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We solve two inverse spectral problems for star graphs of Stieltjes
strings with Dirichlet and Neumann boundary conditions, respec-
tively, at a selected vertex called root. The root is either the cen-
tral vertex or, in the more challenging problem, a pendant vertex
of the star graph. At all other pendant vertices Dirichlet condi-
tions are imposed; at the central vertex, at which a mass may be
placed, continuity and Kirchhoff conditions are assumed. We de-
rive conditions on two sets of real numbers to be the spectra of
the above Dirichlet and Neumann problems. Our solution for the
inverse problems is constructive: we establish algorithms to re-
cover the mass distribution on the star graph (i.e. the point masses
and lengths of subintervals between them) from these two spec-
tra and from the lengths of the separate strings. If the root is a
pendant vertex, the two spectra uniquely determine the parame-
ters on the main string (i.e. the string incident to the root) if the
length of the main string is known. The mass distribution on the
other edges need not be unique; the reason for this is the non-
uniqueness caused by the non-strict interlacing of the given data
in the case when the root is the central vertex. Finally, we relate of
our results to tree-patterned matrix inverse problems.
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1. Introduction

Two spectra of a boundary value problem describing small transverse vibrations of a string to-
gether with its length uniquely determine the density for a wide class of strings. This result stated
by M.G. Krein was proved by L. de Branges (see [11, p. 252]). Moreover, these authors found neces-
sary and sufficient conditions on two sequences of real numbers to be the spectra of two boundary
value problems generated by this class of strings; these conditions include strict interlacing of the
two sequences (see [23]).

In this paper we consider star graphs of so-called Stieltjes strings, i.e. massless threads bearing
a finite number of point masses. Such strings are widely used as simple models in physics (see e.g.
[25,13,14]). The same type of equations arises in elasticity theory for systems of masses joined by
springs (see e.g. [17,29]) or in the theory of electrical circuits (see e.g. the Cauer method [8] and
also [39]).

For a single Stieltjes string the inverse problem to determine the distribution of the point masses
from two spectra and the total length of the string was completely solved in [15]. In particular, a con-
structive algorithm based on continued fraction expansions originating in Stieltjes’s work [37] (thus
the name) was derived to recover the masses and the lengths of the intervals between them. This
algorithm was nicely illustrated and even tested experimentally in the paper [9], entitled “One can
hear the composition of a string: experiments with an inverse eigenvalue problem”. The continuous
analogue of this result is known for the case of smooth strings. If the density of the string is twice
differentiable, a Liouville transform reduces the string equation to a Sturm–Liouville equation. The
Sturm–Liouville inverse problem to determine the potential from two spectra was completely solved
in [28].

The so-called three spectra inverse problem solved in [31,16] for the Sturm–Liouville case (see
[20] for generalizations) and in [4] for Stieltjes strings may be viewed as an inverse problem on a star
graph with two edges. The three spectra required are the one on the whole interval or string and the
two on the two subintervals or substrings separated by the point where the string is clamped.

A generalization of the Sturm–Liouville inverse spectral problem for a star graph of 3 edges can
be found in [32] and for n edges in [33]. The inverse spectral problem for Stieltjes string equations
on a star graph without mass at the central vertex and with strict interlacing of the given spectra
was solved in [5]. In all these papers the central vertex was considered as the root, i.e. the spectra
of boundary value problems with Dirichlet and Neumann type conditions at the central vertex were
used as the given data to solve the inverse problem of reconstructing the mass distribution. The case
of a star graph of Stieltjes strings with damping at the central vertex was studied as an example in
the more general paper [35].

In the more complicated case when the root is a pendant vertex, uniqueness of the potential of the
Sturm–Liouville equation on the edge incident to the root was ensured in [6] and [38] by means of
the Weyl–Titchmarsh function related to the main edge (or equivalently the spectra of Dirichlet and
Neumann boundary value problems). The more general case of a tree of Stieltjes strings was studied
in [34] where the inverse problem was solved under the sufficient condition of strictly interlacing
spectra.

In the present paper we consider two different boundary value problems for a star graph of Stielt-
jes strings with continuity and Kirchhoff conditions at the interior vertex. The simpler case when the
root is the central vertex generalizes the results of [5] in three directions: we allow for a mass to
be placed at the central vertex, the given eigenvalue sequences need not interlace strictly, and the
distribution of the Dirichlet sequence onto the separate edges is not prescribed. The main purpose of
this generalization is to prepare for the more challenging and essentially different case when the root
is a pendant vertex, which has not yet been studied before.

In each of our two main results we propose conditions on two sequences of real numbers nec-
essary and sufficient to be the spectra of the Dirichlet and the Neumann problem of a star graph of
q Stieltjes strings; in the first result the root lies at the central vertex, in the second theorem the
root is at a pendant vertex. In both cases we establish a constructive method to recover the values
of the masses, including the central one, and lengths of the subintervals between them. This method
uses the representation of rational functions with interlacing zeros and poles by (possibly branching)
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continued fractions. If the root is a pendant vertex, then the spectra of the Dirichlet and the Neumann
problems together with the total length of the main edge uniquely determine the values of the masses
and lengths of the subintervals between them of the main edge. The remaining inverse problem on
the subgraph of q − 1 edges may be viewed as an inverse problem with root at the central vertex to
which our first result applies.

The paper is organized as follows. In Section 2 and its two subsections we consider the direct and
the inverse spectral problem for the case when the root is the central vertex of the star graph with q
edges. That is, we impose Dirichlet boundary conditions at all pendant vertices, while at the central
vertex we consider Kirchhoff plus continuity conditions for the Neumann problem and Dirichlet con-
ditions for the Dirichlet problem (in which case the whole problem decouples into q separate Dirichlet
problems). In contrast to earlier papers, we allow a mass M to be placed at the central vertex, so that
the Dirichlet problem may be viewed as the limit M → ∞ of the Neumann problem.

In Section 2.1 we investigate the spectra of the corresponding Neumann and Dirichlet problems
and their relation to each other, including monotonicity in terms of the central mass M . We prove
that the two spectra interlace non-strictly and if they have an eigenvalue λ in common, then its mul-
tiplicity pD(λ) as a Dirichlet eigenvalue and its multiplicity pN (λ) as a Neumann eigenvalue satisfy
pD(λ) = pN (λ) + 1. In Section 2.2 we show that the necessary conditions established in Section 2.1
are also sufficient for the solution of the inverse problem: given two sequences satisfying these con-
ditions and the total lengths l1, l2, . . . , lq of all strings, we construct a mass distribution so that the
corresponding star graph of Stieltjes strings with root at the central vertex has these two sequences
as Neumann and Dirichlet eigenvalues. Since we do not assume strict interlacing of the sequences,
this solution need not be unique. The recovering procedure, based on the decomposition of Stieltjes
functions into continued fractions, is constructive.

In Section 3 and its two subsections we consider the direct and the inverse spectral problem for
the case when the root is one of the pendant vertices of the star graph with q edges. That is, we im-
pose Dirichlet boundary conditions at all other pendant vertices, Kirchhoff plus continuity conditions
at the central vertex, where again a mass M may be placed, and at the pendant vertex chosen as root
Neumann conditions for the Neumann problem and Dirichlet conditions for the Dirichlet problem.

In Section 3.1 we investigate the spectra of the corresponding Neumann and Dirichlet problems
and their relation to each other. We prove that the two spectra interlace non-strictly and if they have
an eigenvalue λ in common, then its multiplicity pD(λ) as a Dirichlet eigenvalue and its multiplicity
pN (λ) as a Neumann eigenvalue satisfy the inequalities pD(λ) � q − 1, pN (λ) � q − 1, and pD(λ) +
pN (λ) � 2q − 3. Since the maximal multiplicity of an eigenvalue does not depend on the equation
generating the problem, but only on the form of the graph, these inequalities turn out to be analogues
of inequalities proved in [26] for Sturm–Liouville problems on trees and in [24] for arbitrary graphs.
We also establish a relation of the spectral functions of the above Dirichlet and Neumann problems
with the boundary value problems for the star subgraph of q − 1 edges obtained from the original
graph by deleting the main edge.

In Section 3.2 we show that the necessary conditions established in Section 3.1 are also sufficient
for the solution of the inverse problem: given two sequences satisfying these conditions together with
the length l of the main string and the lengths l j of the q−1 other strings, we construct a mass distri-
bution so that the corresponding star graph of Stieltjes strings with root at a pendant vertex has these
two sequences as Neumann and Dirichlet eigenvalues. Moreover, we show that the two spectra and
the total length of the main edge (i.e. the edge incident to the root) uniquely determine the masses
and the lengths of the intervals between them on this main edge; the mass distribution on the other
edges cannot be uniquely determined. The recovering procedure is based on the decomposition of the
ratio of the characteristic functions of the Dirichlet and the Neumann boundary value problem, which
is a Stieltjes function, into branching continued fractions. In fact, the coefficients at the non-branching
part of this expansion are the uniquely determined masses and the subintervals between them on the
main string, while the mass distribution on the q − 1 other edges may be recovered by our first in-
verse theorem and algorithm. An example in Section 5 illustrates that our method, in fact, allows to
construct all solutions of the inverse problem.

In Section 4 we compare our results with those in [27] and [30] (see also [18]). Tree-patterned (or
acyclic) matrices as considered in [27] and [30] are in some sense generalizations of Jacobi matrices.
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Fig. 1. Star graph with root at the central vertex.

The results of Section 3 of the present paper provide sufficient conditions for the existence of a
star-patterned matrix with two given sequences being the spectra of the matrix and its first principal
submatrix.

2. Star graph with root at the centre

A Stieltjes string is a thread (i.e. an elastic string of zero density) bearing a finite number of point
masses. A complete theory for direct and inverse spectral problems for Stieltjes strings was developed
by F.R. Gantmakher and M.G. Krein in [15].

In this section, we consider a plane star graph of q (� 2) Stieltjes strings joined at the central
vertex called the root where a mass M � 0 is placed and with all q pendant vertices fixed. We assume
that this web is stretched and study its small transverse vibrations in two different cases:

(N1) the mass M at the central vertex is free to move in the direction orthogonal to the equilibrium
position of the strings (Neumann problem),

(D1) the mass M at the central vertex is fixed (Dirichlet problem).

We investigate the relation of the eigenfrequencies of the Neumann problem (N1) to those of the
problem (D1) which decouples completely into q Dirichlet problems on the pendant edges of the star
graph.

In the sequel, we label the edges of the star graph by j = 1,2, . . . ,q (q � 2) and we assume that
each edge is a Stieltjes string. We suppose that the j-th edge consists of n j + 1 (n j � 0) intervals of

length l( j)
k (k = 0,1, . . . ,n j ) with point masses m( j)

k (k = 1,2, . . . ,n j ) separating them (both counted

from the exterior towards the centre); the length of the j-th edge is denoted by l j :=∑n j

k=0 l( j)
k (see

Fig. 1).
By v( j)

k (t) (k = 1,2, . . . ,n j , j = 1,2, . . . ,q) we denote the transverse displacement of the k-th point

mass m( j)
k (counted from the exterior) on the j-th string at time t , and by v( j)

0 (t), v( j)
n j+1(t) those of

the ends of the j-th string. If we assume the threads to be stretched by forces each equal to 1,
the Lagrange equations for the small transverse vibrations of the net are given by (compare [15,
Chapter III.1])

v( j)
k (t) − v( j)

k+1(t)

l( j)
k

+ v( j)
k (t) − v( j)

k−1(t)

l( j)
k−1

+ m( j)
k v( j) ′′

k (t) = 0

(k = 1,2, . . . ,n j, j = 1,2, . . . ,q).

