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Abstract  

We study the subgroup generated by the exponentials of formal Lie series. We show three 
different ways to represent elements of this subgroup. These elements induce Lie-series trans- 
formations. Relations among these family of transformations furnish algorithms of composition. 
Starting from the Lazard elimination theorem and the Witt's formula, we show isomorphisms be- 
tween some submodules of free Lie algebras. Combining different results, we also show that the 
homogeneous terms of the Hausdorff series H(a, b) freely generate the free Lie algebra L(a, b) 
without a line. 

1.  I n t r o d u c t i o n  

Lie-series automorphisms or Lie transformations play an important role in classical 

mechanics. They can be seen, for example, as the time evolution in a Hamiltonian 

system. The product of two such transformations may therefore be seen as the combined 

effects of two Hamiltonians. 
The use of this formalism becomes efficient when it becomes easy to manipulate 

formal Lie series, to compute composition of Lie transformations or to express such 
transformations in several ways. They are universal identities in Lie algebras and we 

will work in a free Lie algebra. Instead of considering exponentials of Lie series, we 

will consider the group of Lie-series automorphisms. Actually after having defined the 

Lie transformation, historically introduced by Deprit [3], the factored product transform 

introduced by Dragt and Finn [4] and the exponential of an inner derivation, we will 

show that these transformations are the same subgroup of the Lie-series automorphisms 
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close to identity. They can be seen as conjugation in the algebra of  formal Lie series. 
All of  them are defined by generating Lie series. 

After having reminded some notations in free algebras in Section 2, we will introduce 
formal Lie series on a weighted alphabet and define the Lie-series transformations and 
their properties in Section 3. In Section 4, we will consider Lie-series automorphisms 
they generate and their relations. In the last section, we will show several isomorphisms 
between free Lie algebras or subalgebras. We will prove, using combinatorial identities 
like the Witt 's formula and a theorem of M. Lazard, that the subalgebra generated by 
the homogeneous terms of  the Hausdorff series is isomorphic to the free Lie algebra 
on an alphabet of  two letters without a line. 

2. Notations 

In this paper X will denote a weighted alphabet, that is to say an ordered set (possibly 
endless), in which each letter a has a non-negative integer weight [[a[[. 

R is a ring which contains the rational numbers Q. 
X* is the free monoid generated by X. X* is totally ordered with the lexicographic 

order. 
M(X) is the free magma generated by X. 
~ ' ( X )  is the associative algebra, that is to say the R-algebra of  X*. 
L(X) is the free Lie algebra on X. It is defined as the quotient of  the R-algebra 

of  M(X) by the ideal generated by the elements (u,u) and (u,(v,w))+ (v,(w,u))+ 
(w,(u,v)). Its multiplication law [,]  is bilinear, alternate and satisfies the Jacobi 
identity 

[x,[y,z]] + [y,[z,x]] + [z,[x, y]] =0 .  (1) 

An element of M(X) considered as element of  L(X) will be called a Lie monomial. 
By posing for a,b E X, [a,b] = a b -  ha, we have L(X)C d(X) .  
On L(X) so as on A(X), one considers the following gradations: 

- -  Gradation by the length (the unique morphism that extends the function a ~ 1 
on X).  For x E Y *  (resp. M(X)) Ixl denotes the length. Ln(X) (resp. d , ( X ) )  is the 
submodule generated by monomials of  length n. 
- -  One defines on X* (resp. M(X)) the weight x H Iixil as the unique morphism 
that extends the weight on X. £n(X) (resp. ~ ( X ) )  is the submodule generated by 
monomials of weight n. 
- -  The multi-degree is the unique morphism from X* (resp. M(X)) onto N (x) that 
extends a ~-~ lla, for aEX.  For a given ~ in N ix), U(X)  (resp. ~¢~(X)) denotes the 

submodule generated by monomials of  degree c~. 

Remark.  When Hall = 1 for each a EX,  then obviously Ln(X)=/n(X) (resp. d . ( X )  = 
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For x E L(X), we denote by Lx the inner derivation y ~-~ [x, y]. The set of inner 
derivations of X is the adjoint Lie algebra with commutator as Lie bracket and we 
have from the Jacobi identity (1) 

L[x ,y] = [Lx, Ly]  = LxLy - LyLx. (2) 

For x, E Ln(X), (see [2])let Dxn = nxn. For Xn E £n(X), le t / )x ,  = nx,. We thus define 
two derivations D and / )  on L(X). They are not inner derivations. 

