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This paper applies group theory and a statistical analysis by questions to 
the examination of sociolinguistic restraints on three-person conversation. It 
is shown in four situations of increasing generality that conversational invariance 
under permutation of participant roles implies restriction of conversational 
changes to description by a small subgroup of all possible transformations. 
The last of the four situations is n-person conversation; hence, the mathe- 
matical techniques here used are applicable to situations of greater complexity 
than the three-person conversations on which the present article focuses. A 
final section discusses possible applications to situations in descriptive phonology 
and grammar. 

1. INTRODUCTION 

Imagine an overheard conversation: "As long as Bill keeps interrupting 
with sarcastic remarks, we'll never be able to conduct a serious discussion." 

Even a casual inspection of cocktail-party conversation or the procedure of a 
business meeting easily uncovers regularities in the interchange of speakers 

and addressees (cf. Pike, 1973; Poythress, 1973). Such regularities are in part 
statistical, since deviations in the form of interruptions or social surprises 
occur from time to time. But a mere statistical inventory of who is likely 

to speak to whom Can be unilluminating. From the standpoint of socio- 
linguistics, we should like to know why statistical patterns fall out as they do. 

This paper applies several mathematical tools to the same conversational 
situation. By doing so, it shows a way in which naive insights into linguistic 
regularities can be transformed into more exact statements about statistical 

patterns. 

2. TRIAL AND ERROR APPROACH TOWARD A GROuP-THEORETIC MODEL 

First, let us summarize the approach that has been taken to conversational 
interchange in previous literature (see particularly Wise and Lowe, 1972; 
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Pike, 1973; Poythress, 1973). For the sake of simplicity suppose that we are 
dealing with a conversation among three persons, A(be), B(ill), and C(harlie) 
(see Section 6 for a relaxation of this assumption). Let  a snapshot of the 
system be a specification of who is speaker and who is addressee. Suppose 
further that only one person can speak at a given time, and must address 
exactly one other person. Then  there are exactly six possible snapshots, 

A X), 4:(B S A X), 

Here S, d ,  and X denote the roles of speaker, addressee, and third party, 
respectively. (s ~ x) denotes the snapshot where A is speaker and B is 
addressee: A is speaking to B while C listens. Similarly, (s ~ x) denotes the 
snapshot where C speaks to A. For short, we may label the six snapshots 1, 
2, 3, 4, 5, and 6 in the order above. Let  N = {1, 2, 3, 4, 5, 6} be the set of 
all snapshots. 

Next, let a transformation g of the system be a permutation of the six 
snapshots; that is, a 1-1 map g ~ N N of the snapshots N onto one another. 
Thus  g ( i ) ~  g(j) implies i = j. The  transformations describe how the 
conversation moves from one stage to another. The  set of all transformations 
forms the group S 6 under the operation of composition ( ( g '  h)(i) = g(h(i))). 
Moreover, the structure of this  group is then a model for the structure of the 
progress of the conversation. 

So far so good. However, not all transformations g ~ S 6 are sociolin- 
guistically relevant. Some describe highly unnatural sequences of snapshots. 
Hence, Pike's article (1973) spends considerable effort in examining what 
subgroups of Ss and what generating elements in these subgroups might 
best represent natural conversation types. According to Pike's evaluation, 1 
the most relevant elements of S 6 are the following: 

(a) ] = (11 22 33 ~ ~ 2 ) =  (1), the identity permutation. The  speaker 
remains speaker and the addressee remains addressee. 

(b) r = (1 5 ~ ~ ~ ~) (13) (25)(46), the "reversal" transformation. 
The  speaker becomes addressee and the addressee becomes speaker. The  
appropriateness of r means that the addressee has the social right to reply to 
the speaker. 

1 Using ideas and notation first developed in Pike and Lowe (1969) and Lowe (1969). 
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(c) s = (12 ) (34 ) (56 ) ,  the "shift" transformation. Here speaker 
continues as speaker, the addressee becomes listener, and the listener becomes 
addressee. The  appropriateness of s means that the speaker can shift his 
attention from one person to the other. Somewhat less likely is 

(d) t = (16)(24)(35), where speaker and listener interchange. Pike 
points out that repeated use of t can occur in the social situation of 
"badgering." A and B (say) take turns scolding C (Pike, 1973, p. 135). 

