the proposition.

For $Q \in W, \operatorname{rank} Q>\operatorname{rank}(Q / P)+\operatorname{rank} P=\operatorname{rank}(Q / P)+r$. However by $\left[1\right.$, Theorem 154], $\operatorname{rank} Q \leqslant \operatorname{rank}\left[Q /\left(a_{1}, \ldots, a_{r}\right)\right]+r . \operatorname{Thus} \operatorname{rank}\left[Q /\left(a_{1}, \ldots, a_{r}\right)\right]>$ $\operatorname{rnak}(Q / P)$. Therefore, Q must contain one of P_{2}, \ldots, P_{n}.

Notation. Let Q^{\prime} be a prime and let W^{\prime} be an infinite set of primes all of which contain Q^{\prime}. If for every infinite subset $W^{\prime \prime}$ of W^{\prime} we have $Q^{\prime}=$ $\cap\left\{Q \in W^{\prime \prime}\right\}$ then we will call $\left(Q^{\prime}, W^{\prime}\right)$ a conforming pair.

Remark. Notice that if $P \subset Q^{\prime}$ and $\left(Q^{\prime}, W^{\prime}\right)$ is a conforming pair, then ($Q^{\prime} \mid P,\left\{Q / P \mid Q \in W^{\prime}\right\}$) is also a conforming pair.

Lemma 1.3. Let I be an ideal in a Noetherian ring R and let W be an infinite set of primes all of which contain I. Then there is a conforming pair $\left(Q^{\prime}, W^{\prime}\right)$ with $I \subset Q^{\prime}$ and $W^{\prime} \subset W$.

Proof. Expand I to an ideal Q^{\prime} maximal with respect to being contained in infinitely many members of W. That Q^{\prime} is prime is straightforward.

Let $W^{\prime}=\left\{Q \in W \mid Q^{\prime} \subset Q\right\}$. If $W^{\prime \prime}$ is an infinite subset of W^{\prime} then by the maximality of $Q^{\prime}, Q^{\prime}=\cap\left\{Q \in W^{\prime \prime}\right\}$, showing that $\left(Q^{\prime}, W^{\prime}\right)$ is a conforming pair.

Lemma 1.4. Let $\left(Q^{\prime}, W^{\prime}\right)$ be a conforming pair in a Noetherian ring R. Then for almost all $Q \in W^{\prime}$ we have that $Q^{\prime} \subset Q$ is normal.

Proof. Let $W^{\prime \prime}=\left\{Q \in W^{\prime} \mid Q^{\prime} \subset Q\right.$ is abnormal $\}$. By Proposition 1.2, Q^{\prime} is a proper subset of $\cap\left\{Q \in W^{\prime \prime}\right\}$. Since $\left(Q^{\prime}, W^{\prime}\right)$ is a conforming pair, $W^{\prime \prime}$ must be a finite set.

Lemma 1.5. Let $\left(Q^{\prime}, W^{\prime}\right)$ be a conforming pair in a Noetherian ring R. Let P be a prime contained in Q^{\prime} such that $P \subset Q^{\prime}$ is l-abnormal. Then for almost all $Q \in W^{\prime}, P \subset Q$ is l-abnormal.

Proof. Applying Lemma 1.4 to the conforming pairs (Q^{\prime}, W^{\prime}) and $\left(Q^{\prime} \mid P,\left\{Q / P \mid Q \in W^{\prime}\right\}\right)$ we see that for almost all $Q \in W^{\prime}$ we have both $Q^{\prime} \subset Q$ and $Q^{\prime} / P \subset Q / P$ normal. By Lemma 1.1, it follows that since $P \subset Q^{\prime}$ is l-abnormal, $P \subset Q$ is also l-abnormal for almost all $Q \in W^{\prime}$.

Theorem 1.6. Let P be prime in the Noetherian ring R. Then $\{k \mid$ there is a prime Q containing P with $P \subseteq Q$-abnormal $\}$ is finite.