We define the formal Lie series £(X) and ~£(X) as 

L(X) = ]-I £.(X) and ~7(X)= I ~ ( X ) .  
n~>0 n>~0 

We will write x E[(X)  as a series y~n>~oXn. L(X) is a complete Lie algebra with the 
Lie bracket 

( [ x , y ] ) , =  ~ [Xp, yq]. 
p+q=n 

3. Some transformations 

A transformation T : / ( X )  ~ [(X)  will be called Lie-series automorphism if it is a 
Lie-algebra automorphism, that is to say [T f ,  TO] = T[f,9]. The Lie-series automor- 
phisms act on the adjoint Lie algebra by 

T L f  T -1 = L T f  . 

We give here three transformations that will give three different ways to build Lie-series 
automorphisms. 

3.1. The exponential 

Denoting by £(X) + (resp. ~£(X) +) the ideal of £(X) (resp. ~£(X)) generated 
by the elements of non-negative weight, one defines the exponential and the logarithm 
a s  

exp + 1 +, 

X n 

Z -  x F---~ n ! '  
n>~O 

log: 1 + ~ ( X )  + - - -~ (X)  +, 

x ~  _ ~--~ (1 - x )  n 

n 
n~>l 
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They are mutually reciprocal functions and we have (see [1, Ch. II, Section 5]) the 

Theorem 1 (Campbell-Hausdorff). For x, y E £(X) +, 

H(x, y) = log [exp(x) exp(y)] E L(X) +. 

More precisely, we have the following: 

Lemma 2. Given x, yE£(X)  +, we have for m>>.O, 

H(x, Y)m+l --  Xm+l -- Ym+l E £m+l  (Xl . . . . .  Xm, Y l  . . . . .  Y m ) .  

Remark. Here £q(Xl ..... xp) denotes the submodule generated by elements of weight 
q of the subalgebra generated by {xl . . . . .  xp}. 

Given x E/~(X) +, we consider exp(Lx) defined as 

Z i 
e x p ( L x ) y = Z - X y  

i 
i>~O 

Theorem 3. For x E £(X) +, exp(Lx) is a Lie-series automorphism (see [2]). We also 
have [1,6] for y E £ ( X )  

exp(x)y exp(-x) = exp(Lx)y, 

exp(x) exp(y) exp(-x)  = exp(exp(Lx)y). 

Proof. We have exp(-Lx)exp(Lx)=~. From the Jacobi identity (1), we have ([12]) 
by induction on k~>0, for any f ,9,h EL(X) +, 

k 

We therefore deduce that 

exp(Lf)[o,hl= Z 
n~>0 p=0 

1 (P+q)!r,p ,q,,  
= ~ (p+q)! pT.~ [Lfg, LfnJ 

p+q >~O 

= [exp(Lf)g, exp(Lf)h]. [] 

From the Theorem 1 and Eq. (2), the set G = {exp(Lx), x EL+(X)} is a group that we 
will call the Lie transformations group. 
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3.2. Factored product transform 

For 9 EL+(x) ,  let us define 

Mg . . . .  exp(gn)- ' '  exp(gl ). 

Using the preceding lemmas we deduce (see [12]): 

Proposition 4 (Factored product expansion). For k E L(X)  +, there is a unique 
g EL(X) + such that 

exp ( ~ k n )  . . . .  exp(g,) . . . exp(gl ) = Mg. 
\n>~l / 

Proof. The above proposition is proved by induction, constructing # E L(X) and k (p) E 
1-[~>p£n(X) such that, for each p~>l, 

e x p ( k )  = exp (k  (p)) exp(gp)  • • • exp(g!  ). []  

Remark. This fact is also a variant of the Zassenhaus formula (see [9]). 