At the central vertex joining the edges the continuity of the net requires that

v(1)
n +1(t) = v(2)

n +1(t) = · · · = v(q)
n +1(t),
1 2 q
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and the balance of forces implies that

q∑
j=1

v( j)
n j+1(t) − v( j)

n j
(t)

l( j)
n j

= −M v(1) ′′
n1+1(t).

Since all pendant vertices are supposed to be fixed, their displacements v( j)
0 (t) ( j = 1,2, . . . ,q) satisfy

the Dirichlet boundary conditions

v( j)
0 (t) = 0 ( j = 1,2, . . . ,q).

Separation of variables v( j)
k (t) = u( j)

k eiλt leads to the following difference equations for the displace-

ment amplitudes u( j)
k (k = 0,1,2, . . . ,n j , j = 1,2, . . . ,q) for the Neumann and Dirichlet problem:

Neumann problem (N1). If the central vertex carrying the mass M is allowed to move freely, we
obtain

u( j)
k − u( j)

k+1

l( j)
k

+ u( j)
k − u( j)

k−1

l( j)
k−1

− m( j)
k λ2u( j)

k = 0 (k = 1,2, . . . ,n j, j = 1,2, . . . ,q), (2.1)

u(1)
n1+1 = u(2)

n2+1 = · · · = u(q)
nq+1, (2.2)

q∑
j=1

u( j)
n j+1 − u( j)

n j

l( j)
n j

= Mλ2u(1)
n1+1, (2.3)

u( j)
0 = 0 ( j = 1,2, . . . ,q). (2.4)

Dirichlet problem (D1). If we clamp all strings at the central vertex, the problem decouples and
consists of the q separate problems on the edges with Dirichlet boundary conditions at both ends,

u( j)
k − u( j)

k+1

l( j)
k

+ u( j)
k − u( j)

k−1

l( j)
k−1

− m( j)
k λ2u( j)

k = 0 (k = 1,2, . . . ,n j), (2.5)

u( j)
n j+1 = 0, (2.6)

u( j)
0 = 0 (2.7)

for all j = 1,2, . . . ,q.

Note that the Neumann problem (N1) and the Dirichlet problem (D1) share Eqs. (2.1) and (2.4).
If M tends to ∞, the Neumann problem (N1) becomes the Dirichlet problem (D1); indeed, in this
case the condition (2.3) becomes u(1)

n1+1 = 0 and, together with (2.2), it becomes equivalent to (2.6)
for j = 1,2, . . . ,q.

Notation. In the following two subsections we denote by

(1) n =∑q
j=1 n j the number of masses on the star graph without the mass M in the centre,

(2)

{
{λk}n+1

k=−(n+1), k �=0 if M > 0,

{λk}n
k=−n, k �=0 if M = 0,

λ−k = −λk , λk � λk′ for k > k′ > 0, the eigenvalues of the Neumann

problem (2.1)–(2.4) on the star graph,
(3) {ν( j)

κ }n j

κ=−n j , κ �=0, ν
( j)
−κ = −ν

( j)
κ , ν

( j)
κ > ν

( j)
κ ′ for κ > κ ′ > 0, the eigenvalues of the Dirichlet problem

(2.5)–(2.7) on the j-th edge for j = 1,2, . . . ,q,
(4) {ζk}n

k=−n, k �=0 =⋃q
j=1{ν( j)

κ }n j

κ=−n j , κ �=0, ζ−k = −ζk , ζk � ζk′ for k > k′ > 0, the eigenvalues of the

Dirichlet problem (D1) on the star graph.
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2.1. Direct spectral problem for a star graph with root at the centre

In this subsection we investigate the interlacing properties and multiplicities of the eigenvalues of
the Neumann problem (N1) and the Dirichlet problem (D1).

According to [15, Supplement II.4], for each j = 1,2, . . . ,q, one may obtain the solutions u( j)
k (k =

1,2, . . . ,n j + 1) of (2.1) with Dirichlet condition u( j)
0 = 0 as in (2.4) successively in the form

u( j)
k = R( j)

2k−2

(
λ2)u( j)

1 (k = 1,2, . . . ,n j + 1),

where R( j)
2k−2(λ

2) are polynomials of degree 2k − 2 which can be obtained solving (2.1). If we set

R( j)
2k−1

(
λ2) := R( j)

2k (λ2) − R( j)
2k−2(λ

2)

l( j)
k

(k = 1,2, . . . ,n j),

then, due to (2.1) (or, equivalently (2.5)) and (2.4), the polynomials R( j)
0 , R( j)

1 , . . . , R( j)
2n j

satisfy the

recurrence relations

R( j)
2k−1

(
λ2)= −λ2m( j)

k R( j)
2k−2

(
λ2)+ R( j)

2k−3

(
λ2), (2.8)

R( j)
2k

(
λ2)= l( j)

k R( j)
2k−1

(
λ2)+ R( j)

2k−2

(
λ2) (k = 1,2, . . . ,n j), (2.9)

R( j)
−1

(
λ2)= 1

l( j)
0

, R( j)
0

(
λ2)= 1. (2.10)

The spectrum of the problem on the j-th edge, depending on the boundary condition at the other
end point, is then given by the zeros of the polynomial⎧⎨⎩φ

( j)
D

(
λ2
) := R( j)

2n j

(
λ2
)

for the Dirichlet condition u( j)
n j+1 = 0,

φ
( j)
N

(
λ2
) := R( j)

2n j−1

(
λ2
)

for the Neumann condition u( j)
n j+1 = u( j)

n j
.

(2.11)

A crucial tool in the study of the eigenfrequencies of Stieltjes strings is the notion of Nevanlinna
and S0-functions:

Definition 2.1. (See [22, §1].) A function f : z �→ f (z) of a complex variable z (or simply f (z) by abuse
of notation) is called Nevanlinna function (R-function in terms of [22]) if

1) f is analytic for z in the half-planes Im z > 0 and Im z < 0,
2) f (z) = f (z) for Im z �= 0,
3) Im z · Im f (z) � 0 for Im z �= 0,

and it is called an S-function if, in addition,

4) f is analytic for z /∈ [0,∞),
5) f (z) > 0 for z ∈ (−∞, 0);

an S-function f (z) is called an S0-function if

6) 0 is not a pole of f .

The following basic properties of rational S0-functions and characterization of them will be used
throughout this paper.

Lemma 2.2. Let f be a rational S0-function and let p ∈N be the number of its poles. Then
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i) f admits a unique continued fraction expansion

f (z) = a0 + 1

−b1z + 1
a1+ 1

−b2 z+···+ 1
ap−1+ 1

−bp z+ 1
ap

(2.12)

with a0 = limz→±∞ f (z) � 0 and ak, bk > 0 (k = 1,2, . . . , p);

ii) the number of zeros of f is

{
p if a0 > 0,

p − 1 if a0 = 0;
iii) the poles αk and zeros βk of f are all simple and interlace strictly,{

0 < α1 < β1 < α2 < · · · < βp−1 < αp < βp if a0 > 0,

0 < α1 < β1 < α2 < · · · < βp−1 < αp if a0 = 0;
iv) f is strictly increasing between its poles, i.e. in the intervals (−∞,α1), (αk,αk+1) (k = 1,2, . . . , p − 1),

and (αp,∞);
v) if f i(z) is the i-th tail of the continued fraction (2.12) (i = 0,1, . . . , p), i.e.

f i(z) = ai + 1

−bi+1z + 1
ai+1+ 1

−bi+2 z+···+ 1
ap−1+ 1

−bp z+ 1
ap

, (2.13)

and β i
k are the zeros of f i , then{

β i−1
k � β i

k for i = 1,

β i−1
k < β i

k for i = 2,3, . . . , p − 1
(k = 1,2, . . . , p − i),

in particular, β1 = β0
1 � β1

1 ; the non-strict inequalities become strict if a0 > 0.

Vice versa, if f (z) is a rational function whose poles and zeros interlace as in iii) with a0 = limz→∞ f (z), then
f is an S0-function.

Proof. ii), iii), iv) From the integral representation of S0-functions (see e.g. [22, (S1.5.1), (S1.5.6)]) it
follows that f is strictly increasing between two poles and that a0 := limz→−∞ f (z) � 0. This implies
claim iv) and the strict interlacing of poles and zeros of f . The latter shows, in particular, that the
number of zeros differs at most by one from the number of poles.

Since an S-function is strictly positive on (−∞,0) by property 5) and 0 is not a pole, we must
have 0 < α1 < β1. This shows that there are either p or p − 1 zeros; the latter occurs if and only if
0 = limz→∞ f (z) = limz→−∞ f (z) = a0.

i) If a0 > 0 and hence f has the same number of zeros and poles, f has a continued fraction
expansion (2.12) by [15, Appendix II.3]; if a0 = 0, we consider f + a for an arbitrary constant a > 0.
That the leading term in the expansion (2.12) coincides with a0 follows by taking the limits z → ±∞
in (2.12).

v) It suffices to prove the first inequality for i = 1, i.e. to show that βk � β1
k and βk < β1

k if a0 > 0
(k = 1,2, . . . , p − 1). By the definition of f = f0 and f1, we have

f (z) − a0 = f1(z)

−b1zf1(z) + 1
.

This implies that f1(z) = 0 if and only if f (z) = a0 � 0. Since f is strictly increasing between its poles,
it follows that every zero β1

k of f1 is greater than or equal to the respective zero βk of f , and strictly
greater if a0 > 0.

In order to prove the last claim, we use that if f is a rational function whose poles and zeros are
all simple and interlace strictly, then f or − f is a Nevanlinna function by [1, Theorem II.2.1]. Since



2270 V. Pivovarchik et al. / Linear Algebra and its Applications 439 (2013) 2263–2292
all poles and zeros are positive and the first pole is smaller than the first zero, it follows that f is an
S0-function. �
Remark 2.3. It is well-known that the quotient of the functions in (2.11),

φ( j)(z) := φ
( j)
D (z)

φ
( j)
N (z)

=
R( j)

2n j
(z)

R( j)
2n j−1(z)

, (2.14)

is an S0-function and that the constants in the corresponding continued fraction expansion are the
lengths l( j)

k and masses m( j)
k ( j = 1,2, . . . ,q) (see [15, Supplement II, (18)]):

φ( j)(z) = l( j)
n j

+ 1

−m( j)
n j

z + 1
l( j)
n j−1+ 1

−m
( j)
n j−1 z+···+ 1

l
( j)
1 + 1

−m
( j)
1 z+ 1

l
( j)
0

; (2.15)

in particular, the polynomials φ
( j)
D (z) = R( j)

2n j
(z) and φ

( j)
N (z) = R( j)

2n j−1(z) have only simple zeros. In fact,

by (2.8)–(2.10), we have

R( j)
0 (z)

R( j)
−1(z)

= l( j)
0 ,

R( j)
2n j

(z)

R( j)
2n j−1(z)

= l( j)
n j

+ 1

−m( j)
n j

z + 1
R
( j)
2n j−2(z)

R
( j)
2n j−3(z)

, (2.16)

for j = 1,2, . . . ,q. So the continued fraction expansion (2.15) follows by induction.