Any two of r, s, and t generate a subgroup H of order 6 of $6,  canonically 
isomorphic to the set of permutations on the roles S, A, and X. (The elements 
of H are I, r, s, t = rsr, rs = (154) (236), sr = (145) (263). Multiplication 
here proceeds from right to left.) We can also consider elements outside H, 
such as w = (145) (236) and go = (165342). But repeated use of transforma- 
tions w or go results in quite unnatural conversational sequences. 

Thus  a relatively uncomplicated analysis of three-person conversation 
leads to a study of the subgroup H of S 6 . However, the reasons for choosing 
H rather than the whole of S 6 have not yet been clarified. What sociolinguistic 
properties of three-person conversation have led us to the subgroup H ?  
We now focus on formal motivation for choosing H out of S 6 . 

3. GROuP-THEORETIC ANALYSIS OF THREE-PERSON CONVERSATION 

To demonstrate the unique relevance of the subgroup H, we need only 
one postulate. Assume that the structure of conversation among A, B, and C 
is independent of the social roles of A, B, and C. That  is, assume that conver- 
sational rules are invariant under an interchange or relabeling of the parti- 
cipants A, B, and C. This is equivalent to saying that permutations of X, B, 
and C are symmetries of the conversational system. 

Let G be the set of all those elements of S 6 which are obtained by permuting 
the labels A, B, C in snapshots 1, 2, 3, 4, 5, 6. G is generated by 

(AB) = (13) (24) (56) and (AC) = (16) (25) (34). (1) 

Let a be an arbitrary element of S 6 . Then, if a is a sociolinguistically relevant 
transformation, it should be the case that a produces the same type of con- 
versational change even when A, B, and C are relabeled. How can we express 
this mathematically ? Let i be a snapshot, and g ~ G an arbitrary element of G. 
g(i) represents a relabeling of the snapshot i. a(g(i)) is the transformation a of 
this relabeled snapshot. Similarly, g(a(i)) is a relabeling of the transformation 
a of i. I f  a is soeiolinguistically relevant, it should make no difference when 
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the relabeling is performed. Hence, a g ( i ) =  ga(i). Since i was arbitrary, 
ag = ga. 

In  sum, a ~ Sn is sociolinguistically relevant only if ag = ga for all g ~ G. 
By definition, this is so if and only if a is in the centralizer of G in S 6 . And 
the subgroup H of S 6 is precisely the centralizer of G. 

4 TRANSITION PROBABILITIES FOR THREE-PERSON CONVERSATIONS 

Now we apply the insights of Section 3 to the more complex situation 
where probabilities of various transformations of snapshots are introduced. 
Suppose that the conversation has stages 1, 2,..., n, and that a description 
of the conversation consists in the specification of a snapshot s~ ~ N for each 
stage p, p = 1, 2 ..... n. Given that the system is in snapshot j at stage p, 
let cP(i,j) be the probability that the system will make a transition to snapshot 
i at s tagep + 1. Let C ~ denote the 6 × 6 matrix [] c~(i,j)[[~.j. 

Suppose further that the probabilities c~(i, j )  and cq(k, l) associated with 
two distinct stages p 4= q are independent. Then the product of the matrices 
C "~ ... C3C2C 1 gives the probabilities of transition from stage 1 to stage m + 1. 

In  particular, suppose that xi (i = 1, 2,..., 6) is the probability that the 
system will be found in snapshot i at stage 1. Let  X = [xlx ~ "" x6] be the 
column matrix of xi's. Then the probability y~- that the system will be in 
snapshot i a t  stage m + 1 is given by Y ~- C . . . .  C~C1X, where Y = 
[ YlY2"'" Y6] (column matrix). 

Now let us suppose that the course of conversations is invariant under 
relabeling of the participants A,  B,  and C. What restrictions does this place 
on the matrices C ~ ? First we must specify how a permutation of participants 
A,  B, and C affects a probability matrix X = [x 1 "- x6]. 