3.3. The transformation T 

We also define the transformation T: ~](X) + --* 1 + i ( X )  + by 

n P 
(rx)o=l, (rX)n= nXp(rX)._p, n> l. 

p=l 

We therefore deduce that D(Tx)=DxTx.  Conversely, the series y in 1 + i f ( X )  + given 
by 

y o = l ,  yn= ~ P x p Y n - - p ,  n>~l, 
p = l  

is the unique solution of Dy = (Dx)y. From (Tx)- iTx = 1, we deduce that 

O ( ( V x )  -1  Zx ) = ( / ) ( T x )  -1  ) Tx q- ( Vx ) -  l j~)x Tx = O, 

that is to say D(Tx) -z = - (Tx)-lDx. We thus have 

( (Tx)- l )0= 1, ( ( r x ) - ' ) n = - ~ P ( ( r x ) - ' ) n _ p X p ,  n>~l. 
p=l 

/ $  

Remark. If  [x, Dx] = 0, then Tx = exp(x). The Lie transform appears as a generalized 
exponential. 
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3.4. Relations between transformations 

Proposit ion 5. Let  O E [ ( X )  +, there is a unique series w E L ( X )  + such that 

Tw = Mg. 

Proof.  Let x = x .  E [ n ( X ) ,  we have 

1 ~ l = nXn exp(xn) = n exp(xn) x~. /) exp(xn ) = Z p.1DxP -= ~ p-~. pnxPn 
p>~O p>~O 

We have, therefore, 

Z)( Mg ) = 
n>~l 

=Z 
n~>l 

=Z 
n~>l 

Let Dw = }-~n~>l n[.. .  exp(Lo°+~ )]gn, that is to say 

W n ~--- 
n 

["" exp(gn+l )] [~)[exp(gn)]][exp(gn-1)"" exp(gl )] 

[.. .  exp(g,+l )] [ng, exp(g,)] [exp(gn- l )""  exp(gl )] 

[ " .  exp(g,+l )] [ng,] [exp(-g,+l ) - . . ]  (Mg) 

we have 

D(Mg)  = ( b w ) ( M g ) ,  

We thus deduce that M9 = Tw. [] 

L~;:~..  L m`+' , - " gk+l 

mk+l ! "'" ran-k! gk, (3) 

D ( T w ) = ( b w ) ( T w ) .  

Eq. (3) shows that W n EL(gl  . . . . .  g.)  and furthermore that w ~ -  gn EL(g1 . . . . .  g n - - 1 ) .  

These relations may be easily inverted and, combining Propositions 5 and 4, we deduce 
the following. 

Proposit ion 6. Given w, k, g E L ( X )  +, there exist  

- -  k '  E L ( X )  + with U n - wn EL(w1 . . . .  wn-1) such that exp(k') = Tw, 
- -  g' E L ( X )  + with gin - kn CL(kl  . . . .  k . - l )  such that Mg'  : exp (k ) ,  
- -  w' E L ( X )  + with w ~ . -  gn C L ( g l  . . . .  g n - l )  such that T w ' = M g .  

k=I  (k+ 1 )mk+l + " "  
+(n--k )mn_k =n--k 
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4. Lie transformations 

We call Lie transformation a Lie automorphism close to the identity, that is to say, 
which satisfies for each a E X, 

r a - a E  ]1 Ln(X).  
n>llall 

Using preceding lemmas and Proposition 6, we deduce that for x EL(X)  +, 

exp(Lx) : y ~ exp(x)y exp ( -x ) ,  

rx : y ~ (Tx)y (Tx)  -1, 

Mx : y ~-~ (Mx)y (Mx)  -1 

are Lie transformations. We will show now that these three transformations are three 
different ways to represent the same transformation. 

4.1. The Lie transform 

Given w E L(X) +, f c L(X), we define T w f  = ( T w ) f ( T w )  -1 . We thus have 

D ( T w f )  = ( [ ? w ) ( T w ) f ( T w )  -1 + (Tw)(D f ) ( T w )  -1 - ( T w ) f ( r w ) - l D w  

= [bw, (Yw)f (Tw)  -~] + (Tw)(b f ) (Tw)  -1 

= LbwTwf  + Tw(Df ) .  

Let F = Twf  = En,  m>>.oEn, m, where 

Fn, m=(Twfm)n+m = E ( T w ) p f m ( ( T w ) - l ) q E L n + m ( X )  • 
p+q=n 

Using Eq. (4), we get 

f)Fn,m = (n + m)Fn, m 

SO 

= ~ pLwpEn-p,m + mEn, m, 
p=l 

p=l 

Using this algorithm, we show tha t  Fr=En+m=rFn, m may be calculated in O(r 2) 
Lie-brackets evaluations, by an iterative way. 