For the Neumann problem (N1), the conditions (2.2) and (2.3) at the central vertex yield the
following system of linear equations for u( j)

1 ( j = 1,2, . . . ,q):

R(1)
2n1

(
λ2)u(1)

1 = R(2)
2n2

(
λ2)u(2)

1 = · · · = R(q)
2nq

(
λ2)u(q)

1 , (2.17)

q∑
j=1

R( j)
2n j−1

(
λ2)u( j)

1 = Mλ2 R(1)
2n1

(
λ2)u(1)

1 . (2.18)

Therefore, the spectrum of the Neumann problem (2.1)–(2.4) coincides with the set of zeros of the
polynomial

φN,q
(
λ2) := q∑

j=1

[(
R( j)

2n j−1

(
λ2)− M

q
λ2 R( j)

2n j

(
λ2)) q∏

k=1, k �= j

R(k)
2nk

(
λ2)]. (2.19)

For the Dirichlet problem (D1), the conditions (2.6) imply R( j)
2n j

(λ2) = 0 and hence the spectrum of

the Dirichlet problem (2.5)–(2.7) for j = 1,2, . . . ,q coincides with the set of zeros of the polynomial

φD,q
(
λ2) := q∏

j=1

R( j)
2n j

(
λ2). (2.20)

Note that the polynomial φN,q may also be written as

φN,q
(
λ2)= ( q∑

j=1

R( j)
2n j−1(λ

2)

R( j)
2n j

(λ2)
− Mλ2

)
φD,q

(
λ2). (2.21)
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Theorem 2.4. After cancellation of common factors (if any) in the numerator and in the denominator, the
function

φq(z) := φD,q(z)

φN,q(z)
= 1∑q

j=1
1

φ( j)(z)
− Mz

(2.22)

becomes an S0-function.

Proof. By [15, Lemma S1.1.2], the function φq(z) is a Nevanlinna function if so is −φq(z)−1. By (2.21)
and (2.14), the latter can be written as

−φq(z)−1 =
q∑

j=1

(
−

R( j)
2n j−1(z)

R( j)
2n j

(z)
+ M

q
z

)
=

q∑
j=1

(
− 1

φ( j)(z)

)
+ Mz, (2.23)

which proves the identity (2.22). Clearly, the function Mz is a Nevanlinna function. By Remark 2.3 the
function φ( j)(z) and hence −φ( j)(z)−1 is a Nevanlinna function. Altogether, by (2.23) we obtain that
−φq(z)−1 is a Nevanlinna function.

Since φ( j)(z) is an S0-function by Remark 2.3, we have φ( j)(z) > 0 (z ∈ (−∞, 0]) and hence (2.22)
yields that φq(z) > 0 (z ∈ (−∞, 0]); in particular, 0 is not a pole of φq(z). �

By means of Theorem 2.4, we can now prove the following relations between the eigenvalues of
the Neumann problem (N1) and the eigenvalues of the Dirichlet problem (D1).

Theorem 2.5. If M > 0, then the eigenvalues {λk}n+1
k=−(n+1), k �=0 , λ−k = −λk, of the Neumann problem (N1)

and the eigenvalues {ζk}n
k=−n, k �=0 , ζ−k = −ζk, of the Dirichlet problem (D1) have the following properties:

1) 0 < λ1 < ζ1 � · · · � λn � ζn < λn+1;
2) ζk−1 = λk if and only if λk = ζk (k = 2,3, . . . ,n);
3) the multiplicity of λk does not exceed q − 1.

If M = 0, then the above continues to hold for the eigenvalues {λk}n
k=−n, k �=0 , λ−k = −λk, of the Neumann

problem (N1) with the modified condition

1′) 0 < λ1 < ζ1 � · · · � λn � ζn.

Proof. Suppose that M > 0.
1) It was shown above that the sets {λk}n+1

k=−(n+1), k �=0 and {0} ∪ {ζk}n
k=−n, k �=0 are the poles and

zeros, respectively, of the rational function

φ̃q
(
λ2)= λφq

(
λ2)= λ

φD,q(λ
2)

φN,q(λ2)

with φD,q and φN,q given by (2.20), (2.19). By [22, Lemma S1.5.1(2)] and Theorem 2.4, φ̃q becomes a
Nevanlinna function after cancellation of common factors (if any) in the numerator and the denomi-
nator. Hence, after this cancellation, φ̃q has only simple poles and zeros which strictly interlace as in
Lemma 2.2 iii). This proves 1) except for the strict inequalities therein.

Since λ1 is a zero of the S0-function φ̃q , it cannot be 0 (see Definition 2.1 6)). The strict inequality
λ1 < ζ1 will follow if we prove 2).

2) Suppose that λk0 = ζk0 = ν
( j0)
κ0 for some k0 ∈ {1,2, . . . ,n} and some κ0 ∈ {1,2, . . . ,n j0 }, j0 ∈

{1,2, . . . ,q}. Since λk0 is a zero of φN,q(λ
2) and ν

( j0)
κ0 is a zero of the factor R( j0)

2n j0
(λ2) in φD,q(λ

2) (see

(2.19) and (2.20)), we have
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0 =
q∑

j=1

[(
R( j)

2n j−1

(
ν

( j0)2
κ0

)− M

q
ν

( j0)2
κ0 R( j)

2n j

(
ν

( j0)2
κ0

)) q∏
k=1, k �= j

R(k)
2nk

(
ν

( j0)2
κ0

)]

= R( j0)
2n j0 −1

(
ν

( j0)2
κ0

) q∏
k=1, k �= j0

R(k)
2nk

(
ν

( j0)2
κ0

)
. (2.24)

Since their quotient is an S0-function by Remark 2.3, the polynomials R( j)
2n j

(λ2) and R( j)
2n j−1(λ

2) do

not have a common zero by Lemma 2.2 iii) (see also [15, p. 290]). Thus R( j0)
2n j0

(ν
( j0)2
κ0 ) = 0 implies that

R( j0)
2n j0 −1(ν

( j0)2
κ0 ) �= 0. Hence by (2.24) there exists an i0 ∈ {1,2, . . . ,q}, i0 �= j0, such that

R(i0)
2ni0

(
ν

( j0)2
κ0

)= 0,

and thus λk0 = ν
( j0)
κ0 = ν

(i0)

l0
∈ {ζk}n

k=−n, k �=0 for some l0 ∈ {1,2, . . . ,ni0 }. Since λk0 = ν
( j0)
κ0 = ζk0 and we

had assumed that ζk � ζk′ for k > k′ > 0, it follows that λk0 = ζk0−1. The latter implies, in particular,
the strict inequalities λ1 < ζ1 and ζn < λn+1 in 1). In the same way, one can show that if λk0 = ζk0−1,
then λk0 = ζk0 .

3) The multiplicity of each zero ζk of φD,q(z) =∏q
j=1 R( j)

2n j
(λ2) cannot exceed q because each factor

in the product has only simple zeros by Remark 2.3 and Lemma 2.2 (see also [15, Chapter III, §2,
Theorem 1]). Hence, by 2), the multiplicity of each λk can be at most q − 1.

The claim for the case M = 0 was proved in [5, Theorem 2.2]. �
Corollary 2.6. Out of two neighbouring eigenvalues λk < λk+1 one must be simple.

Proof. Otherwise, if both have multiplicity greater than 1, we have λk−1 = λk < λk+1 = λk+2. Then, by
Theorem 2.5 1), we have λk−1 = ζk−1 = λk and λk+1 = ζk+1 = λk+2. Now Theorem 2.5 2) yields that

ζk−2 = λk−1 = ζk−1 = λk = ζk, ζk = λk+1 = ζk+1 = λk+2 = ζk+2

and hence the contradiction λk = λk+1. �
Remark 2.7. If we modify the Neumann and Dirichlet problem (N1) and (D1) by imposing a Neumann
condition instead of a Dirichlet boundary condition at one pendant vertex and call the modified prob-
lems (N1′) and (D1′), then Theorem 2.5 continues to hold for the eigenvalues λ′

k of (N1′) and ζ ′
k of

(D1′). In particular, the multiplicity of every eigenvalue λ′
k does not exceed q − 1.

Proof. Without loss of generality, let the pendant vertex of edge number q be subject to a Neumann
condition. Then the proof of Theorem 2.5 carries over literally, with the only change that in the
recurrence relations (2.8)–(2.10) for the polynomials R(q)

2k−1(λ
2), R(q)

2k (λ2) the condition R(q)
−1(λ

2) = 1
l(q)
0

in (2.10) has to be replaced by R(q)
−1(λ

2) = 0 (which corresponds to setting l(q)
0 = ∞). �

We conclude this subsection by considering the eigenvalues λk of the Neumann problem (N1) as
functions of the mass M located at the central vertex (compare [15, Appendix II.8]); note that we
have a different sign in the recurrence relations (2.8) for the first term on the right hand side.

Proposition 2.8. The eigenvalues {λk}n+1
k=−(n+1), k �=0 , λ−k = −λk, of the Neumann problem (N1) have the fol-

lowing monotonicity properties:

a) λk is a monotonically decreasing function of M ∈ [0,∞) for k = 1, . . . ,n + 1,
b) λk → ζk−1 (k = 2,3, . . . ,n + 1) and λ1 → 0 if M → ∞,

where we have set λn+1 := ∞ if M = 0.
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Proof. For the purpose of this proof, we write λk(M) and φN,q( · ; M) to indicate the dependence on
M ∈ [0,∞). From (2.21) we conclude that for M , M ′ ∈ [0,∞), M < M ′ , we have

−φN,q(λ
2; M ′)

φD,q(λ2)
= −φN,q(λ

2; M)

φD,q(λ2)
+ (M ′ − M

)
λ2.

Since (M ′ − M)λ2 > 0 and the rational function − φN,q(λ2;M)

φD,q(λ2)
is a Nevanlinna function and hence in-

creasing between its poles, the zeros λn(M ′) of the left hand side must lie to the left of the zeros

λn(M) of − φN,q(λ2;M)

φD,q(λ2)
, i.e. λn(M ′) � λn(M). �

2.2. Inverse spectral problem for the star graph with root at the centre

In this subsection we investigate the inverse problem of recovering the distribution of masses on
the star graph from the two spectra of the Neumann problem (N1) and the Dirichlet problem (D1)
together with the lengths l j of the separate strings.

More precisely, suppose that q ∈ N (q � 2), is fixed and a set of lengths l j > 0 ( j = 1,2, . . . ,q) as
well as sequences {λk}n+1

k=−n−1, k �=0, {ζk}n
k=−n, k �=0 ⊂ R having the properties 1)–3) in Theorem 2.5 are

given. Can we determine numbers n j ∈ N0, sets of masses {m( j)
k }n j

k=1 ∪ {M} and of lengths {l( j)
k }n j

k=0 of
the intervals between them for j = 1,2, . . . ,q so that the corresponding star graph has the sequences
{λk}n+1

k=−(n+1), k �=0, {ζk}n
k=−n, k �=0 as Neumann and Dirichlet eigenvalues, respectively?

Theorem 2.9. Let q ∈ N, q � 2, (l j)
q
j=1 ⊂ (0,∞), n ∈ N, and suppose that {λk}n+1

k=−(n+1), k �=0 , {ζk}n
k=−n, k �=0 ⊂

R are such that

0) λ−k = −λk, ζ−k = −ζk;
1) 0 < λ1 < ζ1 � · · · � λn � ζn < λn+1;
2) ζk−1 = λk if and only if λk = ζk (k = 2,3, . . . ,n);
3) the multiplicity of λk in the sequence {λk}n+1

k=−(n+1), k �=0 does not exceed q − 1.

Then there exists a star graph of q Stieltjes strings, i.e. sequences {n j}q
j=1 ⊂ N0 and {m( j)

k }n j

k=1 ∪ {M},

{l( j)
k }n j

k=0 ⊂ (0,∞) ( j = 1,2, . . . ,q) with n =∑q
j=1 n j and

∑n j

k=0 l( j)
k = l j such that the Neumann problem

(N1) in (2.1)–(2.4) has the eigenvalues {λk}n+1
k=−(n+1), k �=0 and the Dirichlet problem (D1) in (2.5)–(2.7) for

j = 1,2, . . . ,q has the eigenvalues {ζk}n
k=−n, k �=0 .

For the case M = 0, the above continues to hold if we replace {λk}n+1
k=−(n+1), k �=0 by a sequence {λk}n

k=−n, k �=0
and/or set λ±(n+1) = ±∞.