Let  ~(i , j )  be the Kronecker delta: 3(i,j) = 0 for i =/=j, and ~(i , j )  = 1 
for i = j .  For a t  5"6, let f a ( i , j )  = 3(i, a(j)),  where a( j )  is the image o f j  
under the permutation a of N. Let Ua = I[fa(i,j)[l. Then for any column 
matrix X,  UaX  =- Y implies Yi = ZJ fa( i , j ) x~  = ~J  3(i, a(j))x~. Let 
k = a-l(i) .  Then Yi = ZJ S(a(k), a( j ))xj  = Z~ 3(k , j )x j  = xk .  Thus the new 
column vector Y is obtained from X by permuting the probabilities x i ,  or, 
equivalently, by permuting the indices i. The operation U~ is equivalent to 
relabeling each snapshot k as a(k). 

Now any permutation of A, B, and C induces a permutation g ~ G C S 6 
of snapshots. It  should make no difference when the relabeling takes place, 
whether before (C q ' ' '  CPU~) or after (UgCq . . .C ~)  the conversational 
transformations (C q "" CP). Hence the condition that the conversation 
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probabilities be independent of the labeling of A, B, and C is equivalent 
to the following: for all g ~ G, and all positive integers p, q such that 
1 < ~ p < ~ q < n ,  

UgC¢ "'" C~+~C~+1C ~ = C~ "'" C~+IC~Ug. (2) 

In  particular, it follows from (2) with p = q that U~C ~ = C~Ug. In  terms 
of elements, this means that for all i and k, 

fg(i, j) c~'(j, k) = ~ c'(i, j) fg(j,  k). 
J J 

Substituting the definition offa(i , j) ,  

8(i, g(j)) c~(j, k) = ~ c~(i,j) 8(j, g(k)). 
J J 

Letting g-l(i) = l, 

8(g(t), g(j)) cP(j, k) = ~ c~(i, j) ~(j, g(k)) 
J J 

8(/, j) c~(j, k) = ~ c~'(g(1), j) 8(j, g(k)) 
J J 

c~(l, k) = c~(g(1), g(k)). 

These relations hold for all g ~ G. Hence the matrix C ~ may look something (i4512i) 46235  
1 6 4 3  

C a = ( 1 / 2 1 )  3 4 6 1 " (3) 

5 3 2 6 
2 I 5 4 

like the following: 

To make the patterning of this matrix visible, it is convenient to rearrange 
its entries, according to the method developed by Pike and others (1963, 
1964, 1968) to deal with morphological data. Instead of indexing the entries 
c(i, ]) by initial snapshot j and final snapshot i, we can choose to index them 
by initial snapshot j plus the relation between initial and final snapshot; or 
by final snapshot / plus such a relation. Such a rearrangement is one way of 
focusing on the relation between initial and final snapshots. 

For this purpose, define b(v, j) = c'~(v(j), j) for all j ~ N and all v c S 6 . 



RESTRAINTS ON CONVERSATIONS 239 

Whereas the c's are indexed by i and j ,  b's are indexed by final snapshot j and 
an element v which measures the relation of snapshots. Now the conditions 
cP(i , j)  = c~(g(i), g ( j ) )  can be rewritten in terms of b's. b(v , j )  = c~(v(j),  j )  

c2'(g(v(j)), g ( j ) )  = cP(gv(j) ,  g ( j ) ) ,  when we have taken i = v ( j ) .  Moreover, 
c~'(gv(j), g ( j ) )  = b(v', g ( j ) )  for v '  such that v 'g( j )  = gv ( j ) .  This must be 
true for all j, so v'g ~- gv, v '  = gvg -1. 

