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Abstract

In [A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10 (2000)
1507–1526], A. Koldobsky asked whether two types of generalizations of the notion of an intersection
body are in fact equivalent. The structures of these two types of generalized intersection bodies have been
studied by the author in [E. Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2) (2006) 530–
567], providing substantial evidence for a positive answer to this question. The purpose of this note is
to construct a counter-example, which provides a surprising negative answer to this question in a strong
sense. This implies the existence of non-trivial non-negative functions in the range of the spherical Radon
transform, and the existence of non-trivial spaces which embed in Lp for certain negative values of p.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let Vol(L) denote the Lebesgue measure of a set L ⊂ R
n in its affine hull, and let G(n, k)

denote the Grassmann manifold of k-dimensional subspaces of R
n. Let Dn denote the Euclidean

unit ball, and Sn−1 the Euclidean sphere. All of the bodies considered in this note will be assumed
to be centrally-symmetric star-bodies (even if the central-symmetry assumption is omitted).
A centrally-symmetric star-body K is a compact set with non-empty interior such that K = −K ,
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tK ⊂ K for all t ∈ [0,1], and such that its radial function ρK(θ) = max{r � 0 | rθ ∈ K} for
θ ∈ Sn−1 is an even continuous function on Sn−1. We denote the spaces of continuous and even
continuous functions on Sn−1 by C(Sn−1) and Ce(Sn−1), respectively.

This note concerns two generalizations of the notion of an intersection body, first introduced
by E. Lutwak in [27] (see also [28]).

Definition. A star-body K is said to be an intersection body of a star-body L, if ρK(θ) =
Vol(L ∩ θ⊥) for every θ ∈ Sn−1, where θ⊥ is the hyperplane perpendicular to θ . K is said to
be an intersection body, if it is the limit in the radial metric dr of intersection bodies {Ki} of
star-bodies {Li}, where dr(K1,K2) = supθ∈Sn−1 |ρK1(θ) − ρK2(θ)|.

We remark that the distinction in the above definition between the notion of intersection body
of a star-body and the more general notion of intersection body is indeed essential. For instance,
it was shown in [5,40] that convex polytopes in R

4 are not intersection bodies of star-bodies,
whereas all centrally-symmetric convex bodies in R

4 are in fact intersection bodies, as shown
in [41].

Let R :C(Sn−1) → C(Sn−1) denote the Spherical Radon Transform, defined by

R(f )(θ) =
∫

Sn−1∩θ⊥

f (ξ) dσθ (ξ) (1.1)

for f ∈ C(Sn−1), where σθ denotes the Haar probability measure on Sn−1 ∩ θ⊥. Let R∗ denote
the dual transform (as in (1.2) below). We will use the following characterization of intersection
bodies (see [6,28]) as an equivalent definition:

Equivalent Definition. A star-body K is an intersection body iff ρK = R∗(dμ), where μ is a
non-negative Borel measure on Sn−1.

The notion of an intersection body has been shown to be fundamentally connected to the
Busemann–Petty problem (first posed in [3]), which asks whether two centrally-symmetric con-
vex bodies K and L in R

n satisfying

Vol(K ∩ H) � Vol(L ∩ H) ∀H ∈ G(n,n − 1)

necessarily satisfy Vol(K) � Vol(L). It was shown in [6,28,38] that the answer is equivalent to
whether all centrally-symmetric convex bodies in R

n are intersection bodies, and in a series of
results [1,2,6,7,9,12,18,24,31,41] that this is true for n � 4, but false for n � 5. We comment in
passing that intersection bodies are still objects of significant current interest, see for example,
[8,15,17,26,37].

In [39], G. Zhang considered a generalization of the Busemann–Petty problem, the so-called
generalized k-codimensional problem, asking whether two centrally-symmetric convex bodies
K and L in R

n satisfying

Vol(K ∩ H) � Vol(L ∩ H) ∀H ∈ G(n,n − k)

for some fixed integer k between 1 and n − 1, necessarily satisfy Vol(K) � Vol(L). Zhang
showed that this generalized problem is also naturally associated to a class of generalized inter-
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section bodies, which will be referred to as k-Busemann–Petty bodies, and that the generalized
k-codimensional problem is equivalent to whether all centrally-symmetric convex bodies in R

n

are k-Busemann–Petty bodies. It was shown in [4] (see also [33]), and later in [21], that the an-
swer is negative for k < n − 3, but the cases k = n − 3 and k = n − 2 remain open (the case
k = n − 1 is obviously true).

Several partial answers to these unresolved cases are known, all in the positive direction. It
was shown in [39] (see also [33]) that when K is a centrally-symmetric convex body of revolution
and k = n − 2 or k = n − 3, then the answer is positive for the pair K,L, with any star-body L.
This was recently extended in [32] (see also [23] for a related result), by showing that the same
statement holds when K has more general axial symmetries. When k = n−2, it was shown in [4]
that the answer is positive if L is a Euclidean ball and K is convex and sufficiently close to L.
This was extended in [30], where it was shown that this is again true for k = n−2 and k = n−3,
when L is an arbitrary star-body and K is sufficiently close to a Euclidean ball (but to an extent
depending on its curvature). Several other generalizations of the Busemann–Petty problem were
treated in [33,35,36,42].

Before defining the class of k-Busemann–Petty bodies we shall need to introduce the
m-dimensional Spherical Radon Transform, acting on spaces of continuous functions as follows:

Rm :C
(
Sn−1) −→ C

(
G(n,m)

)
,

Rm(f )(E) =
∫

Sn−1∩E

f (θ) dσE(θ),

where σE is the Haar probability measure on Sn−1 ∩ E. It is well known (e.g. [16]) that as an
operator on even continuous functions, Rm is injective. The dual transform is defined on spaces
of signed Borel measures M by

R∗
m :M

(
G(n,m)

) −→ M
(
Sn−1),∫

Sn−1

f R∗
m(dμ) =

∫
G(n,m)

Rm(f )dμ ∀f ∈ C
(
Sn−1), (1.2)

and for a measure μ with continuous density g, the transform may be explicitly written in terms
of g (see [39]):

R∗
mg(θ) =

∫
θ∈E∈G(n,m)

g(E)dνm,θ (E),

where νm,θ is the Haar probability measure on the homogeneous space {E ∈ G(n,m) | θ ∈ E}.