Remark 2.10. Due to assumption 2), condition 3) is equivalent to

3′) the multiplicity of ζk in the sequence {ζk}n
k=−n, k �=0 does not exceed q.

Proof. Let {n j}q
j=1 ⊂N0 be a sequence such that n =∑q

j=1 n j and {ζk}n
k=−n, k �=0 can be written as the

union

{ζk}n
k=−n, k �=0 =

q⋃
j=1

{
ν

( j)
κ

}n j

κ=−n j , κ �=0 (2.25)

with sequences {ν( j)
κ }n j

κ=−n j , κ �=0 so that ν
( j)
−κ = −ν

( j)
κ and ν

( j)
κ > ν

( j)
κ ′ for κ > κ ′ > 0; note that the

latter is possible because of assumption 3).
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In order to prove the claim, we consider the rational function

Ψq(z) :=
( q∑

j=1

1

l j

)∏n+1
k=1

(
1 − z

λ2
k

)
∏n

k=1

(
1 − z

ζ 2
k

) . (2.26)

The function Ψ −1
q (z) is an S0-function by Lemma 2.2 since its poles and zeros {λ2

k }n+1
k=1 and {ζ 2

k }n
k=1,

after cancellation of common factors, are all simple according to condition 2), interlace strictly and
are ordered as in 1).

The theorem is proved if we find sequences {m( j)
k }n j

k=1 ∪ {M} and {l( j)
k }n j

k=0 ( j = 1,2, . . . ,q) with∑n j

k=0 l( j)
k = l j so that, including multiplicities of zeros and poles,

Ψq(z) = φN,q(z)

φD,q(z)
= φq(z)−1

with the polynomials φN,q(z) and φD,q(z) constructed from a star graph with masses {m( j)
k }n j

k=1 ∪ {M}
and lengths {l( j)

k }n j

k=0 ( j = 1,2, . . . ,q) as in (2.19), (2.20).
Since Ψ −1

q (z) is a Nevanlinna function, so is −Ψq(z). Thus expansion into partial fractions shows
that there are constants A0 � 0, A1, A2, . . . , An > 0, B ∈R so that

Ψq(z) = −A0z +
n∑

i=1

Ai

z − ζ 2
i

+ B (2.27)

(see e.g. [10, Chapter II.2, pp. 19, 26] where Nevanlinna functions are called Pick functions). More
precisely, the coefficients Ai = res(Ψq, ζ

2
i ) (i = 1,2, . . . ,n) and B are given by

Ai = lim
z→ζ 2

i

Ψq(z)
(
z − ζ 2

i

)= ( q∑
j=1

1

l j

)
λ2

n+1

(
n∏

k=1

λ2
k

ζ 2
k

)
lim

z→ζ 2
i

∏n+1
k=1(λ2

k − z)∏n
k=1, k �=i(ζ

2
k − z)

,

B =
q∑

j=1

1

l j
+

n∑
k=1

Ak

ζ 2
k

. (2.28)

Using the sequence {n j}q
j=1 ⊂ N0 in the decomposition (2.25) of {ζk}n

k=−n, k �=0, we set

A( j)
κ := Ak if ν

( j)
κ = ζk ( j = 1,2, . . .q, κ = 1,2, . . .n j, k = 1,2, . . . ,n),

B j := 1

l j
+

n j∑
κ=1

A( j)
κ

ν
( j)2
κ

, (2.29)

so that we can write

Ψq(z) = −A0z +
q∑

j=1

( n j∑
κ=1

A( j)
κ

z − ν
( j)2
κ

+ B j

)
=: −A0z +

q∑
j=1

Ψ j(z). (2.30)

Since A( j)
κ = Ak > 0, the derivative of the rational function Ψ −1

j (z) is positive for all z �= ν
( j)2
κ . More-

over, Ψ −1
j (z) > 0 (z ∈ (−∞,0]), and limz→∞ Ψ −1

j (z) = 1
B j

> 0. Hence Ψ −1
j (z) has only simple poles

μ
( j)2
κ > 0 strictly interlacing with its simple zeros ν

( j)2
κ as follows:

0 < μ
( j)2
1 < ν

( j)2
1 < μ

( j)2
2 < ν

( j)2
2 < · · · < μ

( j)2
n j

< ν
( j)2
n j

.
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Therefore, by Lemma 2.2, Ψ −1
j (z) is an S0-function and hence there exist unique sequences of positive

numbers {l( j)
κ }n j

κ=0 and {m( j)
κ }n j

κ=1 such that( n j∑
κ=1

A( j)
κ

z − ν
( j)2
κ

+ B j

)−1

= l( j)
n j

+ 1

−m( j)
n j

z + 1
l( j)
n j−1+ 1

−m
( j)
n j−1 z+···+ 1

l
( j)
1 + 1

−m
( j)
1 z+ 1

l
( j)
0

. (2.31)

From (2.29) and from (2.31) with z = 0 we see that

l j =
(

−
n j∑

k=1

A( j)
k

ν
( j)2
k

+ B j

)−1

= l( j)
n j

+ l( j)
n j−1 + · · · + l( j)

1 + l( j)
0 .

Hence the above sequences of masses and intervals between them yield a star graph of Stieltjes
strings with q edges of lengths l j ( j = 1,2, . . . ,q). For this star graph we find, comparing with (2.14),
(2.15),

ψ−1
j (z) =

( n j∑
κ=1

A( j)
κ

z − ν
( j)2
κ

+ B j

)−1

= φ
( j)
D (z)

φ
( j)
N (z)

= φ( j)(z) ( j = 1,2, . . . ,q).

If we set M := A0 > 0 and observe (2.22), we arrive at the desired relation

Ψq(z) = −Mz +
q∑

j=1

1

φ( j)(z)
= φ−1

q (z). (2.32)

In order to show the equality of the multiplicities of all poles and zeros, it is sufficient to consider e.g.
the poles. Taking the inverse in (2.31) and using the uniqueness of the expansions therein, we find
that, for every j = 1,2, . . . ,q, the set {ν( j)2

κ }n j

κ=1 must be the set of poles of the inverse on the right

hand side, i.e. the set of zeros of φ
( j)
D (z). Hence we obtain that

⋃q
j=1{ν( j)2

κ }n j

κ=1 = {ζ 2
k }n

k=1 coincides

with the set of zeros of φD,q(z) =∏q
j=1 φ

( j)
D (z) including multiplicities. �

Remark 2.11. In the case M = 0 and under the additional assumptions that the sequences
{λk}n

k=−n, k �=0 and {ζk}n
k=−n, k �=0 strictly interlace and the distribution (2.25) of the latter eigenval-

ues onto the q strings is prescribed, it was proved in [5, Theorem 3.1] that the sequences {m( j)
k }n j

k=1,

{l( j)
k }n j

k=0 ( j = 1,2, . . . ,q) are unique.

3. Star graph with root at a pendant vertex

In this section, we consider a plane star graph of q (� 2) Stieltjes strings joined at the central
vertex where a mass M � 0 is placed with the pendant vertices fixed except for one called root and
denoted by v. We suppose that this web is stretched and study its small transverse vibrations with
Kirchhoff and continuity conditions at the central vertex in two different cases:

(N2) the pendant vertex v is free to move in the direction orthogonal to the equilibrium position of
the strings (Neumann problem),

(D2) the pendant vertex v is fixed (Dirichlet problem).

We investigate the eigenfrequencies of both problems and their relations to each other in order to
be able to establish necessary and sufficient conditions for the solution of the corresponding inverse
problem.



2276 V. Pivovarchik et al. / Linear Algebra and its Applications 439 (2013) 2263–2292
Fig. 2. Star graph with root at a pendant vertex.

In the sequel, the string incident to the root is called the main edge or string and we label the
other edges of the star graph by j = 1,2, . . . ,q − 1 (q � 2), assuming that each edge is a Stieltjes
string. We assume that the main edge consists of n+1 (n ∈N0) intervals of lengths lk (k = 0,1, . . . ,n)
with point masses mk (k = 1,2, . . . ,n) separating them (both counted from the exterior towards the
centre); the length of the main edge is denoted by l :=∑n

k=0 lk . For the other q − 1 edges, we use

the same notation as in Section 2, i.e. the j-th edge consists of n j + 1 (n j ∈N0) intervals of length l( j)
k

(k = 0,1, . . . ,n j ) with point masses m( j)
k (k = 1,2, . . . ,n j ) separating them (both counted from the

exterior towards the centre); the length of the j-th string is denoted by l j :=∑n j

k=0 l( j)
k (see Fig. 2).

By vk(t) (k = 1,2, . . . ,n) we denote the transverse displacement of the k-th point mass mk
(counted from the exterior) on the main edge at time t , and by v0(t), vn+1(t) those of the ends
of the main string. For the other q − 1 edges, by v( j)

k (t) (k = 1,2, . . . ,n j ) we denote the transverse

displacement of the k-th point mass m( j)
k (counted from the exterior) on the j-th edge at time t , and

by v( j)
0 (t), v( j)

n j+1(t) those of the ends of the j-th string ( j = 1,2, . . . ,q − 1).

If we assume the threads to be stretched by forces each equal to 1, the Lagrange equations for
the small transverse vibrations of the net (compare [15, Chapter III.1]) together with separation of
variables vk(t) = ukeiλt , v( j)

k (t) = u( j)
k eiλt yield the following difference equations for the amplitudes uk

and u( j)
k :

uk − uk+1

lk
+ uk − uk−1

lk−1
− mkλ

2uk = 0 (k = 1,2, . . . ,n), (3.1)

u( j)
k − u( j)

k+1

l( j)
k

+ u( j)
k − u( j)

k−1

l( j)
k−1

− m( j)
k λ2u( j)

k = 0 (k = 1,2, . . . ,n j, j = 1,2, . . . ,q − 1), (3.2)

un+1 = u(1)
n1+1 = u(2)

n2+1 = · · · = u(q−1)
nq−1+1, (3.3)

un+1 − un

ln
+

q−1∑
j=1

u( j)
n j+1 − u( j)

n j

l( j)
n j

= Mλ2un+1, (3.4)

u( j)
0 = 0, j = 1,2, . . . ,q − 1. (3.5)

Neumann problem (N2). If the pendant vertex v called root is allowed to move freely, we have to
consider (3.1)–(3.5) with

u0 = u1. (3.6)

Dirichlet problem (D2). If we clamp the pendant vertex v called root like all other pendant vertices,
we have to consider (3.1)–(3.5) with

u0 = 0. (3.7)



V. Pivovarchik et al. / Linear Algebra and its Applications 439 (2013) 2263–2292 2277
Remark 3.1. Note that the Dirichlet problem (D2) is nothing but the Neumann problem (N1) given by
(2.1)–(2.4); in both cases all pendant vertices are fixed while the mass M at the centre is allowed to
move freely.

Notation. In the following two subsections we denote by

(1) n :=
{

n +∑q−1
j=1 n j + 1 if M > 0,

n +∑q−1
j=1 n j if M = 0,

the total number of masses on the star graph,

(2)

{
{μk}n+1

k=−(n+1), k �=0 if M > 0,

{μk}n
k=−n, k �=0 if M = 0,

μ−k = −μk , μk � μk′ for k > k′ > 0, the eigenvalues of the Neu-

mann problem (N2) given by (3.1)–(3.5), (3.6) on the star graph,

(3)

{
{λk}n+1

k=−(n+1), k �=0 if M > 0,

{λk}n
k=−n, k �=0 if M = 0,

λ−k = −λk , λk � λk′ for k > k′ > 0, the eigenvalues of the Dirichlet

problem (D2) given by (3.1)–(3.5), (3.7) on the star graph.

3.1. Direct spectral problem for a star graph with root at a pendant vertex

In this subsection we investigate the relations of the eigenvalues of the Neumann problem (N2)
with those of the Dirichlet problem (D2). For the strings labelled j = 1,2, . . . ,q − 1 we proceed pre-
cisely as in Section 2.1 following [15, Supplement II.4]; for the main edge we proceed similarly, now
following [15, Supplement II.7].