Proof. Suppose not. Then for each of infinitely many distinct positive integers k, we may pick a prime Q_{k} containing P such that $P \subset Q_{k}$ is k abnormal. Let W be the infinite set of Q_{k} thus chosen. By Lemma 1.3, there is a conforming pair $\left(Q^{\prime}, W^{\prime}\right)$ with $P \subset Q^{\prime}$ and $W^{\prime} \subset W$. By Lemma 1.5, for almost all $Q_{k} \in W^{\prime}$, the degree of abnormality of $P \subset Q_{k}$ equals the degree of abnormality of $P \subset Q^{\prime}$. This contradicts the fact that for distinct k 's, the degrees of abnormality of $P \subset Q_{k}$ are distinct.

Lemma 1.7. Let P be a prime in the Noetherian ring R and let V be a subset of $\{k \mid$ there is a prime Q containing P with $P \subset Q k$-abnormal $\}$. Suppose that I is an ideal with $P \subset I$. Let $W=\{Q \mid Q$ is prime, $I \subset Q$, and $P \subset Q$ is k-abnormal with $k \in V\}$. Then W has only finitely many minimal members.

Proof. Let W_{1} be the set of minimal members of W. If W_{1} is infinite, by Lemma 1.3, there is a conforming pair (Q^{\prime}, W^{\prime}) with $I \subset Q^{\prime}$ and $W^{\prime} \subset W_{1}$. By Lemma 1.5, for almost all $Q \in W^{\prime}$ the degree of abnormality of $P \subset Q$ equals the degree of abnormality of $P \subset Q^{\prime}$. Since for $Q \in W^{\prime} \subset W_{1} \subset W$ the degree of abnormality of $P \subset Q$ is in V, we have that the degree of abnormality of $P \subset Q^{\prime}$ is in V. That is, $Q^{\prime} \in W$. This contradicts the fact that Q^{\prime} is contained in infinitely many minimal members of W.

Corollary 1.8. Let P be prime in the Noetherian ring R. Let V be a subset of $\{k \mid$ there is a prime Q containing P such that $P \subset Q$ is k-abnormal $\}$. Then the set $\{Q \mid Q$ is prime, $P \subset Q$ and $P \subset Q$ is k-abnormal with $k \in V\}$ has only finitely minimal members.

Proof. This is a special case of Lemma 1.7 with $I=P$.
Corollary 1.9. Let P be prime in the Noetherian ring R. The set $\{Q \mid Q$ is prime, $P \subset Q$ and $P \subset Q$ is abnormal $\}$ has only finitely many minimal members.

Proof. This is a special case of the last corollary with $V=\{k>0 \mid$ there is a prime Q containing P with $P \subset Q k$-abnormal $\}$.

Corollary 1.10. ([2, Theorem 1]). Let P be prime in the Noetherian ring R. Then for almost all Q satisfying $P \subset Q$, and $\operatorname{rank}(Q \mid P)=1$, we have $\operatorname{rank} Q=\operatorname{rank} P+1$.

Proof. For Q containing P with rank $Q / P=1$, if rank $Q>\operatorname{rank} P+1$ the Q is clearly a minimal member of the set $\{Q \mid Q$ is prime, $P \subset Q$ and $P \subset Q$ is abnormal $\}$.

Theorem 1.11. Let P be a prime in the Noetherian ring R and let $V_{1} \cup V_{2}$ be a disjoint partition of $\{k \mid$ there is a prime Q containing P with $P \subset Q k$ abnormal\}. Suppose further that $0 \in V_{1}$. Then there is a strictly increasing chain of ideals $P=I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset I_{n}$ with the following property: For a prime Q containing P let j be the largest of $0,1,2, \ldots, n$ such that $I_{j} \subset Q$. If $P \subset Q$ is k-abnormal then $k \in V_{1}$ if and only if j is even and $k \in V_{2}$ if and only if j is odd.

Remark. $P \subset P$ is 0 -abnormal so 0 is in $V_{1} \cup V_{2}$, and we may assume that it is in V_{1}.