Definition. A star-body K in R
n is called a k-Busemann–Petty body if ρk

K = R∗
n−k(dμ) as mea-

sures in M(Sn−1), where μ is a non-negative Borel measure on G(n,n−k). This class of bodies
is denoted by BPn.
k
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Choosing k = 1, for which G(n,n−1) is isometric to Sn−1/Z2 by mapping H to Sn−1 ∩H⊥,
and noticing that R is equivalent to Rn−1 under this map, we see that BPn

1 is exactly the class of
intersection bodies.

In [21], a second generalization of the notion of an intersection body was introduced by
A. Koldobsky, who studied a different analytic generalization of the Busemann–Petty problem.

Definition. A centrally-symmetric star-body K is said to be a k-intersection body of a star-
body L, if Vol(K ∩H⊥) = Vol(L∩H) for every H ∈ G(n,n−k). K is said to be a k-intersection
body, if it is the limit in the radial metric dr of k-intersection bodies {Ki} of star-bodies {Li}. We
shall denote the class of such bodies by In

k .

Again, choosing k = 1, we see that In
1 is exactly the class of intersection bodies.

In [21], Koldobsky considered the relationship between these two types of generalizations,
BPn

k and In
k , and proved that BPn

k ⊂ In
k (see also [29]). Koldobsky also asked whether the

opposite inclusion is equally true for all k between 2 and n − 2 (for 1 and n − 1 this is true):

Question. (See [21].) Is it true that BPn
k = In

k for n � 4 and 2 � k � n − 2?

If this were true, as remarked by Koldobsky, a positive answer to the generalized k-codimen-
sional Busemann–Petty problem for k � n − 3 would follow, since for those values of k any
centrally-symmetric convex body in R

n is known to be a k-intersection body [19–21].
In [29], it was shown that these two classes BPn

k and In
k share many identical structural

properties, suggesting that it is indeed reasonable to believe that BPn
k = In

k . Using techniques
from integral geometry for the class BPn

k and Fourier transform of distributions techniques for
the class In

k , the following structure theorem was established (see [29] for an account of particular
cases which were known before). We define the k-radial sum of two star-bodies L1,L2 as the
star-body L satisfying ρk

L = ρk
L1

+ ρk
L2

.

Structure Theorem. (See [29].) Let C = I or C = BP and k, l = 1, . . . , n − 1. Then:

(1) Cn
k is closed under full-rank linear transformations, k-radial sums and taking limit in the

radial metric.
(2) Cn

1 is the class of intersection bodies in R
n, and Cn

n−1 is the class of all symmetric star-bodies
in R

n.
(3) Let K1 ∈ Cn

k1
, K2 ∈ Cn

k2
and l = k1 + k2 � n − 1. Then the star-body L defined by ρl

L =
ρ

k1
K1

ρ
k2
K2

satisfies L ∈ Cn
l . As corollaries:

(a) Cn
k1

∩ Cn
k2

⊂ Cn
k1+k2

if k1 + k2 � n − 1.

(b) Cn
k ⊂ Cn

l if k divides l.

(c) If K ∈ Cn
k then the star-body L defined by ρL = ρ

k/l
K satisfies L ∈ Cn

l for l � k.
(4) If K ∈ Cn

k then any m-dimensional central section L of K (for m > k) satisfies L ∈ Cm
k .

Despite this and other evidence from [29] for a positive answer to Koldobsky’s question, we
give the following negative answer. Let O(n) denote the orthogonal group on R

n. Recall that a
star-body K is called a body of revolution if its radial function ρK ∈ C(Sn−1) is invariant under
the natural action of O(n − 1) identified as some subgroup of O(n).
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Theorem 1.1. Let n � 4 and 2 � k � n − 2. Then there exists an infinitely smooth centrally-
symmetric body of revolution K such that K ∈ In

k but K /∈ BPn
k .

Note that Theorem 1.1 does not imply a negative answer to the unresolved cases k = n − 2,

n − 3 (for n � 5) of the generalized Busemann–Petty problem, which pertains to convex bodies.
Indeed, the K we construct cannot be a convex body in those ranges of k, since as already
mentioned, convex bodies of revolution are known ([39], see also [33]) to belong to BPn

n−2
and BPn

n−3. Theorem 1.1 does however imply that if one wishes to prove a positive answer
to these unresolved cases by means of comparing k-intersection bodies to k-Busemann–Petty
bodies, it is essential to restrict one’s attention to convex bodies.

Let I :C(G(n, k)) → C(G(n,n − k)) denote the operator defined by I (f )(E) = f (E⊥) for
all E ∈ G(n,n − k). Let Rn−k(C(Sn−1)) = ImRn−k denote the range of Rn−k . As explained in
Section 2, Theorem 1.1 can be equivalently reformulated as follows:

Theorem 1.2. Let n � 4 and 2 � k � n − 2. Then there exists an infinitely smooth function
g ∈ C(G(n,n − k)) such that R∗

n−k(g) � 1 and (I ◦ Rk)
∗(g) � 1 as functions in C(Sn−1), but

g is not non-negative as a functional on Rn−k(C(Sn−1)). In other words, there exists a non-
negative h ∈ Rn−k(C(Sn−1)) such that

∫
G(n,n−k)

g(E)h(E)dηn,n−k(E) < 0, where ηn,n−k is the
Haar probability measure on G(n,n − k). Moreover, both g and h can be chosen to be invariant
under the action of O(n − 1).

In [29], several equivalent formulations to Koldobsky’s question were obtained using cone-
duality and the Hahn–Banach theorem. Let C+(Sn−1) denote the cone of non-negative continu-
ous functions on the sphere, and let Rn−k(C(Sn−1))+ denote the cone of non-negative functions
in the image of Rn−k . Let A denote the closure of a set A in the corresponding normed space.
Note that by the results from [29], Im I ◦ Rk = ImRn−k , and hence:

Rn−k

(
C

(
Sn−1

))
+ ⊃ Rn−k

(
C+

(
Sn−1

)) + I ◦ Rk

(
C+

(
Sn−1

))
.

As formally verified in [29], the dual formulation to Theorem 1.2 then reads:

Theorem 1.3. Let n � 4 and 2 � k � n − 2. Then:

Rn−k

(
C

(
Sn−1))

+ \ Rn−k

(
C+

(
Sn−1

)) + I ◦ Rk

(
C+

(
Sn−1

)) �= ∅.