In this way we obtain the solutions uk (k = 1,2, . . . ,n + 1) of (3.1) and, for j = 1,2, . . . ,q − 1, the
solutions u( j)

k (k = 1,2, . . . ,n j + 1) of (3.2) successively in the form

uk =
{

R2k−2(l0, λ
2)u1 for the Dirichlet condition (3.7),

R2k−2(∞, λ2)u1 for the Neumann condition (3.6),

u( j)
k = R( j)

2k−2

(
λ2)u( j)

1 (k = 1,2, . . . ,n j),

where R2k−2(·, λ2) and R( j)
2k−2(λ

2) are polynomials of degree 2k − 2 which can be obtained solving
(3.1) and (3.2), respectively. We set

R2k−1
(·, λ2) := R2k(·, λ2) − R2k−2(·, λ2)

lk
(k = 1,2, . . . ,n),

R( j)
2k−1

(
λ2) := R( j)

2k (λ2) − R( j)
2k−2(λ

2)

l( j)
k

(k = 1,2, . . . ,n j).

Then, due to (3.2) and the initial condition u( j)
0 = 0 in (3.5), the polynomials R( j)

0 (λ2), R( j)
1 (λ2), . . . ,

R( j)
2n j

(λ2) ( j = 1,2, . . . ,q − 1) satisfy the same recurrence relations (2.8)–(2.10) as in Section 2.5. The

same is true, due to (3.1), for the polynomials R0(l0, λ
2),R1(l0, λ

2), . . . ,R2n(l0, λ
2) if we consider the

Dirichlet condition (3.7); the corresponding polynomials R0(∞, λ2),R1(∞, λ2), . . . ,R2n(∞, λ2) for the
Neumann condition (3.6) satisfy the same recurrence relations if we set R−1(∞, ·) := 0, i.e. l0 = ∞
(thus explaining the notation):

R2k−1
(
l0, λ

2)= −λ2mkR2k−2
(
l0, λ

2)+ R2k−3
(
l0, λ

2), (3.8)

R2k
(
l0, λ

2)= lkR2k−1
(
l0, λ

2)+ R2k−2
(
l0, λ

2), (3.9)

R0
(
l0, λ

2)= 1, R−1
(
l0, λ

2)= { 1
l0

if l0 ∈ (0,∞),
(3.10)
0 if l0 = ∞.
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The conditions (3.3) and (3.4) at the central vertex yield the following system of linear equations
for u1, u( j)

1 ( j = 1,2, . . . ,q − 1):

R2n
(
l0, λ

2)u1 = R(1)
2n1

(
λ2)u(1)

1 = R(2)
2n2

(
λ2)u(2)

1 = · · · = R(q−1)
2nq−1

(
λ2)u(q−1)

1 ,

R2n−1
(
l0, λ

2)u1 +
q−1∑
j=1

R( j)
2n j−1

(
λ2)u( j)

1 = Mλ2R2n
(
l0, λ

2)u1.

Therefore, the spectrum of the Dirichlet problem (D2) given by (3.1)–(3.5), (3.7) coincides with the
set of zeros of the polynomial

φ
(
l0, λ

2)= R2n
(
l0, λ

2) q−1∑
j=1

[
R( j)

2n j−1

(
λ2) q−1∏

k=1, k �= j

R(k)
2nk

(
λ2)]

+ R2n−1
(
l0, λ

2) q−1∏
k=1

R(k)
2nk

(
λ2)− Mλ2R2n

(
l0, λ

2) q−1∏
k=1

R(k)
2nk

(
λ2), (3.11)

and the spectrum of the Neumann problem (N2) given by (3.1)–(3.5), (3.6) coincides with the set of
zeros of

φ
(∞, λ2)= R2n

(∞, λ2) q−1∑
j=1

[
R( j)

2n j−1

(
λ2) q−1∏

k=1, k �= j

R(k)
2nk

(
λ2)]

+ R2n−1
(∞, λ2) q−1∏

k=1

R(k)
2nk

(
λ2)− Mλ2R2n

(∞, λ2) q−1∏
k=1

R(k)
2nk

(
λ2). (3.12)

The degree of each of the polynomials φ(l0, z) and φ(∞, z) is equal to n where n is the total number
of masses on the star graph (including the mass M in the centre if M > 0).

Proposition 3.2. Let φD,q−1(z), φN,q−1(z) be defined as in (2.20), (2.21) for the subgraph of the q − 1 edges
that are not the main. Then

φ(l0, z) = R2n(l0, z)φN,q−1(z) + R2n−1(l0, z)φD,q−1(z),

φ(∞, z) = R2n(∞, z)φN,q−1(z) + R2n−1(∞, z)φD,q−1(z).

Remark 3.3. The fact that the Dirichlet problem (D2) coincides with the Neumann problem (N1) (see
Remark 3.1) can also be seen from the equality of their characteristic functions: φ(l0, λ

2) = φN,q(λ
2)

(compare (2.21)).

Lemma 3.4. We have the following continued fraction expansions:

R2n(l0, z)

R2n−1(l0, z)
= ln + 1

−mnz + 1
ln−1+ 1

−mn−1 z+···+ 1
l1+ 1

−m1 z+ 1
l0

; (3.13)

l0
R2n(l0, z)

R2n(∞, z)
= l0 + 1

−m1z + 1
l1+ 1

−m2 z+···+ 1
ln−1+ 1

−mn z+ 1

; (3.14)
ln
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l0
R2n−1(l0, z)

R2n−1(∞, z)
= l0 + 1

−m1z + 1
l1+ 1

−m2 z+···+ 1
ln−1+ 1−mn z

. (3.15)

In particular, the total length of the main string satisfies

l = l0
R2n(l0,0)

R2n(∞,0)
.

Proof. The expansion (3.13) may be found in [15, Supplement II, (18)] (see also (2.15)). The expansion
(3.14) follows if we consider the same string with opposite orientation. The expansion (3.15) may be
found in [15, Supplement II, pp. 332–333] (where the notation Q s(z) is used instead of Rs(∞, z)). �
Lemma 3.5 (Lagrange identity). For k = 0,1, . . . ,n, we have

R2k(l0, z)R2k−1(∞, z) − R2k−1(l0, z)R2k(∞, z) = − 1

l0
. (3.16)

Proof. Using (3.9), we find that

R2k(l0, z)R2k−1(∞, z) − R2k−1(l0, z)R2k(∞, z)

= R2k−2(l0, z)R2k−1(∞, z) − R2k−1(l0, z)R2k−2(∞, z),

while from (3.8) and (3.11), we conclude that

R2k−2(l0, z)R2k−1(∞, z) − R2k−1(l0, z)R2k−2(∞, z)

= R2k−2(l0, z)R2k−3(∞, z) − R2k−3(l0, z)R2k−2(∞, z).

Using these two identities successively and taking into account (3.10), we arrive at

R2k(l0, z)R2k−1(∞, z) − R2k−1(l0, z)R2k(∞, z)

= · · · = R0(l0, z)R−1(∞, z) − R−1(l0, z)R0(∞, z) = − 1

l0
. �

Remark 3.6. Using (3.16), (3.11), and (3.12), we find that

l0
(
φ(l0, z)R2n(∞, z) − φ(∞, z)R2n(l0, z)

)= q−1∏
j=1

R( j)
2n j

(z) = φD,q−1(z), (3.17)

l0
(−φ(l0, z)R2n−1(∞, z) + φ(∞, z)R2n−1(l0, z)

)
=

q−1∑
j=1

[
R( j)

2n j−1(z)
q−1∏

k=1, k �= j

R(k)
2nk

(z)

]
− Mz

q−1∏
j=1

R( j)
2n j

(z) = φN,q−1(z). (3.18)

Note that the polynomial on the right-hand side of (3.17), which has degree
∑q−1

j=1 n j , is noth-
ing but the characteristic function of the boundary value problem on the same star graph of q − 1
edges with Dirichlet boundary conditions at the interior vertex; in particular, its zeros coincide with
the union of the spectra of the Dirichlet problems (2.5)–(2.7) on the edges with j = 1,2, . . . ,q − 1
(compare (2.20)).

The polynomial on the right-hand side of (3.18), which has degree
∑q−1

j=1 n j + 1 if M > 0 and∑q−1
j=1 n j if M = 0, is the characteristic function of the boundary value problem (2.1)–(2.4) on a star

graph of q −1 edges with Neumann boundary condition at the central vertex (compare (2.19)); in par-
ticular, its zeros coincide with the eigenvalues of the Neumann problem (2.1)–(2.4) on the subgraph
of q − 1 edges excluding the main edge.
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Theorem 3.7. After cancellation of common factors (if any) in the numerator and in the denominator, the
function

φ(l0, z)

φ(∞, z)

becomes an S0-function.

Proof. If we multiply Eq. (3.2) by u( j)
k , take the imaginary part on both sides and substitute z = λ2,

we obtain

Im((u( j)
k − u( j)

k+1)u( j)
k )

l( j)
k

− Im((u( j)
k−1 − u( j)

k )u( j)
k )

l( j)
k−1

= (Im z)m( j)
k

∣∣u( j)
k

∣∣2. (3.19)

Summing up (3.19) over k = 1, . . . ,n j , taking into account (3.5) and the fact that the terms u( j)
k u( j)

k ,

u( j)
k+1u( j)

k + u( j)
k u( j)

k+1 are real, we arrive at

Im((u( j)
n j

− u( j)
n j+1)u( j)

n j+1)

l( j)
n j

= −
Im(u( j)

n j+1u( j)
n j

)

l( j)
n j

= (Im z)

n j∑
k=1

m( j)
k

∣∣u( j)
k

∣∣2. (3.20)

Adding up the leftmost and rightmost side of (3.20) for j = 1,2, . . . ,q − 1 and taking into account
(3.3), we conclude that

Im

(( q−1∑
j=1

u( j)
n j

− u( j)
n j+1

l( j)
n j

)
u(1)

n1+1

)
= (Im z)

q−1∑
j=1

n j∑
k=1

m( j)
k

∣∣u( j)
k

∣∣2. (3.21)

In a similar way, using (3.1) and (3.4), we see that

Im

(
un − un+1

ln
un+1 + u1 − u0

l0
u0

)
= (Im z)

n∑
k=1

mk|uk|2, (3.22)

Im

(
un+1 − un

ln
un+1 + Im

(( q−1∑
j=1

u( j)
n j+1 − u( j)

n j

l( j)
n j

)
un+1

))
= (Im z)M‖un+1‖2. (3.23)

Adding (3.21), (3.22), and (3.23) and observing that u(1)
n1+1 = un+1 by (3.3), we obtain

Im

(
u1 − u0

l0u0
u0

)
= (Im z)

∑n
k=1 mk|uk|2 + M|un+1|2 +∑q−1

j=1

∑n j

k=1 m( j)
k |u( j)

k |2
|u0|2 . (3.24)

The right hand side of (3.24) is positive if Im z > 0. The set of zeros of u1 −u0 is nothing but the spec-
trum of problem (3.1)–(3.5), (3.6), while the set of zeros of u0 is the spectrum of problem (3.1)–(3.7).
This means that

u1 − u0

l0u0
= −φ(∞, z)

φ(l0, z)
.