The  pattern of equal probabilities will become visible if b(v, j ) a n d  b(v', g ( j ) )  
belong to the same row or to the same column. Since in general we cannot 
require j = g( j ) ,  an arrangement in the same column is not possible. But 
if v = v',  b (v , j )  and b(v', g ( j ) )  will be in the same row. But v'  = gvg -1, 
so v ~ v'  is equivalent to v ~-- gvg -1. A l l  of the pattern will be visible if this 
holds for all g ~ G. Hence once again v should be in the centralizer H of G 
in SG • 

I f  C z is as in (3), the corresponding matrix B = !r b(v,j)H,~n,j~N is 

j ~ l  j = 2  j = 3  j ~ - 4  j = 5  j = 6  

v = I ( 6  6 6 6 6 6 )  
v = r  5 5 5 5 5 5 
v = s  4 4 4 4 4 4 
v = rsr 3 3 3 3 3 3 
v = sr 2 2 2 2 2 2 
v = rs 1 1 1 l 1 1 

Thus  we have again explained the sociolinguistic relevance of the subgroup H. 
One further refinement of method will now give us even greater generality. 

5. QUESTION ANALYSIS OF THREE-PERSON CONVERSATION 

The  argument of Section 4 depended on the assumption that the proba- 
bilities of transition c~(i , j )  were independent of the previous history of the 
conversation (cf. the "nonhistorical" conversation types of Poythress (1973)). 
In  fact, this can be at best only an approximation to the truth. But the 
argument of Section 4 can be generalized to include more general cases, once 
we have altered our notational devices. 

We wish to speak in general terms about states ~ of a sociolinguistic 
system. In  intuitive terms, a state ~ is a collection of items of information 
which enable one to make at least probabilistic predictions and postdictions 
about the system. For example, ~ might be a classical or quantum mechanical 
density function which specifies a statistical ensemble of systems each of 
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which is in some one atomic state. More precisely, a state ~ is considered to 
be completely described by a function F~(Q) which, given any appropriate 
yes-no question Q about the system, gives the probability F~(Q) that the 
analyst's answer to Q is "yes" when the system is in state ~. For all ~ and Q, 
0 ~F~(Q) ~< 1. Two states ~ and ~' are considered identical iffF~(Q) ~ F~,(Q) 
for all questions Q in the relevant class of questions. 

In  the ease of three-person conversations, we may suppose that the state c~ 
is fixed for any given type of conversation and any given participants A, B, 
and C. The  relevant questions are of the type Qi~: "At  stage p, is the con- 
versation in snapshot i ?" Note that the probabilities F~(Qi~ ) are not indepen- 
dent of one another• Let  Q?Q~q denote the question, " I s  it true both that at p 
the conversation is in snapshot i and that at stage q the conversation is in 
snapshot j ?" QivQj q is to be answered "yes"  if and only if both Qi ~ and Q~q are 
answered "yes."  

Now suppose that the type of conversation in question is invariant under 
relabeling of A, B, and C. What  condition should this impose on the proba- 
bilities F~(Qi~Qj q) ? In  a manner analogous to Sections 3 and 4, invariance 
has to do with a relation between the original probability F~(QivQj ~) and a 
probability associated with the situation altered by a permutation g ~ G. 
As before, G _ S 6 is the subgroup of S 6 generated by (AB) and (AC) of (1). 
The  questions Q~(i) (i ~ N)  are the result of relabeling A, B, and C, according 

p q to the permutation g, in stage p. Q~(i)Qg(j) represents a question where the 
labels have been altered both in stage p and in stage q. We might expect that 

F~(Qi~Q~q) - ~ q -F~(Qg(i)Qo(~)) for all i and j, if the probability of going from 
snapshot j in stage q to snapshot i in stage p is really independent of the 
labeling A, B, C. However, such a condition would be too strong, since for 
various reasons the initial snapshots j in stage q may not be equally probable. 