In other words, there exists an (infinitely smooth) function f ∈ Rn−k(C(Sn−1))+ which cannot
be approximated (in C(G(n,n − k))) by functions of the form Rn−k(g) + I ◦ Rk(h) with g,h ∈
C+(Sn−1).

Other equivalent formulations using the language of Fourier transforms of homogeneous
distributions are given in Section 5. We comment here that one such formulation pertains to
embeddings in Lp for negative values of p. The definition of embedding into such a space (for
−n < p < 0) was given by Koldobsky in [21] by means of analytic continuation of the usual de-
finition for p > 0. It is known (see Section 5) that for p � −1 (p �= 0) and for −n < p � −n+1,
any star-body K such that (Rn,‖ · ‖K) embeds in Lp can be generated in a “trivial” manner, by
starting with the Euclidean ball Dn, applying full-rank linear transformations, (−p)-radial sums
and taking the limit in the radial metric. Our results imply that p = −1 and p = −n + 1 are
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critical values for this property, and that this is no longer true for p = −k, 2 � k � n−2. In other
words:

Theorem 1.4. There exist “non-trivial” n-dimensional spaces which embed in L−k for 2 � k �
n − 2.

The rest of this note is organized as follows. In Section 2, we provide some additional back-
ground which is required to see why Theorem 1.2 implies Theorems 1.1 and 1.3. In Section 3,
we develop several formulas for the Spherical Radon Transform and its dual for functions of
revolution, i.e. functions invariant under the action of O(n − 1). In Section 4, we use these for-
mulas to prove Theorem 1.2, thereby constructing the desired counter-example to Koldobsky’s
question. In Section 5, we give several additional equivalent formulations to Theorem 1.1 using
the language of Fourier transforms of homogeneous distributions.

2. Additional background

In this section, we summarize the relevant results needed for this note. We also explain why
Theorems 1.1 and 1.3 follow from Theorem 1.2. We refer to [29] for more details.

For a star-body K (not necessarily convex), we define its Minkowski functional as ‖x‖K =
min{t � 0 | x ∈ tK}. When K is a centrally-symmetric convex body, this of course coincides
with the natural norm associated with it. Obviously ρK(θ) = ‖θ‖−1

K for θ ∈ Sn−1.
It was shown by Koldobsky in [21] that for a star-body K in R

n, K ∈ In
k iff ‖ ·‖−k

K is a positive
definite distribution on R

n, meaning that its Fourier transform (as a distribution) (‖ · ‖−k
K )∧ is a

non-negative Borel measure on R
n. We refer the reader to Section 5 for more on Fourier trans-

forms of homogeneous distributions, as this will not be of essence in the ensuing discussion. To
translate this result to the language of Radon transforms, it was shown in [29, Corollary 4.2] that
for an infinitely smooth star-body K and a (signed) Borel measure μ ∈M(G(n,n − k)):

‖ · ‖−k
K = R∗

n−k(dμ) iff
(‖ · ‖−k

K

)∧ = c(n, k)(I ◦ R)∗k(dμ), (2.1)

where c(n, k) is some explicit positive constant and the equalities above are interpreted as
equalities between measures on Sn−1. Hence, it follows [29, Lemma 5.3] that for an infi-
nitely smooth star-body K in R

n, K ∈ In
k iff there exists a (possibly signed) Borel measure

μ ∈ M(G(n,n − k)), such that as measures ρk
K = R∗

n−k(dμ) � 0 and (I ◦ Rk)
∗(dμ) � 0.

This should be compared with the definition of k-Busemann–Petty bodies: K ∈ BPn
k iff ρk

K =
R∗

n−k(dμ) as measures on Sn−1 for a non-negative Borel measure μ ∈ M(G(n,n − k)). Since
for such a measure, (I ◦Rk)

∗(dμ) � 0, it follows that every infinitely smooth k-Busemann–Petty
body is also a k-intersection body, and this easily implies (see [29, Corollary 4.4]) that BPn

k ⊂ In
k

in general, as first shown by Koldobsky in [21].
Rn−k is known (e.g. [16]) to be injective on the space of even functions in C(Sn−1), so by

duality R∗
n−k is onto a dense subset of even measures in M(Sn−1), which is known to include

even measures with infinitely smooth densities. However, it is important to note that for 2 � k �
n−2, the image of Rn−k is not dense in C(G(n,n−k)), and equivalently, R∗

n−k has a non-trivial
kernel. The above implies that for any infinitely smooth star-body K , we can find a measure μ

such that ρk
K = R∗

n−k(dμ), but if 2 � k � n − 2 this measure will not be unique. Nevertheless,
as a functional on Rn−k(C(Sn−1)), such a measure μ is determined uniquely. The conclusion is
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that if we need to determine whether K ∈ BPn
k given a representation ρk

K = R∗
n−k(dμ) for some

measure μ ∈ M(G(n,n − k)), a necessary and sufficient condition is that μ is a non-negative
functional on Rn−k(C(Sn−1)), i.e.

∫
G(n,n−k)

Rn−k(h)(E)dμ(E) � 0 for any h ∈ C(Sn−1) such

that Rn−k(h) � 0. Indeed, any non-negative functional on Rn−k(C(Sn−1)) can be extended to a
non-negative functional on C(G(n,n − k)) by a version of the Hahn–Banach theorem (see the
remarks before [29, Lemma 5.2] for more details).

The above discussion explains why Theorem 1.1 is an immediate consequence of The-
orem 1.2. Given the infinitely smooth function g provided by Theorem 1.2, we define the
centrally-symmetric star-body K given by ρk

K = R∗
n−k(g). Note that this indeed defines a star-

body since R∗
n−k(g) � 0. In fact, K is an infinitely smooth star-body since it is known (e.g. [10])

that R∗
n−k(g) is an infinitely smooth function on Sn−1 if g is infinitely smooth; and since

ρk
K = R∗

n−k(g) � 1, it follows that ρK itself is infinitely smooth. In addition K ∈ In
k since

(I ◦ Rk)
∗(g) � 0. But since g is not a non-negative functional on Rn−k(C(Sn−1)), if follows

that K /∈ BPn
k .

To explain why Theorem 1.1 is equivalent to Theorem 1.3, we recall another result from [29].
Denote M = M(G(n,n − k)) for short, and let

M
(
BPn

k

) = {
μ ∈M; μ is a non-negative functional on Rn−k

(
C

(
Sn−1))},

and

M
(
In

k

) = {
μ ∈ M; R∗

n−k(dμ) � 0 and (I ◦ Rk)
∗(dμ) � 0

}
.