Together with (3.24), this shows that − φ(∞,z)
φ(l0,z) and hence φ(l0,z)

φ(∞,z) is a Nevanlinna function. To finish the

proof, we notice that according to (3.8)–(3.10) all R( j)
k (z) and Rk(z) are positive for z = λ2 ∈ (−∞,0]

and, consequently, the polynomials φ(l0, z) and φ(∞, z) are positive for z ∈ (−∞, 0]. �
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Corollary 3.8. The ratio φ(l0,z)
φ(∞,z) can be expanded into a continued fraction:

l0
φ(l0, z)

φ(∞, z)
= a0 + 1

−b1z + 1
a1+ 1

−b2 z+···+ 1
ap−1+ 1

−bp z+ 1
ap

(3.25)

with p ∈ {0,1, . . . ,n}, ak > 0 (k = 0,1, . . . , p), and bk > 0 (k = 1,2, . . . , p).

Proof. By Theorem 3.7 and Lemma 2.2, the claimed continued fraction expansion follows if p � n is
such that n − p is the number (with multiplicities) of common zeros of φ(l0, z) and φ(∞, z). Since
φ(l0, z) and φ(∞, z) both have degree n, Lemma 2.2 shows that a0 > 0. �

A more general expansion into branching continued fractions which applies for trees was estab-
lished in [34] (see [36,2] for details on branching continued fractions).

Proposition 3.9. The ratio φ(l0,z)
φ(∞,z) can be represented as a branching continued fraction:

l0
φ(l0, z)

φ(∞, z)
= l0 + 1

−m1z + 1
l1+ 1

−m2 z+···+ 1
ln−1+ 1

−mn z+ 1
ln+ 1

−Mz+∑q−1
j=1

1
φ( j)(z)

, (3.26)

where

1

φ( j)(z)
=

R( j)
2n j−1(z)

R( j)
2n j

(z)
= 1

l( j)
n j

+ 1
−m( j)

n j
z+ 1

l
( j)
n j−1+···+ 1

l
( j)
0

( j = 1,2, . . . ,q − 1).

Proof. We can rewrite (3.17) in the following two ways:

l0
φ(l0, z)

φ(∞, z)
− l0

R2n(l0, z)

R2n(∞, z)
=

∏q−1
j=1 R( j)

2n j
(z)

R2n(∞, z)φ(∞, z)
, (3.27)

l0
φ(∞, z)

φ(l0, z)
− l0

R2n(∞, z)

R2n(l0, z)
=

∏q−1
j=1 R( j)

2n j
(z)

R2n(l0, z)φ(l0, z)
, (3.28)

and we can rewrite (3.18) as

−l0
φ(l0, z)

φ(∞, z)
+ l0

R2n−1(l0, z)

R2n−1(∞, z)

=
∑q−1

j=1

[
R( j)

2n j−1(z)
∏q−1

k=1, k �= j R(k)
2nk

(z)
]− Mz

∏q−1
j=1 R( j)

2n j
(z)

R2n−1(∞, z)φ(∞, z)
. (3.29)

First we show that ak = lk (k = 0,1, . . . ,n), bk = mk (k = 1,2, . . . ,n). To this end we note that on the
right hand side of (3.27) the degree of the numerator is

∑q−1
j=1 n j , while the degree of the denominator

is
∑q−1

j=1 n j + 2n if M = 0 and
∑q−1

j=1 n j + 2n + 1 if M > 0, hence in any case

lim
z→∞ zk

∏q−1
j=1 R( j)

2n j
(z)

= 0 (k = 0,1, . . . ,n). (3.30)

R2n(l0, z)φ(l0, z)
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If we take the limit z → ∞ in (3.25) and (3.14), we find that

a0 = lim
z→∞ l0

φ(l0, z)

φ(∞, z)
, l0 = lim

z→∞ l0
R2n(l0, z)

R2n(∞, z)
.

Using all these in (3.27) yields that a0 = l0. Applying the same reasoning to the functions(
z

(
l0

φ(l0, z)

φ(∞, z)
− l0

))−1

,

(
z

(
l0

R2n(l0, z)

R2n(∞, z)
− l0

))−1

and using the respective continued fraction expansions from (3.25) and (3.14) together with (3.30) for
k = 1, we find that b1 = m1. Since (3.30) may be used up to k = n, we may continue this reasoning
up to the equalities an = ln , bn = mn .

It remains to prove the particular form of the n-th tail fn(z) = ln + 1
f̃ n(z)

of the continued fraction

in (3.25). To this end, we have to show that

f̃ n(z) := −bn+1z + 1

an+1 + 1
−bn+2z+···+ 1

ap−1+ 1
−bp z+ 1

ap

= −Mz +
q−1∑
j=1

1

φ( j)(z)

or, equivalently,

f̃ n(z) =
∑q−1

j=1

[
R( j)

2n j−1(z)
∏q−1

k=1, k �= j R(k)
2nk

(z)
]− Mz

∏q−1
j=1 R( j)

2n j
(z)∏q−1

j=1 R( j)
2n j

(z)
. (3.31)

Using (3.15), we find that z0 is a zero of f̃ n(z) if and only if

l0
φ(l0, z0)

φ(∞, z0)
= l0 + 1

−m1z0 + 1
l1+ 1

−m2 z0+···+ 1
ln−1+ 1−mn z0

= l0
R2n−1(l0, z0)

R2n−1(∞, z0)
.

By (3.29), this holds if and only if z0 is a zero of the numerator on the right hand side in (3.31).
Similarly, using (3.14) and (3.27) instead of (3.15), (3.29), we find that z0 is a pole of f̃ n(z) if and
only if z0 is a zero of the denominator on the right hand side in (3.31). Hence f̃ n(z) is a constant
multiple of the right hand side of (3.31).

To prove that this constant is, in fact, equal to 1 we use that by (3.26) for z = 0

l0
φ(l0,0)

φ(∞,0)
=

n∑
k=0

lk + 1

f̃ n(0)
= l + 1

f̃ n(0)
.

On the other hand, due to the recurrence relations (3.8)–(3.10), we have

R2k−1(l0,0) = 1

l0
, R2k(l0,0) = 1

l0

k∑
s=0

ls

R2k−1(∞,0) = 0, R2k(∞,0) = 1

(k = 0,1, . . . ,n),

and hence by (3.11), (3.12) for z = 0

l0
φ(l0,0)

φ(∞,0)
= l +

∏q−1
j=1 R( j)

2n j
(0)∑q−1

j=1

[
R( j)

2n j−1(0)
∏q−1

k=1, k �= j R(k)
2nk

(0)
] ,

which completes the proof of (3.31) and hence of Proposition 3.9. �
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Theorem 3.10. Let z0 be a zero of multiplicity k0 � 1 for φ(l0, z) and of multiplicity k∞ � 1 for φ(∞, z). Then
z0 is a zero of multiplicity⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min{k0,k∞} of
q−1∑
j=1

[
R( j)

2n j−1(z)
q−1∏

k=1, k �= j

R(k)
2nk

(z)

] (
and hence of φN,q−1(z)

)
,

min{k0,k∞} + 1 of
q−1∏
j=1

R( j)
2n j

(z)
(= φD,q−1(z)

)
.

and k0 + k∞ � 2q − 3.

Proof. 1) Denote by κD and κN the multiplicity of z0 as a zero of the polynomials
∏q−1

j=1 R( j)
2n j

(z)

and of
∑q−1

j=1 R( j)
2n j−1(z)

∏q−1
k=1, k �= j R(k)

2nk
(z), respectively. By (3.17), (3.18), it follows that min{k0,k∞} �

min{κN , κD}, while (3.11), (3.12) yield min{k0,k∞} � min{κN , κD}, so that altogether min{k0,k∞} =
min{κD , κN }. By Remark 3.6 and by Theorem 2.5 2) on the multiplicities of Neumann and Dirichlet
eigenvalues in Section 2.1, we know that κD = κN + 1. This implies that κN = min{k0,k∞} and κD =
min{k0,k∞} + 1.

2) According to [35, Theorem 6.3(v)], we have k0 � q − 1 and k∞ � q − 1 for a star graph of q − 1
edges. On the other hand, from Remark 3.6 and Theorem 2.5 3), 2) for a star graph of q − 1 edges,
it follows that κD � q − 1 and κN = κD − 1 � q − 2. Then, by 1), min{k0,k∞} = κN � q − 2 and thus
k0 + k∞ � 2q − 3. �
Corollary 3.11. Let z0 be a zero of multiplicity k∞ � 1 of φ(∞, z) and of multiplicity k0 � 1 of φ(l0, z).

1) If k0 � k∞ , then R2n(∞, z0) �= 0 and

l0
φ(l0, z0)

φ(∞, z0)
= l0 + 1

−m1z0 + 1
l1+ 1

−m2 z0+···+ 1
ln−1+ 1

−mn z0+ 1
ln

. (3.32)

2) If k0 � k∞ , then R2n(l0, z0) �= 0 and

1

l0

φ(∞, z0)

φ(l0, z0)
= 1

l0 + 1
−m1 z0+ 1

l1+ 1
−m2 z0+···+ 1

ln−1+ 1
−mn z0+ 1

ln

. (3.33)

Proof. 1) If k0 � k∞ and R2n(∞, z0) = 0, then Theorem 3.10 shows that, in Eq. (3.12), the multiplicity
of the zero z0 is k∞ on the left hand side and k∞ + 1 on the right hand side, a contradiction. Hence
R2n(∞, z0) �= 0. As a consequence, z0 is a zero of the right hand side of (3.27) because the multiplicity
is k∞ + 1 in the numerator and k∞ in the denominator. Thus z0 is also a zero of the left hand side
of (3.27) and formula (3.32) follows from (3.14).

2) The proof of 2) is similar to that of 1) if we use (3.11) and (3.28) instead of (3.12) and (3.27),
respectively. �
Theorem 3.12. The eigenvalues {μk}n

k=−n, k �=0 , μ−k = −μk, of the Neumann problem (N2) and the eigenval-

ues {λk}n
k=−n, k �=0 , λ−k = −λk, of the Dirichlet problem (D2) have the following properties:

1) 0 < μ1 < λ1 � μ2 � · · · � μn � λn;
2) the multiplicities of μk and λk do not exceed q − 1; if μk = λk (or = λk+1), then the sum of multiplicities

of μk and λk (or λk+1) is � 2q − 3;

3) if μk = λk (or = λk+1), then μk is a zero of φq−1(z) = φD,q−1(z)
φ (z) .
N,q−1
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Proof. 1) It was shown above that the sets {μ2
k }n+1

k=−n, k �=0 and {λ2
k }n

k=−n, k �=0 are the poles and zeros,
respectively, of the function

φ(l0, z)

φ(∞, z)

which becomes an S0-function by Theorem 3.7 after cancellation of common factors (if any) in the
numerator and the denominator. This proves 1) except for the strict inequality μ1 < λ1 therein.

3) The last property is immediate from Theorem 3.10 since the multiplicity in the numerator is
larger (by 1) than the multiplicity in the denominator.

2) The eigenvalues λk of (D2) coincide with the eigenvalues of problem (N1) and hence the first
claim for λk follows from Theorem 2.5 3). The eigenvalues νk coincide with the eigenvalues of problem
(N1′) and hence the first claim for νk follows from Remark 2.7. The second claim follows from 3) and
Theorem 3.10.

It remains to be proved that μ1 < λ1 in 1). Denote by 0 < α
j
1 < β

j
1 < · · · the strictly interlacing

poles and zeros of the j-th tail of the continued fraction expansion of l0
φ(l0,z)
φ(∞,z) in (3.25) (i.e. for j = 0

the poles and zeros of l0
φ(l0,z)
φ(∞,z) after cancellation of common factors). Then μ1 = α0

1 . Suppose now
that μ1 = λ1. Then Theorem 3.10 implies that μ1 is a zero of∏q−1

j=1 R( j)
2n j

(z)∑q−1
j=1

[
R( j)

2n j−1(z)
∏q−1

k=1, k �= j R(k)
2nk

(z)
] = 1∑q−1

j=1

R( j)
2n j−1(z)

R( j)
2n j

(z)

= 1∑q−1
j=1

1
φ( j)(z)

.