Proof. Let $I_{0}=P$. Suppose that I_{j} has been constructed. We will inductively construct I_{j+1}. Suppose that j is even (for j odd, do the following construction using V_{1} rather than V_{2}). Let $W=\left\{Q \mid Q\right.$ is prime, $I_{j} \subset Q$, and $P \subset Q$ is k-abnormal with $\left.k \in V_{2}\right\}$. If W is empty the chain stops. If W is not empty, by Lemma $1.7, W$ has only finitely many minimal members. Let I_{j+1} be their intersection. Clearly $I_{j} \subset I_{j+1}$. In fact, since I_{j+1} is a finite intersection of primes, Q, satisfying $P \subset Q$ is k-abnormal with $k \in V_{2}$, and (inductively) I_{j} is a finite intersection of primes, Q, satisfying $P \subset Q$ is k-abnormal with $k \in V_{1}$, we have that I_{j} is a proper subset of I_{j+1}. Since R is Noetherian our chain eventually stops. We now show that this chain has the stated property. Let Q be a prime containing P and let j be the largest of $1,2, \ldots, n$ such that $I_{j} \in Q$. Let $P \subset Q$ be k-abnormal. We must show that if j is even then $k \in V_{1}$ and if j is odd then $k \in V_{2}$. Assume that j is even, the other case being symmetric. If $k \notin V_{1}$ then $k \in V_{2}$. Since $I_{j} \subset Q$ we may find a prime Q^{\prime} with $I_{j} \subset Q^{\prime} \subset Q, P \subset Q^{\prime}$ is l-abnormal with $l \in V_{2}$ and Q^{\prime} is minimal in the set $\left\{Q^{\prime \prime} \mid Q^{\prime \prime}\right.$ is prime, $I_{j} \subset Q^{\prime \prime}$ and $P \subset Q^{\prime \prime}$ is m-abnormal with $\left.m \in V_{2}\right\}$. By construction, $I_{j+1} \subset Q^{\prime}$. Thus $I_{j+1} \subset Q^{\prime} \subset Q$, violating the maximality of j.

Coromary 1.12. Let P be a prime in the Noetherian ring R. Then there is a strictly increasing chain of ideals $P=I_{0} \subset I_{1} \subset \cdots \subset I_{n}$ with the following property: If Q is any prime containing P and if j is the largest of $0,1,2, \ldots, n$ such that $I_{j} \subset Q$, then $P \subset Q$ is normal if and only if j is even.

Proof. Immediate from 1.11 using $V_{1}=\{0\}$.
Open Questions. (i) In a Noetherian ring, is $\{k \mid$ there are primes $P \subset Q$ with $P \subset Q k$-abnormal $\}$ finite? (ii) Let P be a prime in a Noetherian ring. Let $W=\{Q \mid Q$ is prime, $P \subset Q$ and $P \subset Q$ is abnormal $\}$. Let W_{1} be the set
of minimal members of W. Is $\{k \mid$ there is a $Q \in W$ with $P \subset Q k$-abnormal $\}$ equal to $\left\{k \mid\right.$ there is a $Q \in W_{1}$ with $P \subset Q k$-abnormal $\}$?

Theorem 1.13. Let R be a Noetherian ring and let k be the degree of abnormality of some pair of primes of R. Then there is a G-ideal, Q, and a prime $P \subset Q$ with $\operatorname{rank}(Q / P)=1$ and with $P \subset Q k$-abnormal.

Remark. By [1, Theorem 146], we see that in a Noetherian ring, G-ideals are large, being either maximal or at least submaximal. Thus our theorem says that all degrees of abnormality in R can be found in pairs of primes near the top of R.

Proof. Suppose that $P_{1} \subset P_{2}$ is k-abnormal. Let Q be maximal with respect to containing P_{1} and having $P_{1} \subset Q k$-abnormal. We claim that Q is a G-ideal. If not, by [1, Theorems 146 and 144] there would be infinitely many primes Q^{\prime} all containing Q and with $\operatorname{rank}\left(Q^{\prime} \mid Q\right)=1$. By Corollary 1.10 we could find such a Q^{\prime} with both $Q \subset Q^{\prime} 0$-abnormal and $Q / P_{1} \subset Q^{\prime} / P_{1} 0$ abnormal. By Lemma 1.1, we would have $P_{1} \subset Q^{\prime} k$-abnormal contradicting the maximality of Q. Thus Q is a G-ideal.