It should already be clear from the above discussion that the statement BPn
k = In

k is equivalent
to the statement M(BPn

k) = M(In
k ). By the Hahn–Banach theorem for convex cones, it is not

hard to see [29, Theorem 5.6] that the latter statement is dual to

Rn−k

(
C

(
Sn−1

))
+ = Rn−k

(
C+

(
Sn−1

)) + I ◦ Rk

(
C+

(
Sn−1

))
. (2.2)

As follows from (2.1), KerR∗
n−k = Ker(I ◦ Rk)

∗, and therefore ImRn−k = Im I ◦ Rk . This
explains why the right-hand side of (2.2) is always a subset of the left. Theorem 1.1 shows that it
is a proper subset, implying Theorem 1.3. Since this theorem is attained using a convex separation
argument, we have no constructive way of finding the function f of the theorem. Albeit, we
can always find an infinitely smooth f , since the subspace of infinitely smooth functions in
Rn−k(C(Sn−1)) is known to be dense in Rn−k(C(Sn−1)), and hence in Rn−k(C(Sn−1)).

3. Radon transform for functions of revolution

Fix n � 3 and ξ0 ∈ Sn−1. We denote by Oξ0(n−1) the subgroup of O(n) whose natural action
on Sn−1 leaves ξ0 invariant, and by Cξ0(S

n−1) the linear subspace of functions in Ce(Sn−1)

invariant under Oξ0(n− 1). Clearly Oξ0(n− 1) is isometric to O(n− 1). We refer to members of
Cξ0(S

n−1) as spherical functions of revolution. For ξ1, ξ2 ∈ Sn−1, let �(ξ1, ξ2) denote the angle
in [0,π/2] between ξ1 and ξ2, i.e. cos�(ξ1, ξ2) = |〈ξ1, ξ2〉|. We also denote �(ξ1,0) = π/2.
Clearly F ∈ Cξ0(S

n−1) iff F(ξ) = f (�(ξ, ξ0)) for f ∈ C([0,π/2]). In that case, we denote
by f̃ ∈ C([0,1]) the function given by f̃ (cos θ) = f (θ), so F(ξ) = f̃ (|〈ξ, ξ0〉|). We denote the
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operator T :C([0,π/2]) → C([0,1]) defined by T (f ) = f̃ , for future reference. It is well known
by polar integration (e.g. [34]), that

∫
Sn−1

F(ξ) dσn(ξ) = cn

π/2∫
0

f (θ) sinn−2(θ) dθ = cn

1∫
0

f̃ (t)
(
1 − t2) n−3

2 dt, (3.1)

where σn is the Haar probability measure on Sn−1, and cn is a constant whose value may be
deduced by using F ≡ f ≡ f̃ ≡ 1.

For E ∈ G(n, k) and ξ ∈ Sn−1, denote by ProjE ξ the orthogonal projection of ξ onto E, and
by ProjE ξ := ProjE ξ/|ProjE ξ | if ProjE ξ �= 0, and ProjE ξ := 0 otherwise. When E = span(ξ1)

for ξ1 ∈ Sn−1, we may sometimes replace E by ξ1 in ProjE and ProjE . Denote by �(ξ,E) =
�(ξ,ProjE ξ) if ProjE ξ �= 0 and �(ξ,E) = π/2 otherwise.

Since the natural action of O(n) on C(G(n, k)) and Ce(Sn−1) commutes with Rk , and since
Oξ0(n − 1) acts transitively on all E ∈ G(n, k) such that �(ξ0,E) is fixed, it clearly follows
that if F ∈ Cξ0(S

n−1) then Rk(F )(E) only depends on �(ξ0,E). Hence, if F(ξ) = f (�(ξ, ξ0))

for f ∈ C([0,π/2]), we denote (abusing notation) by Rk(f ) ∈ C([0,π/2]) the function given
by Rk(f )(�(ξ0,E)) = Rk(F )(E). Similarly, we define R̃k :C([0,1]) → C([0,1]) as R̃k = T ◦
Rk ◦ T −1.

The following lemma was essentially stated in [39]. We provide a simple proof for complete-
ness:

Lemma 3.1. Let f ∈ C([0,π/2]) and 2 � k � n − 1. Then:

Rk(f )(φ) = ck

π/2∫
0

f
(
cos−1(cosφ cos θ)

)
sink−2 θ dθ,

where the value of ck is found by using f ≡ 1, in which case Rk(f ) ≡ 1.

Remark 3.2. This lemma, together with the subsequent ones, extend to the case k = 1, if we
properly interpret the (formally) diverging integral as integration with respect to an appropriate
delta-measure. Note also that the value ck is consistent with the one used in (3.1).

Proof of Lemma 3.1. Let F ∈ Cξ0(S
n−1) be given by F(ξ) = f (�(ξ, ξ0)). Let E ∈ G(n, k) be

such that �(ξ0,E) = φ. Hence, if ξ1 = ProjE ξ0 then �(ξ0, ξ1) = φ. For ξ ∈ Sn−1 ∩ E, since
ξ Projξ1

ξ and ξ0 − Projξ1
ξ0 are orthogonal, it follows that 〈ξ, ξ0〉 = 〈Projξ1

ξ, ξ0〉, i.e. Projξ0
ξ =

Projξ0
(Projξ1

ξ). Hence cos�(ξ, ξ0) = cos�(ξ, ξ1) cos�(ξ1, ξ0) = cos�(ξ, ξ1) cosφ. Since the
function F is even, a standard polar integration formula then gives:

Rk(f )(φ) = Rk(F )(E) =
∫

Sn−1∩E

F(ξ) dμE(ξ)

=
∫

n−1

f
(
�(ξ, ξ0)

)
dμE(ξ)
S ∩E
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=
∫

Sn−1∩E

f
(
cos−1(cos�(ξ, ξ1) cosφ

))
dμE(ξ)

= ck

π/2∫
0

f
(
cos−1(cosφ cos θ)

)
sink−2 θ dθ. �

Performing the change of variables t = cos θ , s = cosφ above, we immediately have:

Corollary 3.3. Let f̃ ∈ C([0,1]) and 2 � k � n − 1. Then:

R̃k(f̃ )(s) = ck

1∫
0

f̃ (st)
(
1 − t2) k−3

2 dt,

where the value of ck is the same as in Lemma 3.1.