Actually, the best that we can expect is that the conditional probabilities 
will be equal: 

F~(Qi ~ I Q~ ~) = F~(Q~(i) [ Q~(j)) 

where F~(Q~ I Qj q) = F~(Q~Q~)/F~(Qj q) is the probability that Q~  is yes if 
Q~q is, and ~ ] q ~ v q q F~(Qg{i) Qo{J)) F~(Qo(i)Q~(j))/F~(Qg(j)) is the probability that 

• q Q~(i) is yes ff Qg,) is. Thus  we have 

F~(Qjq)/F~(Q~(j)) = F~(Qi~Qjq)/F~(Qo~i)Q~(~)). (4) 

Since some of the probabilities F,(Q~ ~) might be zero, we prefer to wrke (4) as 

F~(Q..)Qg(j)) = F~(Qg(~)) F~(Q~ Q~ ). (5) 
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Now let us express the identity (5) as a relation purely among the 36 
quantities F~(QipQ~ q) (i, j = 1, 2 ..... 6) rather than as a relation between these 
quantities and the 6 quantities F~(Q~q). Substituting k for i in (5), we have 

" q = ~ ( ~ ( ~ ) ) L ( Q k  Qj ). (6) 

Multiplying the right-hand side of (5) with the left-hand side of (6), and the 
left-hand side of (5) with the right-hand side of (6), we obtain 

j ~  q ~0 q ~0 q 

F O q F q F ~' q ~' q = ~(_j ) ~(Q~(~)) ~(Ok Q; )F~(Q~(~)Q~(~)). 
q IfF~(Q?) ¢ 0 # F~(Q~(,), 

~o q ~0 q ~ q ~ q = F~(Qk Qj ) F~(Qg(i)C~,(j)). F~(Qi Qj ) F~(Q,(~)Qo(j) ) (7) 

On the other hand, i fF~(QI  ) = 0, F~(QipQ~ q ) ----F~t~to ~O~j ~j ---- 0. IfF~(Q~(j)) =- 0, 
P q P q F~(Og(k)Qg(j)) = F~+(O,q(i)Og(;)) = O. Hence in any case (7) holds. 

Contrariwise, assume that (7) holds. Since the questions Q1 ~, Qev, Qap,..., 
Q6 ~ are disjoint, and exactly one must have a yes answer, F~(Qsq ) = 
Z i  F~(QiVQjq) • Now 

q i0 q F~(Qj ) F.(Q~(~)Qg(j)) 

~o q ~o q 
= 2 Fc+(Q i Q~ )F~(Q~<~)Q~(j)) 

i 

2o q 

i i 

- - F  ~' q F  q 

The  last equality holds since g(i) runs through the integers N as i does. 
Hence (7) implies (5). Hence (5) and (7) are equivalent. Thus  we can confine 
ourselves to a study of (7), which deals exclusively with the 36 quantities 

F~(QiVQ~q). 
Treat ing the quantities a(i , j )  =-F~(QivQj q) as matrix elements of A = 

]] a(i, j)[lid, we can once again at tempt to reorder the matrix until parallel 
elements appear in the same row or column. However, (7) is not a strong 
enough condition to guarantee that any two a(i , j ) ' s  are equal. So collecting 
"parallel" elements does not mean collecting equal elements but merely 
proportional dements .  The  best we can hope for is a condition such as 

b(i, j )  b(k, l) = b(i, l) b(k, j )  (8) 

when a 's  are properly rearranged. 
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The  condition (8) is important because it is equivalent to the independence 
of the probabilities of rows and columns, in the following sense. 

(i) 
(ii) 

(iii) 

(iv) 
B ~ A C ;  

LEMMA. Let  B = ]1 b(i, j)]l be an m × n matrix with entries b(i, j )  in afield K .  
Consider the following: 

B is of  rank 1 ; 

b(i , j)  b(k , l )  = b ( i , l )  b(k , j )  for  all 1 ~ i ,  k ~ m ,  1 ~ j ,  l<~n;  

there exist ai (1 ~ i ~ m) and cj (1 ~ j ~ n) such that b ( i , j )=aic j  ; 

there exists a column matrix d and a row matrix C such that 

(v) there exist a set of  mutually exclusive events Ei (1 ~ i ~ m), a set 
of  mutually exclusive events Fj  (1 ~ j ~ n), and a constant c > O, such that 
each event Ei is independent of  each Fj , and such that cb(i, j )  is the probability of  
joint occurrence of  Ei and Fj . 