Thus, by (3.26), μ1 is a zero of the (n + 1)-th tail of the continued fraction for l0
φ(l0,z)
φ(∞,z) in (3.26) and

hence μ1 = βn+1
k > βn+1

1 for some k = 1,2, . . . . Since the smallest zero of every tail of a continued
fraction is greater than or equal to the smallest zero of the continued fraction itself by Lemma 2.2 v),
we arrive at the contradiction

μ1 � βn+1
1 � β0

1 > α0
1 = λ1. �

3.2. Inverse spectral problem for a star graph with root at a pendant vertex

In this subsection we investigate the inverse problem of recovering the distribution of masses on
the star graph from the two spectra of the Neumann problem (N2) and the Dirichlet problem (D2)
together with the lengths l and l j of the separate strings.

More precisely, suppose that q ∈ N (q � 2), is fixed and a set of lengths l, l j > 0 ( j = 1,2, . . . ,q −1)

as well as sets {μk}n
k=−n, k �=0, {λk}n

k=−n, k �=0 ⊂ R are given. Under which conditions can we determine

numbers n, n j ∈ N0 ( j = 1,2, . . . ,q − 1), sets of masses {m( j)
k }n j

k=1 ∪ {M} and of lengths {l( j)
k }n j

k=0 of
the intervals between them so that the corresponding star graph has the sequences {μk}n

k=−n, k �=0,
{λk}n

k=−n, k �=0 as Neumann and Dirichlet eigenvalues, respectively?

Lemma 3.13. Let q ∈ N, q � 2, {l} ∪ {l j}q−1
j=1 ⊂ (0,∞), n ∈ N. Suppose that {μk}n

k=1 , {λk}n
k=1 ⊂ R are such

that

0 < μ1 � λ1 � μ2 � · · · � μn � λn, (3.34)

and let

Φ(z) := γ

∏n
k=1

(
1 − z

λ2
k

)
∏n

k=1

(
1 − z

μ2

) , γ := l +
( q−1∑

k=1

1

lk

)−1

. (3.35)
k
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Then there exist unique p, n ∈ N with n � p and

n−1∑
k=0

ak < l,
n∑

k=0

ak � l, (3.36)

as well as ak > 0 (k = 0,1, . . . , p), bk > 0 (k = 1,2, . . . , p), and a1
n � 0 such that

Φ(z) = a0 + 1

−b1z + 1
a1+ 1

−b2 z+···+ 1
an−1+ 1

−bn z+ 1
an−a1

n+ f̂ n(z)

(3.37)

with a1
n :=∑n

k=0 ak − l � 0 and

f̂ n(z) := a1
n + 1

−bn+1z + 1
an+1+ 1

−bn+2 z+···+ 1
ap−1+ 1

−bp z+ 1
ap

. (3.38)

Proof. Choose p ∈ N such that n − p is the (maximal) number of common factors in the numerator
and denominator of Φ . After cancellation of these common factors, there are subsets {λ̃k}p

k=−p, k �=0 ⊂
{λk}n

k=−n, k �=0 and {μ̃k}p
k=−p, k �=0 ⊂ {μk}n

k=−n, k �=0 with λ̃k < λ̃k′ , μ̃k < μ̃k′ for k < k′ such that

Φ(z) = γ

∏p
k=1

(
1 − z

λ̃2
k

)
∏p

k=1

(
1 − z

μ̃2
k

) .
Then 0 < μ̃1 < λ̃1 < · · · < μ̃p < λ̃p and hence Φ has become an S0-function by Lemma 2.2 and
limz→∞ Φ(z) �= 0. Thus there are unique ak > 0 (k = 0,1, . . . , p), bk > 0 (k = 1,2, . . . , p) with

Φ(z) = a0 + 1

−b1z + 1
a1+ 1

−b2 z+···+ 1
ap−1+ 1

−bp z+ 1
ap

.

Since we have
∑p

k=0 ak = Φ(0) = γ > l, there exists an n ∈ N such that (3.36) holds and all claims
follow. �

Theorem 3.14. Let q ∈ N, q � 2, {l} ∪ {l j}q−1
j=1 ⊂ (0,∞), n ∈ N, and suppose that {μk}n

k=−n, k �=0,

{λk}n
k=−n, k �=0 ⊂ R are such that

0) μ−k = −μk, λ−k = −λk;
1) 0 < μ1 < λ1 � μ2 � · · · � μn � λn;
2) the multiplicities of μk in {μk}n

k=−n, k �=0 and of λk in {λk}n
k=−n, k �=0 do not exceed q − 1;

3) if μk = λk (or = λk+1), then f̂ n(λ2
k ) = 0 with f̂ n defined as in Lemma 3.13 in (3.37), (3.38).
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Then there exists a star graph of q Stieltjes strings, i.e. numbers {n}, {n j}q−1
j=1 ⊂ N0 , masses {mk}n

k=1 ,

{m( j)
k }n j

k=1 ⊂ (0,∞), M ∈ [0,∞), and interval lengths {lk}n
k=1 , {l( j)

k }n j

k=0 ⊂ (0,∞) ( j = 1,2, . . . ,q − 1) be-

tween them with
∑n

k=1 lk = l,
∑n j

k=0 l( j)
k = l j , and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M = 0, n = n +
q−1∑
j=1

n j if a1
n > 0,

M > 0, n = n +
q−1∑
j=1

n j + 1 if a1
n = 0,

with a1
n as defined in Lemma 3.13, so that the Neumann problem (N2) in (3.1)–(3.5), (3.6) has the eigenvalues

{μk}n
k=−n, k �=0 and the Dirichlet problem (3.1)–(3.5), (3.7) has the eigenvalues {λk}n

k=−n, k �=0 .

Proof. Due to assumptions 1) and 2), the given data yield integers p, n ∈ N and the functions Φ and
f̂ n as in Lemma 3.13 in (3.35)–(3.38). The star graph we search for will be constructed as follows. For
the main edge we choose n as in (3.36) to be the number of masses, mk := bk (k = 1,2, . . . ,n) as the
masses, lk := ak (k = 0,1, . . . ,n − 1) and ln := an −a1

n as the lengths of intervals between them, while
the function f̂ n from (3.37), (3.38) will be used to construct the subgraph of the other q − 1 edges
using our first inverse Theorem 2.9.

From the continued fraction expansion (3.38) of f̂ n , it follows that f̂ n is an S0-function; moreover,
f̂ n is the quotient of two polynomials gn(z) and hn(z),

f̂ n(z) = gn(z)

hn(z)
, deg gn =

{
p − n if a1

n > 0,

p − n − 1 if a1
n = 0,

deg hn = p − n.

By Lemma 2.2, the zeros and poles of f̂ n , i.e. the zeros of gn and hn strictly interlace.
As in the proof of Lemma 3.13, let n − p be the number of common factors in the numerator and

denominator of Φ . Denote by {γ 2
k }n−p

k=1 their common zeros and set

g̃n(z) := gn(z)
n−p∏
k=1

(
z − γ 2

k

)
, h̃n(z) := hn(z)

n−p∏
k=1

(
z − γ 2

k

)
.

The number of zeros τ 2
k of g̃n(z) and θ2

k of h̃n(z), counted with multiplicities, coincides with the
respective degrees,

deg g̃n =
{

n − n if a1
n > 0,

n − n − 1 if a1
n = 0,

deg h̃n = n − n.

We now show that the sequences {±τk}n−n
k=1 if a1

n > 0 and {±τk}n−n−1
k=1 if a1

n = 0 and {±θk}n−n
k=1 satisfy

the assumptions of Theorem 2.9 with q − 1 instead of q; more precisely, ±θk will take the role of λ±k
in Theorem 2.9 and ±τk the role of ζ±k in Theorem 2.9, and we will have M = 0 if a1

n > 0 and M > 0
if a1

n = 0.
Condition 0) in Theorem 2.9 is satisfied automatically. The interlacing conditions in 1) except for

the second strict inequality in Theorem 2.9 hold because the zeros of gn , hn are all positive, interlace
strictly and g̃n , h̃n arise from gn , hn only by adding common zeros. If θ1 = τ1, then θ1 is a com-
mon zero of the numerator and denominator of Φ and hence θ1 = μ1 = λ1, a contradiction to the
inequality μ1 < λ1 in assumption 1). Condition 2) in Theorem 2.9 holds because if τk = θk , then θk
is a common zero of the numerator and denominator of Φ and hence θk = μk = λk or = λk+1. Then
assumption 3) yields that f̂ n(θ2

k ) = 0 which implies that the multiplicity of the zero θ2
k of gn is one

more than the multiplicity of the zero θ2
k of hn , and the same with g̃n and h̃n . Finally, condition 3)

of Theorem 2.9 holds because by assumption 2) the multiplicity of τ 2
k is � q − 1 and hence, by the

above, the multiplicity of θ2
k is � q − 2.
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It remains to be shown that if we construct the functions Φ(l0, z), Φ(∞, z) from all the data on
the main string and the subgraph with q − 1 edges collected above according to the formulas (3.11)
and (3.12), then

Φ(z) = l0
Φ(l0, z)

Φ(∞, z)
, (3.39)

and the multiplicities of all zeros and poles on the left and right hand side coincide.
By Lemma 3.13 (3.37) and the choice of the masses and intervals between them on the main edge,

we know that

Φ(z) = l0 + 1

−m1z + 1
l1+ 1

−m2 z+···+ 1
ln−1+ 1

−mn z+ 1
ln+ f̂ n(z)

. (3.40)

On the other hand, by (2.26) and (2.32) in the proof of Theorem 2.9 (recall that θk plays the role of
λk and τk the role of ζk in (2.26)) we have

f̂ n(z) = g̃n(z)

h̃n(z)
= 1

Ψq−1(z)
=
(

−Mz +
q−1∑
j=1

R( j)
2n j−1(z)

R( j)
2n j

(z)

)−1

. (3.41)

Now (3.40), (3.41) together with Proposition 3.9 yield the claimed identity (3.39), including equality
of all multiplicities. �
Corollary 3.15. The eigenvalues of the Neumann problem (N2) in (3.1)–(3.5), (3.6) and of the Dirichlet problem
(D2) in (3.1)–(3.5), (3.7), together with the total length l of the main edge, uniquely determine the mass
distribution on the main edge, i.e. the number n, the masses {mk}n

k=1 , and the subintervals {lk}n
k=1 between

them.

For the case of strict interlacing of the two spectra of (N2) and (D2), which means that all eigen-
values are simple, we have the following simpler sufficient conditions for the solvability of the inverse
problem.

Corollary 3.16. All claims of Theorem 3.14 and Corollary 3.15 continue to hold if we only assume condition 0)
together with the strengthened condition

1′) 0 < μ1 < λ1 < μ2 < · · · < μn < λn.

4. Comparison with results for eigenvalues of tree-patterned matrices

Interlacing conditions of finite sequences of real numbers also play a role in the theory of symmet-
ric matrices. To conclude this paper we show how our results on star graphs of Stieltjes strings can
be used to prove the existence of a star-patterned symmetric matrix and submatrix with prescribed
interlacing spectra.

The necessity in the following well-known equivalence result is attributed to Cauchy (see [7]);
sufficiency was proved in [12] (see also [3] and [19]). Here, for an (n + 1) × (n + 1) real symmetric
matrix H , we denote by H1,1 the n ×n first principal submatrix obtained from H by deleting the first
row and first column.

Proposition 4.1. (See [30].) There exists an (n + 1) × (n + 1) symmetric matrix H such that the eigenvalues
of H are λ1 � λ2 � · · · � λn+1 and the eigenvalues of the submatrix H1,1 are μ1 � μ2 � · · · � μn if and only
if

λ1 � μ1 � λ2 � μ2 � · · · � μn � λn+1. (4.1)
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The connection of this result with tree-patterned matrices is given in [27] and [30]. First we recall
the following definition and notation.