Now choose P to the maximal with respect to being contained in Q and with $P \subset Q k$-abnormal. We claim that $\operatorname{rank}(Q / P)=1$. If not by [1, Theorem 144] we can find infinitely many primes P^{\prime} with $P \subset P^{\prime} \subset Q, \operatorname{rank}\left(P^{\prime} \mid P\right)=1$ and $\operatorname{rank}\left(Q / P^{\prime}\right)=\operatorname{rank}(Q / P)-1$. Thus $P^{\prime} \mid P \subset Q / P$ is 0 -abnormal. Furthermore by Corollary 1.10 we may choose such a P^{\prime} satisfying $P \subset P^{\prime}$ is 0 abnormal. By lemma $1.1, P^{\prime} \subset Q$ is k-abnormal contradicting the maximality of P. This shows that $\operatorname{rank}\left(P^{\prime} \mid P\right)=1$ and completes our proof.

Theorem 1.14. Let (R, M) be a local ring. Let $k>0$ be the degree of abnormality of some pair of primes in R. Then there is a submaximal prime P such that $P \subset M$ is l-abnormal with $l \geqslant k$.

Proof. By Theorem 1.13 there are primes $P_{1} \subset P_{2}$ with P_{2} a G-ideal, $\operatorname{rank}\left(P_{2} / P_{1}\right)=1$ and $P_{1} \subset P_{2} k$-abnormal. If P_{2} is in fact M, then let $P=P_{1}$ and we are done. If $P_{2} \neq M$, then by [1, Theorem 146] $\operatorname{rank}\left(M / P_{2}\right)=1$. Let the degrees of abnormality of $P_{2} \subset M, P_{1} \subset M$ and $P_{2} / P_{1} \subset M / P_{1}$ be, respectively, b, c and d. By Lemma $1.1, k+b=c+d$. Since $P_{1} \subset P_{2} \subset M$ with $\operatorname{rank}\left(P_{2} / P_{1}\right)=1=\operatorname{rank}\left(M / P_{2}\right)$, by [5, Proposition 2.2] and Corollary 1.10 , there is a prime P satisfying $P_{1} \subset P \subset M, \operatorname{rank}\left(P / P_{1}\right)=1=\operatorname{rank}(M / P)$ and $P_{1} \subset P$ is 0 -abnormal. It is also clear that $P / P_{1} \subset M / P_{1}$, like $P_{2} / P_{1} \subset M / P_{1}$, is d-abnormal. Let $P \subset M$ be l-abnormal. Our goal is to show that $l \geqslant k$. However by Lemma 1.1, $0+l=c+d$. Thus $0+l=c+d=k+b \geqslant k$.

We close this section by giving an alternate proof of [3, Proposition 7].

Theorem 1.15. Let (R, M) be a local ring satisfying rank $P+$ corank $P=\operatorname{dim} R$ for all primes P of R. Then R satisfies the first chain condition.

Proof. The assumption on R implies that for any prime $P, P \subset M$ is normal. Theorem 1.14 now easily shows that any pair of primes $Q_{1} \subset Q_{2}$ must be normal. Suppose that R does not satisfy the first chain condition. Then there is a saturated chain of primes $P_{0} \subset P_{1} \subset \cdots \subset P_{n-1} \subset M$ with P_{0} minimal and $n<\operatorname{dim} R=\operatorname{rank} M$. By [2, Theorem 5] we may assume that $\operatorname{rank}\left(P_{n-1} / P_{0}\right)=n-1$. Since $n<\operatorname{dim} R=\operatorname{rank} P_{n-1}+\operatorname{corank} P_{n-1}=$ rank $P_{n-1}+1$, rank $P_{n-1}>n-1$. This shows that $P_{0} \subset P_{n-1}$ is abnormal, a contradiction.

2. Behavior of Prime Contractions in $R \subset T$

Proposition 2.1. Let $A \subset B$ be a finitely generated extension of Noetherian integral domains. Let $W=\{Q$ prime in $B \mid \operatorname{rank}(Q \cap A)>\operatorname{rank} Q\}$. If $W \neq \varnothing$ then $\cap\{Q \in W\} \neq 0$.