Then (i), (ii), (iii), and (iv) are all equivalent. Moreover, i f  the b(i , j )  are all 
nonnegative real numbers, (v) is equivalent to any one of  (i)-(iv). 

Proof. (i), (iii), and (iv) are trivially equivalent. (v) follows easily from (iii) 
by picking Ei and F~ so that p(Ei) = ai(c) t/~, p(Fj)  ~- cj(c)l/~, c can always 
be chosen small enough so that ~ i p ( E i )  and Z j p ( F j )  are both less than 1. 
On the other hand, assuming that (v) holds, set ai = p(Ei),  cj = (l/c) p(Fj),  
and (iii) follows. 

Now it remains to show that (ii) is equivalent to (iii). Assume (iii). 
b(i , j)  b(k, l) = a~cjakct ~- a¢c~akcj = b(i, l) b(k, j) .  Hence (ii) holds. Now 
assume (ii). I f  all the b(i, j ) ' s  are zero, the result is trivial. So suppose 
b(u, v) @ O. Let cj = b(u, j)  and ai = b(i, v)/b(u, v). We claim b(i , j)  = aiq  . 
For a~cj ~- (b(i, v)/b(u, v)) b(u, j )  = (b(i, v) b(u,j))/b(u, v) = (b(i,j)  b(u, v))/ 
b(u, v) = b(i,j) .  Q.E.D. 

Now let u ~ { ( i , j ) ] i , j  ~ {1, 2 ..... 6}} = N × N range over double indices 
i and j. Let  SaG be the set of permutations of N × N. Let  w ~ S~6 be one such 
permutation. Then  b(u) = a(w-l(u)) defines a matrix B = q] b(i,j)H which is 
a reordering of the entries of the matrix A ~ ]l a(i,j)[]. I f  w(i , j )  = ( i ' , j ' ) ,  
w is uniquely determined by the two functions w 1 , w 2 : N × N--+ N such 
that i '  = wx(i, j) ,  j '  ~ w2(i, j) .  That  is, w(i, j )  ~ (wl(i , j), w2(i , j)).  

(7) Can be rewritten in terms of b's. F~,(Qi~Q~q ) = a( i , j )  = b(w(i , j));  
v q F~(Qk~Q~ q) = a(k, j )  = b(w(k, j);  F~(Qo(i)Qg(~)) = a(g(i), g( j ) )  = b(w(g(i), 

g(j))); F~(Q2(k)Qg(j) ) = a(g(k), g(j))  - -  b(w(g(k), g(j))). Hence (7) implies 

b(w(i, j ))  b(w(g(k), g(j))) = b(w(k, j ) )  b(w(g(i), g(j))). (9) 
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Now assume that w has been so chosen that (9) is the same as (8). In  (8), 
any b on one side of the equation has a subscript  (either row or column) in 
common with each b on the other side. Hence, in particular, in (9) b(w( i , j ) )  
and b(w(k , j ) )  should belong either to the same row or to the same column. 
Since the equation (8) is invariant under  an interchange of rows and columns, 
we may assume that w( i , j )  and w ( k , j )  belong to the same column. Hence 
w2( i , j  ) = w2(k , j  ). Since this is true for all i, k ~ N, wz is independent  of the 
first variable, and we may write w 2 ( i , j ) ~ - w ~ ( j ) .  If  the second subscript  of 
b(w( i , j ) )  matches the second subscript  of b(w(k , j ) ) ,  then by (8) the first 
subscript  of b(w(i, j ) )  should match the first subscript  of b(w(g( i ) ,g ( j ) ) ) .  That  
is, 

w~(i, j )  = w~(g(i), g( j ) ) .  (10a) 

Similarly, 

w2(g( j ) )  = w2(g( j ) )  (10b) 

wl(g(k) ,  g ( j ) )  - wx(k, j ) .  (10c) 

The  new column labels are a permutat ion w2(j)  of the old column labels. 
But the new row labels w~(i, j )  are a function both of i and of j .  For  fixed i ' ,  if 
wx(il , j )  = w~(i2 , j )  = i', then w(il  , j )  =- w(i2 , j ) ,  hence i x ~ i 2 . Hence 
the i such that i' = w~(i, j )  is uniquely determined by i '  and j .  Let  i = h e ( j )  
be this function, such that i '  = Wl(hi,(j), j). 