Definition 4.2. (See [27].) Let Γ be a tree with vertex set V = {v1, v2, . . . , vn+1} and A = (ai, j)
n+1
i, j=1 an

(n + 1) × (n + 1) matrix (with entries aij from some ring). Then A is called Γ -acyclic if ai, j = a j,i = 0
whenever i �= j and vi , v j are not adjacent.

If A is Γ -acyclic and Γ ′ is a subgraph of Γ , we denote by AΓ ′ the principal submatrix of A
consisting of all rows and columns whose indices are the vertices of Γ ′ . If i, j ∈ {1,2, . . . ,n + 1}, i �= j,
we denote by Γ (i) the subgraph obtained from Γ by deleting the vertex vi and all the edges incident
to vi , and by Γ j(i) the connected component of Γ (i) that has v j as a vertex (v j ∈ V \{vi}); finally,
we set Ni(Γ ) := { j ∈ {1,2, . . . ,n}: v j adjacent to vi in Γ }.

Theorem 4.3. (See [27].) Let Γ be a tree with n + 1 vertices, i ∈ {1,2, . . . ,n + 1}, and let m := #Ni(Γ ).
Let g1, g2, . . . , gm be monic polynomials with real roots and deg g j equal to the number of vertices of Γ j(i)
( j = 1,2, . . . ,m). Let μ1 � · · · � μn denote the roots of the product g := g1 · g2 · · · · · gm, and let λ1 � λ2 �
· · · � λn+1 be real.

Then there exists a Hermitian Γ -acyclic matrix A possessing the eigenvalues λ1, λ2, . . . , λn+1 such that
for each j ∈ Ni(Γ ) the submatrix AΓ j(i) has characteristic polynomial g j if and only if (4.1) holds; if all
inequalities are strict, then A is irreducible.

Remark 4.4. In the two-dimensional case the only Hermitian matrix having the eigenvalues λ1 =
λ2 = 1 is the identity matrix. The corresponding graph consists of two isolated vertices, i.e. it is not
connected and hence not a tree. Therefore it seems that Γ in the above theorem from [27] may be
disconnected.

In [30] the above result was reproved by another method if the strict inequalities

λ1 < μ1 < λ2 < · · · < μn < λn+1 (4.2)

hold. Thus condition (4.1) is necessary, while condition (4.2) is sufficient for the existence of a tree-
patterned matrix as described in Theorem 4.3.

To relate our results to star-patterned matrices, we reformulate the direct Neumann and Dirichlet
problem in Section 2.1 in the case M > 0 as matrix eigenvalue problems.

To this end, we define the (n + 1) × (n + 1) diagonal matrix

M := diag
{

M,m(1)
n1 ,m(1)

n1−1, . . . ,m(1)
1 ,m(2)

n2 ,m(2)
n2−1, . . . ,m(2)

1 , . . . ,m(q)
nq ,m(q)

nq−1, . . . ,m(q)
1

}
,

as well as the n j × n j matrices

L j :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
l( j)
n j

+ 1
l( j)
n j−1

− 1
l( j)
n j−1

0 · · · · · · · · · 0 0

− 1
l( j)
n j−1

1
l( j)
n j−2

+ 1
l( j)
n j−1

− 1
l( j)
n j−2

0 0

0 − 1
l( j)
n j−2

1
l( j)
n j−3

+ 1
l( j)
n j−2

− 1
l( j)
n j−3

...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 − 1
l( j)
2

1
l( j)
2

+ 1
l( j)
1

− 1
l( j)
1

0 0 · · · · · · · · · · · · 0 − 1
l( j)

1
l( j) + 1

l( j)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 1 0
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for j = 1,2, . . . ,q and

L :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑q
j=1

1
l( j)
n j

− 1
l(1)
n1

0 · · · · · · 0 − 1
l(2)
n2

0 · · · · · · 0 · · · · · · − 1
l(q)
nq

0 · · · · · · 0

− 1
l(1)
n1

0 L1 0 · · · · · · 0
...
0

− 1
l(2)
n2

0 0 L2...
0
...

...
. . .

...
...

. . .

− 1
l(q)
nq

0 0 Lq...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the Neumann problem (N1) in (2.1)–(2.4) with z = λ2 is nothing but the eigenvalue problem
for the matrix

L̃ := M− 1
2 LM− 1

2 ,

while the Dirichlet problem (D1) given by (2.5)–(2.7) for j = 1,2, . . . ,q is the eigenvalue problem for
the submatrix L̃1,1 where the first row and column are deleted.

The matrix L̃ is tree-patterned, where the corresponding tree Γ is our star graph (a generalized
star graph in terms of [21]) if each mass (including M > 0) is identified as a vertex.

Theorem 2.9 means that, under the assumptions therein and letting i = 1, there exists a real Her-
mitian star-patterned (n + 1) × (n + 1) matrix such that its spectrum coincides with the set {λ2

k }n+1
k=1

and the spectrum of the submatrix obtained by deleting the first row and the first column coincides
with the set {ζ 2

k }n
k=1.

Thus Theorem 2.9 provides sufficient conditions for two sequences {λ2
k }n+1

k=1 and {ζ 2
k }n

k=1 to be the
spectra of a real Hermitian star-patterned matrix and its first principal submatrix, respectively.

5. Examples

We conclude this paper by illustrating the inverse Theorems 2.9 and 3.14 and their constructive
proofs by means of a simple example.

Example 5.1. Does there exist a star graph with root at a pendant vertex with q = 3 edges and
edge lengths l = 2, l1 = 2, l2 = 1 so that the corresponding Neumann eigenvalues {μ±k}3

k=−3, k �=0

and Dirichlet eigenvalues {λ±k}3
k=−3, k �=0 are given by

μ2
1 = 0,5, μ2

2 = 1,5, μ2
3 = 2, λ2

1 = 1, λ2
2 = λ2

3 = 2 (5.1)

and μ−k = −μk , λ−k = −λk?

Constructive Solution. First we check if the numbers {μ±k}3
k=−3, k �=0 and {λ±k}3

k=−3, k �=0 given in Ex-
ample 5.1 satisfy the assumptions of Theorem 3.14. To this end, we note that, by (3.35),
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γ = l + l1l2
l1 + l2

= 8

3
,

Φ(z) = 8

3

(1 − z)(1 − z/2)

(1 − 2z)(1 − 2z/3)
= z2 − 3z + 2

z2 − 2z + 3/4
= 1 + 1

−z + 1
4
3 + 1

−3z+ 1
1
3

.

Hence a0 = 1, a1 = 4
3 in (3.35) and so a0 = 1 < l = 2 < 1 + 4

3 = a0 + a1. Thus, by (3.36), we have to

choose n = 1. Moreover, we have a1
n = a0 + a1 − l = 7

3 − 2 = 1
3 , an − a1

n = 4
3 − 1

3 = 1 and hence, by
(3.37), (3.38),

Φ(z) = 1 + 1

−z + 1
1+ f̂ 1(z)

, f̂ 1(z) = 1

3
+ 1

−3z + 1
1
3

= 1

3

(2 − z)

(1 − z)
.

Since {μk}3
k=−3, k �=0, {λk}3

k=−3, k �=0 in Example 5.1 satisfy the interlacing conditions

0 < μ1 < λ1 < μ2 < λ2 = μ3 = λ3

and f̂ 1(μ3) = f̂ 1(2) = 0, a graph as required does exist by Theorem 3.14.
In order to construct one such graph, we decompose

f̂ 1(z) = 1

3 + 3
z−2

= 1
3
2 + 1

z−2 + 3
2 + 2

z−2

= 1
1

z−2
3
2 z−2

+ 1
z−2

3
2 z−1

= 1
1

2
3 −

2
3

3
2 z−2

+ 1

2
3 −

4
3

3
2 z−1

= 1
1

2
3 + 1

− 9
4 z+ 1

1
3

+ 1
2
3 + 1

− 9
8 z+ 1

4
3

.

Thus the star graph with the mass distribution M = 0 and

l0 = l1 = 1, m1 = 1,

l(1)
0 = 2

3
, l(1)

1 = 4

3
, m(1)

1 = 9

8
,

l(2)
0 = 2

3
, l(2)

1 = 1

3
, m(2)

1 = 9

4

(5.2)

has the desired Neumann and Dirichlet eigenvalues. �
The proof of Theorem 2.9 does not only allow to construct one star graph with the given spectral

data, but it provides a method to describe all such star graphs. These isospectral star graphs differ only
on the subgraph of q − 1 non-main edges and are constructed by applying the proof of Theorem 2.9
to

Ψ2(z) = 1

f̂ 1(z)
= 3

(1 − z)

(2 − z)
= 3

2

(
1 − z

2

)(
1 − z

2

)
(1 − z)

(
1 − z

2

) ,

i.e. with λ2
1 = 1, ζ 2

1 = λ2
2 = ζ 2

2 = 2.

Example 5.2. Construct all star graphs with root at the central vertex with q − 1 = 2 edges and edge
lengths l1 = 2, l2 = 1 such that the corresponding Neumann eigenvalues {λ±k}2

k=−2, k �=0 and Dirichlet

eigenvalues {ζ±k}2
k=−2, k �=0 are given by

λ2
1 = 1, ζ 2

1 = λ2
2 = ζ 2

2 = 2 (5.3)

and λ−k = −λk , ζ−k = −ζk!
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Fig. 3. Star graph solving the inverse problem in Example 5.1 (a = 2).

Constructive Solution. It is easy to see that the numbers {λ±k}2
k=−2, k �=0 and {ζ±k}2

k=−2, k �=0 satisfy the
assumptions of Theorem 2.9. The first possibility for non-uniqueness is the subdivision (2.25). In the
present example, there is only one such decomposition, namely n1 = 1, n2 = 1 because otherwise the
Dirichlet eigenvalues on one edge are not simple, as required.

Since the eigenvalue ζ1 = ζ2 = 2 is double, Ψ2(z) has a double pole and hence the representa-
tion (2.30) is not unique; it allows for one free parameter: Because the degree of the numerator and
denominator in Ψ2(z) are the same, we have M = A0 = 0, and according to (2.29), (2.30) we can write

Ψ2(z) = 3

z − 2
+ 3 =

(
a

z − 2
+ 1

2
+ a

2

)
+
(

3 − a

z − 2
+ 1 + 3 − a

2

)
=: ψ1(z) + ψ2(z),

where the parameter is given by a := A(1)
1 > 0. It is not difficult to check that the unique continued

fraction expansions of ψ−1
1 (z) and ψ−1

2 (z) are given by

1

ψ1(z)
= 2

a + 1
+ 1

− 1
a

( a+1
2

)2
z + 1

2a
a+1

,
1

ψ2(z)
= 2

5 − a
+ 1

− 1
3−a

( 5−a
2

)2
z + 1

3−a
5−a

.

Hence the mass distributions of all star graphs with root at the central vertex and q − 1 = 2 edges
having the Neumann and Dirichlet eigenvalues (5.3) are given by M = 0 and

l(1)
0 = 2

a + 1
, l(1)

1 = 2a

a + 1
, m(1)

1 = 1

a

(
a + 1

2

)2

,

l(2)
0 = 2

5 − a
, l(2)

1 = 3 − a

5 − a
, m(2)

1 = 1

3 − a

(
5 − a

2

)2

, (5.4)

where a ∈ (0,3) is a free parameter; note that a = 2 yields the solution calculated in (5.2).

Corollary 5.3. All isospectral star graphs with q = 3 edges and root at a pendant vertex sought in Example 5.1
are given by M = 0, l0 = l1 = 1, m1 = 1 on the main edge and (5.4) on the other 2 edges (see Fig. 3).
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