Next, we introduce Cξ0(G(n, k)), the linear subspace of all functions in C(G(n, k)) invariant
under the action of Oξ0(n − 1). We refer to members of Cξ0(G(n, k)) as functions of revolution
on the Grassmannian. As before, it is clear that G ∈ Cξ0(G(n, k)) iff G(E) = g(�(ξ0,E)) for
g ∈ C([0,π/2]). We have the following:

Lemma 3.4. Let G ∈ Cξ0(G(n, k)) such that G(E) = g(�(ξ0,E)), and let g̃ = g ◦ T −1. Then:

∫
G(n,k)

G(E)dηn,k(E) = bn,k

π/2∫
0

g(φ) sinn−k−1 φ cosk−1 φ dφ

= bn,k

1∫
0

g̃(s)
(
1 − s2) n−k−2

2 sk−1 ds,

where ηn,k is the Haar probability measure on G(n, k), and the value of bn,k may be deduced by
using G ≡ g ≡ g̃ ≡ 1.

Proof. Clearly:

∫
G(n,k)

G(E)dηn,k(E) =
π/2∫
0

g(φ)d
(
ηn,k

{
E ∈ G(n, k); �(ξ0,E) � φ

})
.

Since σn and ηn,k are both rotation-invariant, it follows that:

ηn,k

({
E ∈ G(n, k);�(ξ0,E) � φ

}) = σn

{
ξ ∈ Sn−1; �(ξ,E0) � φ

}
for any E0 ∈ G(n, k). Using bi-polar coordinates (e.g. [34, Chapter IX]), it is easy to see that:

dσn

{
ξ ∈ Sn−1;�(ξ,E0) � φ

} = bn,ksin
n−k−1φ cosk−1 φ dφ,
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for some bn,k . This concludes the proof of the first equality of the lemma, and the second one
follows by the change of variables s = cos(φ). �

Next, we find an expression for the dual spherical Radon transform of a function in
Cξ0(G(n, k)). As before, it is clear that if F ∈ Cξ0(S

n−1) then Rk(F ) ∈ Cξ0(G(n, k)), and
that if G ∈ Cξ0(G(n, k)) then R∗

k (G) ∈ Cξ0(S
n−1). If G ∈ Cξ0(G(n, k)) is given by G(E) =

g(�(ξ0,E)), we denote by R∗
k (g) ∈ C([0,π/2]) the function given by R∗

k (g)(�(ξ, ξ0)) =
R∗

k (G)(ξ). As usual, we define R̃∗
k :C([0,1]) → C([0,1]) by R̃∗

k = T ◦ R∗
k ◦ T −1. The standard

duality relation ∫
Sn−1

R∗
k (G)(ξ)F (ξ) dσn(ξ) =

∫
G(n,k)

G(E)Rk(F )(E)dηn,k(E)

is immediately translated using (3.1) and Lemma 3.4 into the following duality relation between
R̃k and R̃∗

k on C([0,1]):

Lemma 3.5. Let f̃ , g̃ ∈ C([0,1]) and 1 � k � n − 1. Then:

1∫
0

R̃∗
k (g̃)(t)f̃ (t)

(
1 − t2) n−3

2 dt = dn,k

1∫
0

g̃(s)R̃k(f̃ )(s)
(
1 − s2) n−k−2

2 sk−1 ds

where the value of dn,k is found by using f̃ , g̃ ≡ 1, in which case R̃k(f̃ ), R̃∗
k (g̃) ≡ 1.

We can now deduce an expression for R̃∗
k :

Lemma 3.6. Let g̃ ∈ C([0,1]) and 2 � k � n − 1. Then:

R̃∗
k (g̃)(t) = en,k

1∫
0

g̃
(√

1 − s2
(
1 − t2

))(
1 − s2) k−3

2 sn−k−1 ds,

where the value of en,k is found by using g̃ ≡ 1, in which case R̃∗
k (g̃) ≡ 1.

Proof. We start with Lemma 3.5 and use the formula for R̃k given in Corollary 3.3:

1∫
0

R̃∗
k (g̃)(t)f̃ (t)

(
1 − t2) n−3

2 dt = dn,k

1∫
0

g̃(s)R̃k(f̃ )(s)
(
1 − s2) n−k−2

2 sk−1 ds

= dn,kck

1∫
0

g̃(s)

1∫
0

f̃ (st)
(
1 − t2) k−3

2 dt
(
1 − s2) n−k−2

2 sk−1 ds

= dn,kck

1∫
f̃ (v)

1∫
g̃(s)

(
1 − v2

s2

) k−3
2 (

1 − s2) n−k−2
2 sk−2 ds dv.
0 v
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Since this is true for any f̃ ∈ C([0,1]), setting en,k = dn,kck , we conclude that:

R̃∗
k (g̃)(t) = en,k

(
1 − t2)− n−3

2

1∫
t

g̃(s)

(
1 − t2

s2

) k−3
2 (

1 − s2) n−k−2
2 sk−2 ds.

By the change of variable s = √
1 − (s′)2(1 − t2), one easily checks that the assertion of the

lemma is obtained. �
We now recall the definition of the “perp” operator I from the Introduction, and extend it to

the context of functions of revolution. For every k = 1, . . . , n − 1, we define I :C(G(n, k)) →
C(G(n,n − k)) as I (f )(E) = f (E⊥) for all E ∈ G(n,n − k), without specifying the index k.
With these notations, I is obviously “self-adjoint”:

∫
G(n,n−k)

I (F )(H)G(H)dηn−k(H) =
∫

G(n,k)

F (E)I (G)(E)dηk(E),

for all F ∈ C(G(n, k)) and G ∈ C(G(n,n− k)), where ηm denotes the Haar probability measure
on G(n,m).