Proof. It is easy to see that by induction we may assume that B is generated over A by a single element. If that element is transcendental over A, it is well known that W is empty. Therefore, assume that $B=A[u]$ with u algebraic over A and let K be the kernel of the map from $A[x]$ to $A[u]=B$ sending the indeterminate x to u. Since B is a domain and u is algebraic over A, K is a nonzero prime in $A[x]$. Also, $K \cap A=0$. We may identify $A[u]$ with $A[x] / K$. For a prime Q in W (assume $W \neq \varnothing$) suppose that under the above identification, Q identifies with $Q^{\prime} \mid K$ in $A[x] / K$ where Q^{\prime} is a prime of $A[x]$. Since Q is in W we must have $\operatorname{rank}\left(Q^{\prime} \cap A\right)>\operatorname{rank}\left(Q^{\prime} \mid K\right)$. Our task is thus, to show that if $W^{\prime}=\left\{Q^{\prime}\right.$ prime in $A[x] \mid K \subset Q^{\prime}$ and $\operatorname{rank}\left(Q^{\prime} \cap A\right)>$ $\left.\operatorname{rank}\left(Q^{\prime} \mid K\right)\right\}$, then $\cap\left\{Q^{\prime} \in W^{\prime}\right\}$ is strictly larger than K. We partition W^{\prime} into two disjoint subsets $W_{1}^{\prime}=\left\{Q^{\prime} \in W^{\prime} \mid Q^{\prime}=\left(Q^{\prime} \cap A\right) A[x]\right\}$ and $W_{2}^{\prime}=$ $\left\{Q^{\prime} \in W^{\prime} \mid Q^{\prime} \neq\left(Q^{\prime} \cap A\right) A[x]\right\}$. Certainly since K is prime, it will be enough to show that for $i=1,2, K$ is properly contained in $\cap\left\{Q^{\prime} \in W_{i}^{\prime}\right\}$. Consider any nonzero polynomial $f(x)$ in K and let c be a nonzero coefficient of $f(x)$. For $Q^{\prime} \in W_{1}^{\prime}$, since $f(x) \in K \subset Q^{\prime}$ and $Q^{\prime}=\left(Q^{\prime} \cap A\right) A[x]$ we have $c \in Q^{\prime}$. Thus $c \in \cap\left\{Q^{\prime} \in W_{1}^{\prime}\right\}$. However, $K \cap A=0$ so that $c \notin K$, and so $\cap\left\{Q^{\prime} \in W_{1}^{\prime}\right\}$ properly contains K. For $Q^{\prime} \in W_{2}^{\prime}$, let $P=Q^{\prime} \cap A$. We then know that $P A[x] \neq Q^{\prime}$ so that rank $Q^{\prime}=\operatorname{rank} P+1$ [1, Theorem 149] and rank $P=\operatorname{rank}\left(Q^{\prime} \cap A\right)>Q^{\prime} \mid K$. However, since $K \neq 0$ but $K \cap A=0$, $\operatorname{rank} K=1$. Thus rank $Q^{\prime}=\operatorname{rank} P+1>\operatorname{rank} Q^{\prime}\left|K+1=\operatorname{rank} Q^{\prime}\right| K+$ rank K, showing that for any $Q^{\prime} \in W_{2}^{\prime}, K \subset Q^{\prime}$ is abnormal. By Proposition $1.2, \cap\left\{Q^{\prime} \subset W_{2}^{\prime}\right\}$ properly contains K and we are done.

Lemma 2.2. Let $R \subset T$ be a finitely generated extension of Noetherian rings. Let $\left(Q^{\prime}, W^{\prime}\right)$ be a conforming pair in T. Then for almost all $Q \in W^{\prime}$ we have $\operatorname{rank}\left((Q \cap R) /\left(Q^{\prime} \cap R\right)\right) \leqslant \operatorname{rank}\left(Q / Q^{\prime}\right)$. If $R \subset T$ satisfies incomparability the inequality can be replaced with equality.