(4) 



250 P.-V. Koseleff/Discrete Mathematics 180 (1998) 243-254 

4.2. Composition 

Let w 1 , w  2 EL(X)  + and T = Tw, Tw2. From (4) we deduce that 

D ( T f )  = Lbw ~ T f  + Tw, D(Tw, f )  

= (Zt~wl + Tw, Lbw2T~,l)Tf + T ( D f )  

= LDwl+rw, bw2Tf + T(bf ) .  

We thus deduce that Twl Tw2 = Tw, where 

[)W = [)Wl -P Tw,[)w2. (5) 

Composition of two Lie transformations appears clearly as a Lie transformation. Fur- 
thermore, the product may be expressed as Lie transformations by an iteration algorithm, 
in a polynomial time of  Lie-brackets evaluations. Using Lie operators or Lie-series ex- 
ponentials, we should have computed the so-called Hausdorff product of  Wl and w2. 

4.3. The Dragt-Finn transform 

The Dragt-Finn transform Mg is the infinite product of  exponential maps (see [4]). 
Given g = )--]~n >. 1 g,, we define Mo and Mo-- 1 as 

Mg . . . .  exp(Lg, ) . . .  exp(Lg 1 ), M0 --1 = exp(-Lg~ ) . . .  exp(-Lg, ) . . . .  

4.4. Relations 

The three above transformations are totally defined by generating series which satisfy 
the following: 

Proposition 7. Given w, k, g E L(X)  +, the series defined in Proposition 6 satisfy 

exp(Lk, ) = Tw, Tw, =Mg, Mg, = exp(Lk). 

Remark. We deduce in passing that the Lie transform is a Lie-series automorphism 
close to identity and that any Lie transformation T E G may be expressed as an expo- 
nential of a Lie operator or as an infinite product of single exponentials or as a proper 
Lie transform. The use of a representation depends deeply on the result we look for. 
For example, if we have to compose transformations, it is much easier to consider Lie 
transforms because their product is a Lie transform whose generating function appears 
easily from (5). 

We will not explain in this paper how to compute explicitly the relations between 
these transformations, but that can be made, using the Lyndon basis and does not 
require to go through the associative algebra (see [6]). 

Proposition 7 may be turned into: 
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Proposition 8. Given w, 9,k E L(X) +, such that 

exp(Lk) = Tw = M  0, 

then for each n E ~, we have 

w. - k. E £n-~(X) ,  w. - On E £ n - l ( X ) ,  

and 

L(W1 . . . . .  Wn ) = L(kl . . . .  , kn ) : L(Ol . . . . .  On ). 

On --  kn ELn- I (X) ,  

251 

5. Free Lie-algebras isomorphisms 

Let us first remind the elimination theorem of Lazard [1]. 

Theorem 9. Let S Q X and 

T : { ( s 1  . . . . .  Sn,X), n >~O, sl . . . . .  sn E S, x E X  - S}. 

- -  L (X)  is the direct sum of  L(X - S) and of  the ideal 5 a generated by S. 
- -  L( T) and 5~ are isomorphic through (Sl . . . . .  Sn,X)~--~Ls,'" "Ls, x. 

By considering X = {a, b} and S = {a}, we get the following isomorphism 

L({a, b}) --- L({a}) @ L({Lnb, n >t 0}) = K .a • L({L]b, n >10}). (6) 

By posing X =  {Lka b, k>~0} and S = {L~b, k>~p}, we deduce that 

L({a,b} ) = K . a G  L({L~b, k>~O}) 

=X.aeL({L~b, O<~k<~p- 1 } ) e  (L~ab, k~>p) .  

We, therefore, conclude that 

L( {a, b} )/(LPab) = L({a, b} )/(Lkab, k >>. p)  

=K.a®L({Lka b, O<.k<~p- 1}). 

That proves that the algebra generated by {a, b, LPab = 0} is isomorphic to the weighted 
free Lie algebra L({Lka b, O<<.k<<.p- 1}) and the line generated by a. 

We will show now that these isomorphisms are isomorphisms between homogeneous 
submodules. 