Since �(ξ0,E) = π/2 − �(ξ0,E
⊥), it is clear that for G ∈ Cξ0(G(n, k)) such that G(E) =

g(�(ξ0,E)) for every E ∈ G(n, k), I (G)(H) = g(π/2 − �(ξ0,H)) for every H ∈ G(n,n − k).
We therefore define I :C([0,π/2]) → C([0,π/2]) as I (g)(φ) = g(π/2 − φ). Similarly, for
g̃ ∈ C([0,1]), we define I (g̃)(s) = g̃(

√
1 − s2). Clearly, if G(E) = g̃(cos(�(ξ0,E))) then

I (G)(H) = I (g̃)(cos(�(ξ0,H))). Hence in both cases I must be self-adjoint, and this can be
also verified directly. As an immediate corollary of Lemma 3.6, we have:

Corollary 3.7. Let g̃ ∈ C([0,1]) and 2 � k � n − 1. Then:

(I ◦ R̃k)
∗(g̃)(t) = en,k

1∫
0

g̃
(
s
√

1 − t2
)(

1 − s2) k−3
2 sn−k−1 ds,

where the value of en,k is the same as in Lemma 3.6.

We are now ready to construct the counter-example to Koldobsky’s question, as described in
the next section.

4. The construction

The main step in the proof of Theorem 1.2 is the following:

Proposition 4.1. For any n � 4, 2 � k � n − 2 and s0 ∈ (0,1), there exists an infinitely smooth
function g̃ ∈ C([0,1]) such that:
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(1) For all t ∈ [0,1]:

R̃∗
n−k(g̃)(t) = en,n−k

1∫
0

g̃
(√

1 − s2
(
1 − t2

))(
1 − s2) n−k−3

2 sk−1 ds � 1.

(2) For all t ∈ [0,1]:

(I ◦ R̃k)
∗(g̃)(t) = en,k

1∫
0

g̃
(
s
√

1 − t2
)(

1 − s2) k−3
2 sn−k−1 ds � 1.

(3) g̃(s0) = −1.

(4) All the derivatives g̃(l) vanish at 0 and 1 for l � 1.

Proof. Let ε > 0 be such that [s0 − 2ε, s0 + 2ε] ⊂ (0,1). Let Tt , T
′
t ∈ C([0,1]) be defined by

Tt (s) = √
1 − s2(1 − t2) and T ′

t (s) = s
√

1 − t2, and let λ denote the Lebesgue measure on R. It
is elementary to check that the maximum of λ{T −1

t [s0 − 2ε, s0 + 2ε]} over t ∈ [0,1] is attained
at t = s0 − 2ε, in which case it is equal to

δ1 := max
t∈[0,1]

λ
{
T −1

t [s0 − 2ε, s0 + 2ε]} = 1 −
√

1 − (s0 + 2ε)2

1 − (s0 − 2ε)2
< 1.

An analogous computation shows that the maximum of λ{(T ′
t )

−1[s0 −2ε, s0 +2ε]} over t ∈ [0,1]
is attained at t = √

1 − (s0 + 2ε)2, in which case it is equal to

δ2 := max
t∈[0,1]

λ
{(

T ′
t

)−1[s0 − 2ε, s0 + 2ε]} = 4ε

s0 + 2ε
< 1.

Set δ := max(δ1, δ2) < 1. Now denote by μn,m the measure en,m(1 − s2)
m−3

2 sn−m−1ds on [0,1],
for 2 � m � n − 2. These are probability measures, as witnessed by using g̃ ≡ 1 in Lemma 3.6,
in which case R̃∗

k (g̃) ≡ 1. Since their densities (with respect to λ) are absolutely continuous and
do not vanish on (0,1), a compactness argument shows that (fixing n)

γ := sup
v∈[0,1],2�m�n−2

μn,m

([v, v + δ]) < 1.

Set γ ∗ = 1+γ
1−γ

. We conclude by constructing g̃ as follows. Set g̃(s) = −1 for s ∈ [s0 − ε, s0 + ε],
g̃(s) = γ ∗ for s ∈ [0,1] \ [s0 − 2ε, s0 + 2ε], and for s ∈ [s0 − 2ε, s0 + 2ε] \ [s0 − ε, s0 + ε] set
g̃(s) ∈ [−1, γ ∗] so that the resulting function g̃ ∈ C([0,1]) is in fact infinitely smooth (using
standard methods). Clearly the derivatives of g̃ vanish at 0 and 1 as required. Setting

β1(t) := μn,n−k

{
s ∈ [0,1]; Tt (s) ∈ [s0 − 2ε, s0 + 2ε]},
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the definition of γ and δ imply that β1(t) � γ for all t ∈ [0,1], hence

1∫
0

g̃
(√

1 − s2
(
1 − t2

))
dμn,n−k(s) � γ ∗(1 − β1(t)

) − β1(t) � 1

for all t ∈ [0,1]. Similarly, setting

β2(t) := μn,k

{
s ∈ [0,1]; T ′

t (s) ∈ [s0 − 2ε, s0 + 2ε]},
we have β2(t) � γ for all t ∈ [0,1], and

1∫
0

g̃
(
s
√

1 − t2
)
dμn,k(s) � γ ∗(1 − β2(t)

) − β2(t) � 1

for all t ∈ [0,1]. This concludes the proof. �
Remark 4.2. Note that for k = 1 and k = n − 1 the above reasoning fails, as the measure μn,1 is
a singular measure.

Remark 4.3. Note also that the function g̃ we have constructed in fact satisfies the claims (1)
and (2) for all values of k in the range 2 � k � n − 2.

We can now almost conclude the proof of Theorem 1.2. We still need one last observation,
since a priori, the fact that g̃(s0) < 0 does not guarantee that the function G ∈ C(G(n,n − k))

defined as G(E) = g̃(cos(�(ξ0,E))), is not a non-negative functional on Rn−k(C(Sn−1)). This
is resolved by the following:

Lemma 4.4. The polynomials on [0,1] are in the range of R̃n−k(C([0,1])).

Proof. This is immediate by Corollary 3.3, because if p̃(t) = tm (m � 0), then

R̃n−k(p̃)(s) = cn−k

1∫
0

p̃(st)
(
1 − t2) n−k−3

2 dt = dn−k,msm,

with dn−k,m > 0. Hence polynomials are mapped to polynomials by R̃n−k , and any polynomial
in the range may be obtained. �

By the Weierstrass approximation theorem, if follows that:

Corollary 4.5. The range of R̃n−k is dense in C([0,1]).