Proof. Let $W^{\prime \prime}=\left\{Q \in W^{\prime} \mid \operatorname{rank}\left((Q \cap R) /\left(Q^{\prime} \cap R\right)>\operatorname{rank}\left(Q / Q^{\prime}\right)\right\}\right.$. By Proposition 2.1. applied to $R /\left(Q^{\prime} \cap R\right) \subset T / Q^{\prime}$, we see that Q^{\prime} is properly contained in $\cap\left\{Q \in W^{\prime \prime}\right\}$. Because (Q^{\prime}, W^{\prime}) is a conforming pair, $W^{\prime \prime}$ must be finite. This proves the first part of the lemma. If $R \subset T$ has incomparability then $\operatorname{rank}(Q \cap R) /\left(Q^{\prime} \cap R\right) \nleftarrow \operatorname{rank}\left(Q / Q^{\prime}\right)$ and the inequality becomes equality.

Lemma 2.3. Let $R \subset T$ be a finitely generated extension of Noetherian rings. Let $\left(Q^{\prime}, W^{\prime}\right)$ be a conforming pair in T. Then for almost all $Q \in W^{\prime}$ we have $Q^{\prime} \cap R \subset Q \cap R$ normal.

Proof. Let $W^{\prime \prime}=\left\{Q \in W^{\prime} \mid Q^{\prime} \cap R \subset Q \cap R\right.$ is abnormal $\}$. By Proposition 1.2, $Q^{\prime} \cap R$ is properly contained in $\cap\left\{Q \cap R \mid Q \in W^{\prime \prime}\right\}$. Thus Q^{\prime} is properly contained in $\cap\left\{Q \in W^{\prime \prime}\right\}$. Since (Q^{\prime}, W^{\prime}) is a conforming pair, $W^{\prime \prime}$ must be finite.

Lemma 2.4. Let $R \subset T$ be a finitely generated extension of Noetherian rings. Let $\left(Q^{\prime}, W^{\prime}\right)$ be a conforming pair in T. If $\operatorname{rank}\left(Q^{\prime} \cap R\right)=\operatorname{rank} Q^{\prime}+l$ then for almost all $Q \in W^{\prime}, \operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k$ with $k \leqslant l$. If $R \subset T$ satisfies incomparability then for almost all $Q \in W^{\prime}, \operatorname{rank}(Q \cap R)=\operatorname{rank} Q+l$.

Proof. By Lemmas 1.4, 2.3 and 2.2, for almost all $Q \in W^{\prime}$ we have $Q^{\prime} \subset Q$ normal, $Q^{\prime} \cap R \subset Q \cap R$ normal and $\operatorname{rank}\left((Q \cap R) /\left(Q^{\prime} \cap R\right)\right) \leqslant \operatorname{rank} Q / Q^{\prime}$. Thus for almost all $Q \in W^{\prime}$ we have $\operatorname{rank}(Q \cap R)=\operatorname{rank}\left((Q \cap R) /\left(Q^{\prime} \cap R\right)\right)+$ $\operatorname{rank}\left(Q^{\prime} \cap R\right) \leqslant \operatorname{rank}\left(Q / Q^{\prime}\right)+\operatorname{rank}\left(Q^{\prime} \cap R\right)=\operatorname{rank}\left(Q / Q^{\prime}\right)+\operatorname{rank} Q^{\prime}+l=$ $\operatorname{rank} Q+l$. Therefore $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k$ for some $k \leqslant l$.
If $R \subset T$ satisfies incomparability, by Lemma 2.2, the only inequality in the last paragraph becomes an equality, which proves the last statement in the lemma.

Theorem 2.5. Let $R \subset T$ be a finitely generated extension of Noetherian rings. Then $\{k \geqslant 0 \mid$ there is a prime Q of T with $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k\}$ is finite.