Now wl ( i , j  ) = i 1 where hi t ( j  ) = i; wl(g( i ) ,  g ( j ) )  = i 2 where hi~(g(j)) = g(/); 
w~(g(k), g ( j ) )  = i 3 where hi3g(j  ) ~- g(k);  Wl(k, j ) = i~ where hi4(j  ) = k. 
Equation (10) is equivalent to i x = i 2 , i 3 = i~. Hence hi1 = h q ,  hi3 =- hi4.  
This  means that h i lg ( j  ) ~ ghi l ( j ) ,  h i ~ g ( j ) =  ghi3(j  ). Hence the h's must 
satisfy ghi =- hig.  Since g ~ G is arbitrary, h i must  commute with every 
element of G. However, we have not yet shown that hi : N ~  N is a 1-1 
function. Suppose hi(j~) - -  hdj2) .  Pick gl ~ G such that g~(Jl) = J2 (always 
possible). Then  g lh i ( j l )  = higl ( jx  ) = hi(j2 ) = hi(j1 ). But all the elements 
of G except 1 (the identity permutation) have no fixed point. Hence g~ = 1, 
Jl  = j2 , and h i is 1-1. Hence h i is a permutat ion in the centralizer of G. 
Hence h i ~ H .  

6. GENERALIZATION TO n-PERsON CONVERSATION 

T h e  above analyses can be extended without too much difficulty to various 
types of man-person  conversations. Let  n persons be engaged in a conversation 
or a number  of conversations. Let  M ~-{1, 2,..., n}. A snapshot of the 
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conversation should indicate who is speaking to whom. We may suppose that 
between any two persons A and B in the conversation, one of the following 
relations holds: (1) A is addressing B, (2) B is addressing A, (3) B is listening 
to A (but A is not directly addressing B), (4) A is listening to B, or (5) no 
relation at all. Denote these five relations by 1, 2, 3, 4, and 0, respectively. 
Let  P ~ {1, 2, 3, 4,0}. Then  a snapshot will be a map j of M × M - -  
{(x, x) I x ~ M} into P, subject to the following restrictions: 

(i) j(x,  y)  =- R( j (y ,  x)), where R(1) =- 2, R(2) = 1, R(3) = 4, R(4) = 3, 
R(0) ~ 0. (Thus the relation of A to B is the converse of the relation of 
B to d . )  

(ii) any x e M can be either a speaker, an addressee, or a listener, but  
not two of these at the same time; i.e.,j(x, y) = 1 andj(y ,  z) = 1,j(x, y)  = 1 
and j (y ,  z) =- 3, j(x, y) = 3 and j (y ,  z) =- 1, j(x, y) = 3 and j (y ,  z) = 3, 
j (x,  y) = 1 and j (z ,  y) = 3 are all impossible. 

I f  desired, further restrictions can be placed on j. Let N be the set of all 
such snapshots j. Let  S o be the group of all permutations of N. Then  sociolin- 
guistically relevant transformations form a subset of S O . Moreover, each 
permutation or: M--+ M of participants x ~ M induces a permutation go ~ So 
of snapshots in the obvious way. The set of all such permutations {g, I a a 
permutation of M} forms a subgroup G of S o , isomorphic to the symmetric 
group on n letters. 

Assume now that the conversation type is invariant under interchange of 
all or perhaps only some participant roles. Let  G 1 be the subgroup of G 
consisting of permutations that leave the conversation type invariant. As 
in Sections 2-5, this assumption implies an identity involving elements g ~ G 1 . 
The sociolinguistically relevant transformations h ~ S O are the elements of 
the centralizer subgroup H of G 1 in S O . 