We can now turn to the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let g̃ ∈ C([0,1]) be the infinitely smooth function constructed in Propo-
sition 4.1, with, say s0 = 1/2. Fix some ξ0 ∈ Sn−1, and let G ∈ Cξ0(G(n,n − k)) be defined by
G(E) = g̃(cos(�(ξ0,E))) for every E ∈ G(n,n − k). Of course the functions g̃ and cos are in-
finitely smooth on their corresponding domains, and so is �(ξ0, ·), except at the points ξ ∈ Sn−1

where �(ξ0, ξ) attains the value 0 or π/2. Nevertheless, as the composition of these functions,
G is indeed infinitely smooth on all of G(n,n − k), since we required that the derivatives of g̃

vanish at 0 and 1, which takes care of the singularities of �(ξ0, ·) at the “stitching” points. By
the construction of g̃ and the compatibility of R∗

n−k and (I ◦ Rk)
∗ with R̃∗

n−k and (I ◦ R̃k)
∗,

respectively, it follows that R∗
n−k(G) = R̃∗

n−k(g̃) � 1 and (I ◦ Rk)
∗(G) = (I ◦ R̃k)

∗(g̃) � 1. It
remains to show that G is not a non-negative functional on Rn−k(C(Sn−1)). Let H ∈ Cξ0(S

n−1)

be such that H(ξ) = h̃(cos(�(ξ0, ξ)) for some h̃ ∈ C([0,1]). Then by Lemma 3.4:

∫
G(n,n−k)

G(E)Rn−k(H)(E)dηn,n−k = bn,n−k

1∫
0

g̃(s)R̃n−k(h̃)(s)
(
1 − s2) k−2

2 sn−k−1 ds.

(4.1)

Since g̃(s)(1 − s2)
k−2

2 sn−k−1 is a continuous function on [0,1] whose value at s0 is negative, by
Corollary 4.5 we can find a function h̃ ∈ C([0,1]) such that R̃n−k(h̃) (and therefore Rn−k(H)) is
non-negative, but the integral in (4.1) is negative. This demonstrates that G is not a non-negative
functional on Rn−k(C(Sn−1)) and concludes the proof. �
5. Additional formulations

In this section, we provide several additional equivalent formulations to the main result of this
note, using the language of Fourier transforms of homogeneous distributions (we refer the reader
to [22] for more on this subject).

We denote by S(Rn) the Schwartz space of test functions on R
n (i.e. infinitely differ-

entiable functions whose partial derivatives of any order decay to 0 faster than any poly-
nomial), and by S ′(Rn) the space of distributions over S(Rn). The Fourier transform f̂ of
a distribution f ∈ S ′(Rn) is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test function φ, where
φ̂(y) = ∫

φ(x) exp(−i〈x, y〉) dx. A distribution f is called homogeneous of degree p ∈ R if
〈f,φ(·/t)〉 = |t |n+p〈f,φ〉 for every t > 0, and it is called even if the same is true for t = −1.
An even distribution f always satisfies (f̂ )∧ = (2π)nf . The Fourier transform of an even ho-
mogeneous distribution of degree p is an even homogeneous distribution of degree −n − p.
A distribution f is called positive if 〈f,φ〉 � 0 for every φ � 0, implying that f is necessarily a
non-negative Borel measure on R

n. We use Schwartz’s generalization of Bochner’s theorem [11]
as a definition, and call a homogeneous distribution positive-definite if its Fourier transform is a
positive distribution.

5.1. Embeddings in Lp

Recall the following:

Definition. A normed space (Rn,‖ · ‖) is said to embed in Lp (p � 1) iff there exists
a basis x1, . . . , xn ∈ R

n and functions f1, . . . , fn ∈ Lp([0,1]) such that ‖∑n
i=1 aixi‖p =∫ |∑n

aifi(t)|p dt for all scalars {ai}.
i=1
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This definition may be extended to the range 0 < p < 1, in which case ‖ · ‖ is no longer nec-
essarily a norm, but rather the Minkowski functional of some star-body. The following classical
result of P. Lévy [25] provides an equivalent definition. Note that this definition makes sense for
p > −1 (and p �= 0, the case p = 0 requires passing to the limit).

Equivalent Definition. (Rn,‖ · ‖) embeds in Lp (p > −1, p �= 0) iff

‖x‖p =
∫

Sn−1

∣∣〈x, θ〉∣∣p dμ(θ), (5.1)

for some μ ∈ M+(Sn−1), the cone of non-negative Borel measures on Sn−1.

Unfortunately, this characterization breaks down at p = −1 since the above integral no longer
converges. However, A. Koldobsky showed that it is possible to regularize this integral by using
Fourier transforms of distributions, and gave the following definition in [21]:

Definition. (Rn,‖ · ‖) embeds in L−p for 0 < p < n iff there exists a measure μ ∈ M+(Sn−1)

such that for any even test-function φ:

∫
Rn

‖x‖−pφ(x)dx =
∫

Sn−1

∞∫
0

tp−1φ̂(tθ) dt dμ(θ). (5.2)

Consequently, the following characterization was given in [21]:

Theorem 5.1 (Koldobsky). The following are equivalent for a centrally-symmetric star-body K

in R
n:

(1) K ∈ In
k .

(2) ‖ · ‖−k
K is a positive definite distribution on R

n.
(3) The space (Rn,‖ · ‖K) embeds in L−k .

In addition to the characterization (3) in Theorem 5.1 of In
k as the class of unit-balls of

subspaces of scalar L−k spaces, a functional analytic characterization of BPn
k as the class of

unit-balls of subspaces of certain vector-valued L−k spaces was given in [21]. To explain this
better, we state the definition given by Koldobsky:

Definition. (Rn,‖·‖) embeds in L−p(Rk) for 0 < p < n iff there exists a measure μ ∈M+(Rnk)

such that for any even test-function φ:

∫
Rn

‖x‖−pφ(x)dx =
∫

Rnk

∫
Rk

‖v‖p−k

2 φ̂

(
k∑

i=1

viξi

)
dv dμ(ξ). (5.3)

For k = 1 it is easy to see that this coincides with the definition of embedding in L−p . Using
this definition, the following was shown in [21]:
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Theorem 5.2 (Koldobsky). K ∈ BPn
k iff (Rn,‖ · ‖K) embeds in L−k(R

k).

For p > 0, it is known that every separable vector-valued Lp space is isometric to a subspace
of a scalar Lp space and vice versa. Translating Theorem 1.1 into the language of Lp spaces, we
see that this is no longer true when p = −k, 2 � k � n − 2:

Corollary 5.3. Let n � 4 and 2 � k � n − 2. Then there exists an infinitely smooth centrally-
symmetric body of revolution K such that (Rn,‖ · ‖K) embeds in L−k but does not embed in
L−k(R

k).