Proof. Suppose not. Then for infinitely many distinct positive integers k we can find a prime Q_{k} of T such that $\operatorname{rank}\left(Q_{k} \cap R\right)=\operatorname{rank} Q_{k}+k$. Let W be the infinite set of the Q_{k} so chosen. By Lemma 1.3, with $I=0$, there is a conforming pair $\left(Q^{\prime}, W^{\prime}\right)$ with $W^{\prime} \subset W$. If $\operatorname{rank}\left(Q^{\prime} \cap R\right)=$ rank $Q^{\prime}+l$ then by Lemma 2.4, for almost all $Q_{k} \in W^{\prime}$ we have $k \leqslant l$. This
contradicts that there are infinitely many distinct positive integers k with $Q_{k} \in W^{\prime}$.

Remark. With $R \subset T$ as in 2.5 , it is also true that $\{k<0 \mid$ there is a prime Q of T with $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k\}$ is finite. In fact, this set is bounded below by $-n$, where n is the number of generators of T over R. This follows easily from [1, Theorem 149] and induction. We, however, are only concerned with the positive k 's. If $R \subset T$ satisfies incomparability, there are no negative k 's.

Theorem 2.6. Let $R \subset T$ be a finitely generated extension of Noetherian rings. Let $W=\{Q \mid Q$ is prime in T and $\operatorname{rank}(Q \cap R)>\operatorname{rank} Q\}$. Then W has only finitely many minimal members.

Proof. Suppose that W_{1} is the set of minimal members of W. If W_{1} is infinite then by Lemma 1.3. there is a conforming pair of $T,\left(Q^{\prime}, W^{\prime}\right)$ with $W^{\prime} \subset W_{1} \subset W$. By Lemma 2.4, for almost all $Q \in W^{\prime}$ we have $\operatorname{rank}\left(Q^{\prime} \cap R\right)-$ $\operatorname{rank} Q^{\prime} \geqslant \operatorname{rank}(Q \cap R)-\operatorname{rank} Q>0$ showing that $Q^{\prime} \in W$ and therefore contradicting that Q^{\prime} is contained in infinitely many minimal members of W.

The next corollary extends [2, Theorem 7].
Corollary 2.7. Let $R \subset T$ be a finitely generated extension of Noetherian domains. Then almost all rank 1 primes of T contract to rank 1 primes of R.

Proof. Since 0 contracts to 0 , any rank 1 prime of T contracting to a larger rank is minimal in the set given in 2.6 .

Remark. Theorem 2.6 fails for

$$
\{Q \mid Q \text { is prime in } T \text { and rank }(Q \cap R)<\operatorname{rank} Q\}
$$

as is shown by $F \subset F[x]$ with F a field. More subtly, it fails if we do not consider all of $\{Q \mid Q$ is prime in T and $\operatorname{rank}(Q \cap R)>\operatorname{rank} Q\}$, but only consider $\{Q \mid Q$ is prime in T and $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k\}$ for some fixed positive integer k. However, if $R \subset T$ also satisfies incomparability, then even this last set has only finitely many minimal members, as we shall show. First, however, we demonstrate why incomparability is needed.