5.1. Dimension of the homogeneous components 

Let us first remind some well-known identities. Given an indexed alphabet X, we 
consider the dimension l(a) of L~(X). Using the following identity between formal 
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series (see [1]), which results from the Poincar6-Birkhoff-Witt 's  theorem 

1 - ~ Tx = I-I (1 - T~)  t(~), (7)  
xEX ~ E ~ ( x ) - { 0 }  

we deduce that 

1 ~ ' # ( d )  ( l~/d[)!  I~l! 
/ ( ~ ) =  ] ~  d ~  ~ or ~/~1, [/~j l ( f l )=  7 "  

Let us take now the gradation by the length and calculate In = ~l~f=n l(~), the dimen- 
sion o f  L , (X) .  As [1], let us substitute in (7) the same unknown U to Tx, we get for 
a finite alphabet of  cardinality q: 

1 - q U =  [I (1 - UJ~f) t ( ' )=  1-[ (1 - u r )  lr (8) 
~El~x--{O} r > 0  

that is to say, the Witt 's formula [1]: ~-'~aln dla =qn. 
Let X = ~Jp~>~ Xp be a weighted alphabet where each letter of  Xp has a weight p. Let 

In = ~ll~[l=, l(~) be the dimension of  Ln(X). I f ) ( / h a s  a cardinality qi, let us substitute 
in (7) U' to Tx for x EX/. We thus obtain 

1 - E qi Ui= [I  I t  (1 - UIf~lr) l(~) = [ I  (1 - U') ['. 
i~>1 r>0 II~l[=r r>o 

In the particular case where qi = P for each i E ~,  we thus deduce 

f l ( l _ U r ) [  " = l _ p Z U i  _ 1 - ( p  + 1 ) U 1  - U (9) 
r > 0  i > 0  

From identities (8) and (9), we then obtain 

Isomorphism 1. Let X = {xl,. . . ,Xq} and Y =  ~Ji>.l Yi, where Card Y / = q -  1. We have 

d imLl (X)=q ,  d i m L l ( Y ) = q -  1, dimLn(X)= dimLn(Y), n~>2, 

that can be also expressed as 

d dimLd(X) = qn ,  
din 

~ d d i m L d ( Y ) = q  n -- 1. 
afn 

In the particular case where q = 2, we recover the isomorphism defined in Theorem 9, 
by posing Y = {LPab, p >>. 0}. 

5.2. The Hausdorffseries 

Let us suppose now that X = { a , b }  and ]laH = [[b[[ = 1. Let H(a,b) the Hausdorff 
series of  a, b defined in Theorem 1. We have 

exp(H(a ,  b)) --- exp(a)  exp(b). 
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From the definition in Section 3.3 and the remark in the proof of Proposition 5, we have 
Ta = exp(a) and Tb= exp(b). Let G(a,b) be the solution of TG(a ,b)= exp(a) exp(b), 

we get using relation (5) 

DG(a, b) = DG(a, b) = Da + TaDb = Da + exp(La)Db, 

that is to say 

1 .Lnab. 
G ( a , b ) = a + b +  Z ( n + l )  ! 

n>~l 

We can now prove the following result: 

Isomorphism 2. Let X = { a, b} and H ( a, b) = ~ n  >>. l Hn. The subalgebra L( { Hn, n >t 0}) 
is isomorphic to the free Lie algebra L({L~ba, n~>0}). 

Proof. Using Proposition 8, we know that for d/> 1, 

La({Gn(a,b), n>~ 1}) =La({Hn(a,b),  n>~ 1}). 

But Gn(a,b)= 1Ln-lb and from Isomorphism 1, we know that the subalgebra ~. a ' 

L({Lnb, n~>0}) is free and that 

La({Lnb, n>~O})=La({a,b}), d>~2. 

We thus deduce that the subalgebra generated by the homogeneous terms of the 
Hausdorff series is free and therefore isomorphic to the free Lie algebra L({a,b})  

without a line. [] 

Remark. Since Sirsov and Witt (see [11, Theorem 2.5]), it is known that Ld({Hn(a, b), 
n~> 1}) is free. Here we proved that {Hn(a,b)} freely generate L({Lnb, n>~0}). 

6. Conclusions 

We have shown in this in paper how to express any transformation that belongs to 
the subgroup of Lie transformations in three different ways. In Hamiltonian mechan- 
ics this subgroup is exactly the group of Lie-series automorphisms close to identity. 
These methods have many applications like the search of the so-called symplectic in- 
tegrators that are numerical methods to integrate dynamical systems [7,13]. Using this 
formalism, one can also compute formal first integral for perturbed hamiltonian sys- 
tems [3,6,12]. Regards to the computational cost, these methods have the advantage 
that all the series we manipulate are formal Lie series. It avoids calculations in the 
associative algebra [14] and the use of the Poincar6-Birkhoff-Witt basis [10]. 
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