5.2. Non-trivial spaces which embed in Lp (p < −1)

We proceed to describe another property of Lp spaces which breaks down when passing the
critical value of p = −1.

Definition. Let SLn
p (p �= 0) denote the set of all star-bodies K in R

n for which (Rn,‖ · ‖K)

embeds in Lp .

For p �= 0, let the p-norm sum of two bodies L1,L2 be defined as the body L satisfying
‖ ·‖p

L = ‖·‖p
L1

+‖·‖p
L2

. Obviously, the p-norm sum coincides with the (−p)-radial sum, defined
in the Introduction (before the Structure Theorem).

Definition. Let Dn
p (p �= 0) denote the class of bodies created from the Euclidean ball Dn by ap-

plying full-rank linear transformations, p-norm sums, and taking the limit in the radial metric dr .

Using the characterization in (5.1), it is easy to show (e.g. [14, Theorem 6.13]) that for p > −1
(p �= 0), SLn

p = Dn
p . In order to understand what happens when p � −1, we turn to the following

characterization of BPn
k , first proved by Goodey and Weil in [13] for intersection bodies (the

case k = 1), and extended to general k by Grinberg and Zhang in [14]:

Theorem 5.4 (Grinberg and Zhang). BPn
k = Dn

−k for k = 1, . . . , n − 1.

Recall that In
1 = BPn

1 is the class of all intersection bodies in R
n and In

n−1 = BPn
n−1 is the

class of all centrally-symmetric star-bodies in R
n (this is clear from the definitions, see also the

Structure Theorem from the Introduction). Since In
k = SLn

−k by characterization (3) of Theo-
rem 5.1, we see that SLn

−k = Dn
−k for k = 1 and k = n − 1. However, Theorem 1.1 implies that

this is no longer true for 2 � k � n − 2:

Corollary 5.5. Let n � 4 and 2 � k � n − 2. Then SLn−k \ Dn
−k �= ∅.

Note that since BPn
k ⊂ In

k , it is always true that Dn
−k ⊂ SLn

−k (in fact, this is straightforward
to check directly, implying that BPn

k ⊂ In
k by using Theorems 5.1 and 5.4). In some sense, the

members of Dn
−k are the “trivial” elements of SLn

−k , since obviously Dn ∈ SLn
−k , and SLn

−k is
closed under taking full-rank linear transformations, (−k)-norm sums and limit in the radial-
metric. Corollary 5.5 should therefore be interpreted as stating that there are also “non-trivial”
elements in SLn , for 2 � k � n − 2.
−k
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5.3. Non-trivial positive-definite homogeneous distributions

We conclude by translating Corollary 5.5 into the language of Fourier transforms of homoge-
neous distributions.

Notation. Given an even f ∈ C(Sn−1), we denote by Ep(f ) its homogeneous extension of
degree p onto R

n (formally excluding {0} if p < 0), i.e. Ep(f )(tθ) = tpf (θ) for t > 0 and
θ ∈ Sn−1. We denote by E∧

p (f ) the Fourier transform of Ep(f ) as a distribution. Given a full-

rank linear transformation T on R
n, we denote T (Ep(f )) = Ep(f ) ◦ T −1.

Note that E∧
p (f ) need not necessarily be a continuous function on R

n\{0}, nor even a measure
on R

n. In order to ensure that E∧
p (f ) is a continuous function, we need to add some smoothness

assumptions on f [22]. We remark that for an infinitely smooth function f ∈ C(Sn−1), E∧
p (f ) is

infinitely smooth on R
n \ {0} for any p ∈ (−n,0). Whenever E∧

p (f ) is continuous on R
n \ {0}, it

is uniquely determined by its value on Sn−1 (by homogeneity), so we identify (abusing notation)
between E∧

p (f ) and its restriction to Sn−1. Clearly E−k(ρ
k
K) = ‖ · ‖−k

K for a star-body K , hence

T (E−k(ρ
k
K)) = E−k(ρ

k
T (K)). Again, we identify (by homogeneity) between T (Ep(f )) and its

restriction to Sn−1.
It is easy to check (e.g. [29]) that for any infinitely smooth K ∈ Dn

−k , we have E∧−k(ρ
k
K) � 0

(and clearly ρk
K � 0). In fact, this immediately follows from the fact that this is true for

Dn ∈ Dn
−k , the linearity of the Fourier transform, and its behavior under full-rank linear trans-

formations. With Theorem 5.4 and characterization (2) of Theorem 5.1 in mind, asking whether
BPn

k = In
k is equivalent to asking whether the only infinitely smooth functions f ∈ C(Sn−1)

such that f � 0 and E∧−k(f ) � 0, are the ones such that f = ρk
K for some K ∈ Dn

−k . In other
words, whether every such f can be approximated (in the topology induced by the maximum

norm on C(Sn−1), which is clearly the same for f and for f 1/k) by functions of the form∑m
i=1 Ti(E−k(1)), where Ti are full-rank linear transformations. The following is thus an im-

mediate consequence of Theorem 1.1:

Corollary 5.6. Let n � 4 and 2 � k � n − 2. Then there exists a “non-trivial” infinitely smooth
function of revolution f ∈ C(Sn−1) such that f � 0 and E∧−k(f ) � 0. By “non-trivial,” we mean
that f cannot be approximated in the maximum norm topology on C(Sn−1) by functions of the
form

∑m
i=1 Ti(E−k(1)), where {Ti} are full-rank linear transformations in R

n.

5.4. Concluding remark

To conclude, we comment that although the original definitions of BPn
k and In

k make sense
only for integer values of k (between 1 and n − 1), some of the alternative characterizations
of these classes stated in this section make sense for arbitrary real-valued k, for 0 < k < n.
In particular, characterizations (2) and (3) of Theorem 5.1 for the class In

k and Theorem 5.4
for the class BPn

k may be taken as definitions for these classes of star-bodies in this extended
range of k. It then makes sense to ask whether Theorem 1.1 also holds for any non-integer
1 < k < n−1. Although we do not proceed in this direction, the answer should be positive, since
our construction of the function g̃ in Proposition 4.1 is purely analytic, and everything still works
for arbitrary real-valued k, for 1 < k < n − 1.
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