7. POSSIBLE APPLICATION TO PHONOLOGY AND GRAMMAR 

One of the advantages of the mode of argument developed in Section 5 
is that it can be applied to problems superficially quite remote from speaker- 
addressee relationships. According to the Lemma of Section 5, the validity of 
b(i, j )b(k ,  l) = b(i, l)b(k,  j )  implies the independence of events associated 
with rows and columns. Though  exact independence may never be found in 
events associated with linguistics, a situation approxima'ting independence is 
a common occurrence. As illustrations, we take two cases from English 
grammar. 
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Consider first a situation of free variation. The English bitransitive active 
clause has two variant forms, 

Mary gave John the book. 
Mary gave the book to John. 

Let Q1 ° be the question, "Does the indirect object come before the direct 
object in the given bitransitive clause ?" Let Q2 ° be the question, "Does the 
indirect object follow the direct object ?" Let Q~I, fo r j  ranging over an index 
set J, be a set of questions concerning the context of the clause, or concerning 
the subject, the verb, and the NPs constituting the indirect object and the 
direct object. Let a(i,j) ~-F~(QiOQjl), i.e., the probability of joint "yes" 
answers to Qi ° and Qjl. That A - II a(i,j)[] is of rank 1 (or "close to" a 
matrix of rank 1) is an assertion that the order of indirect and direct object 
is a matter of free variation. Thus free variation can be defined in terms of 
independence of two sets of questions. 

Next, consider as an example of grammatically conditioned grammatical 
variation agreement of subject and verb in English clauses. Let I = {1, 2, 3, 4}. 
Let Q0 ( i ~ I )  be questions concerning person and number of the subject. 
Q10 (Q2O, Q o) are, respectively, "Is  the subject first (second, third) person 
singular ?" Q4 ° is "Is  the subject plural ?" Since plural verb forms are always 
alike, we need not subdivide Q4 ° by person. Let Q1 ( j  ~ I )  be the corresponding 
questions concerning the verb phrase. Of course, only when the first verb 
in the verb phrase is a form of 'to be' will the verbal forms for first and second 
person singular be different. In other cases, when we deal with homophonous 
forms, we assume that the distinction between questions Q11, Q1, and Q1 is 
determined by referring to the subject. 

Let a(i , j )=F~(QiOQj 1) be the probability of joint "yes" answers to 
Q0 and Qjl. That, in general, a(i, j)  a(k, l) ~ a(i, l) a(h, j)  indicates that 
agreement between subject and predicate is occurring (the variation is not 
"free"). However, invariance of the overall clause structure under changes 
of person and number places restrictions on the quantities a(i, j). Let G be 
the group of permutations of I. Perfect invariance of structure would mean 
a(i, j )  a(g(i), g(k)) = a(i, k) a(g(i), g(j)) for all g ~ G. As a matter of fact, 
because of the occurrence of semologically influenced exceptions such as 
"The  crowd are coming," the equality above will be only approximate. 
d = r] a(i,j)l] can now be reordered by setting b(i,j) = a(w(i,j)) for some 
permutation w ~ $16 of ordered pairs (i, j). The entries of B will be properly 
alined when, say, the row labels i ~ I  indicate the person and number, and 
the column labels h E H are in the centralizer of G in G. In this case the 
centralizer is the center, the identity subgroup. The column label h = 1 
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heads the column of all nonnegligible probabilities a(i, i). Thus  h is the 
"agreement" column, while other columns need no labels, as they are 
columns of negligible probabihties of "disagreement." 

Even this analysis has a curious exception in dialects using the sequence 
'Aren ' t  I . '  The  occurrence of 'Aren ' t  I '  will show up as an irregularity in the 

matrix A 1 = II al(i,j)H of probabilities a l ( i , j  ) = F~(QflQjlQ2Qa), where 0 ~ 
asks whether the clause in question is interrogative and Oa asks whether the 
verb phrase is negative. When either Qg. or Oa is answered "no,"  the cor- 

responding matrix is regular. 

In  any case, an instance of conditioned variation can be treated as an 
independence of row and column questions where the column questions 
have been rechosen to ask questions of correlation ("Does x 1 occurring in 
slot y l  correlate with x~ occurring in slot Y2 ?") rather than questions of 
occurrence ("Does x 1 occur in slot Yl ?")- 
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