Example 2.8. Let (R, M) be a 3-dimensional local domain which has a prime having rank 1 and corank 1 [4, Example 2, pp. 202-205]. By [2, Theorem 4], there is a prime K in the polynomial ring $R[x]$ such that $K \neq 0$, $K \cap R=0, K \subset M^{*}=M R[x]$ and $\operatorname{Rank}\left(M^{*} / K\right)=1$. If $T=R[x] / K$ then T is a finitely generated algebraic extension of R. By [1, Section 1-5] there are infinitely many primes Q of $R[x]$ containing M^{*} and satisfying
$\operatorname{rank}\left(Q / M^{*}\right)=1$. By Corollary 1.10 applied to M^{*} / K, we have that infinitely many of those Q satisfy $\operatorname{rank}(Q / K)=2$. Of course, those Q also satisfy $Q \cap R=M$ so that the rank 2 primes Q / K of T contract to the rank 3 prime M of R. That is, we have produced infinitely many primes Q of $R[x]$ containing M^{*} for which $\operatorname{rank}(Q / K) \cap R=\operatorname{rank}(Q / K)+1$. Suppose that the set of primes of T which increase in rank by 1 upon contraction to R has only finitely many minimal members. Then there must be a prime Q^{\prime} of $R[x]$ containing K such that $\left.\operatorname{rank}\left(Q^{\prime} \mid K\right) \cap R\right)=\operatorname{rank}\left(Q^{\prime} \mid K\right)+1$ and which is contained in infinitely many of the Q / K described above. In particular Q^{\prime} is contained in infinitely many prime Q of $R[x]$ which also contain M^{*}. It follows from [1, Section 1-5] that $Q^{\prime} \subset M^{*}$. We now have $K \subset Q^{\prime} \subset M^{*}$. Since $\left.\operatorname{rank}\left(Q^{\prime} \mid K\right) \cap R\right)=\operatorname{rank}\left(Q^{\prime} \mid K\right)+1, Q^{\prime} \neq K$. Since $\operatorname{rank}\left(M^{*} \mid K\right)=1$, we have $Q^{\prime}=M^{*}$. However $\left(M^{*} / K\right) \cap R=M$ so that $\operatorname{rank}\left(\left(Q^{\prime} / K\right) \cap R\right)=$ $\operatorname{rank}\left(\left(M^{*} / K\right) \cap R\right)=\operatorname{rank} M=3$ while $\operatorname{rank}\left(Q^{\prime} \mid K\right)+1=\operatorname{rank}\left(M^{*} / K\right)+1=$ $1+1=2$, a contradiction.

Lemma 2.9. Let $R \subset T$ be a finitely generated extension of Noetherian rings which satisfies incomparability. Let V be a subset of $\{k \mid$ there is a prime Q of T with $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k$.$\} . Suppose that I$ is an ideal of T and that $W=\{Q$ prime in $T \mid I \subset Q$ and $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k$ with $k \in V\}$. Then W has only finitely many minimal members.

Remark. Incomparability insures that all k involved are nonnegative.
Proof. Let W_{1} be the set of minimal members of W. Assume that W_{1} is infinite. By Lemma 1.3, T has a conforming pair $\left(Q^{\prime}, W^{\prime}\right)$ with $I \subset Q^{\prime}$ and $W^{\prime} \subset W_{1}$. By Lemma 2.4, for almost all $Q \in W^{\prime}$ we have $\operatorname{rank}\left(Q^{\prime} \cap R\right)-$ $\operatorname{rank} Q^{\prime}=\operatorname{rank}(Q \cap R)-\operatorname{rank} Q$. As the right-hand side of this equation is in V, Q^{\prime} is in W, contradicting that it is contained in infinitely many minimal members of W.

Theorem 2.10. Let $R \subset T$ be a finitely generated extension of Noetherian rings which satisfies incomparability. Let $V_{1} \cup V_{2}$ be a disjoint partition of $\{k \mid$ there is a prime Q of T with $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k\}$. Assume that $0 \in V_{1}$. Then there is a strictly increasing chain of ideals $0=I_{0} \subset I_{1} \subset \cdots \subset I_{n}$ with the following property: For any prime Q of T let j be the largest of $1,2, \ldots, n$ such that $I_{j} \subset Q$. If $\operatorname{rank}(Q \cap R)=\operatorname{rank} Q+k$, then $k \in V_{1}$ if and only if j is even while $k \in V_{2}$ if and only if j is odd.

Remark. By [1, Exercise 1, p. 41] there is a minimal prime of T which contracts to a minimal prime of R. Thus $0 \in V_{1} \cup V_{2}$ and we may assume that $0 \in V_{1}$.

Proof. The proof is completely analogous to that of Theorem 1.11.

References

1. I. Kaplansky, "Commutative Rings," Allyn and Bacon, MA, 1970.
2. S. McAdam, Saturated chains in Noetherian rings, Indiana Math. J. 23 (1974), 719-728.
3. S. McAdam and L. J. Ratliff, Jr., Semi-local taut rings, manuscript.
4. M. Nagata, 'Local Rings," Interscience, New York, 1962.
5. L. J. Ratliff, Jr., Characterizations of Catenary Rings, Amer. J. Math. 93 (1971), 1070-1108.

[^0]: * Some of the work on this paper was done while the second author was supported by N.S.F. Grant GP-38542.

