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Abstract

We will completely characterize the commutative local rings for which Mn(R) is strongly clean, in terms of factorization in
R[t]. We also obtain similar elementwise results which show additionally that for any monic polynomial f ∈ R[t], the strong
cleanness of the companion matrix of f is equivalent to the strong cleanness of all matrices with characteristic polynomial f .
c© 2007 Elsevier B.V. All rights reserved.

MSC: 16S50

1. Introduction

An element of a ring is called clean if it can be written as the sum of a unit and an idempotent. A ring is clean if
each of its elements is clean. This notion was introduced by Nicholson in [20] as a sufficient condition for a ring to
have the exchange property. Camillo and Yu further proved in [6] that for rings

semiperfect ⇒ clean ⇒ exchange

with none of the implications reversible.
The authors of [5] define a clean module as one with a clean endomorphism ring. Prior to this, in [13], Han and

Nicholson proved that if e ∈ R is idempotent, then R is a clean ring provided eRe and (1−e)R(1−e) are clean rings;
a consequence of this is that if M1 and M2 are clean modules then M1 ⊕ M2 is clean.

In [21], Nicholson also defined the notion of strong cleanness. An element of a ring is strongly clean if it is
the sum of a unit and an idempotent which commute. A ring is strongly clean if each of its elements is strongly
clean, and a module is strongly clean if its endomorphism ring is strongly clean. Local rings are strongly clean, and
conversely, it follows from Nicholson’s characterization of exchange rings in [20] and basic properties of local rings
(e.g. [17, Section 19]) that an exchange ring with only the trivial idempotents must be local. This motivates our study
of local rings; they are precisely the clean rings with only trivial idempotents, and, as such, provide a natural starting
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point for our investigation. Nicholson proved that strongly π -regular rings are strongly clean. (A ring R is strongly
π -regular if all chains of the forms a R ⊇ a2 R ⊇ · · · and Ra ⊇ Ra2

⊇ · · · terminate.) Basic results on abelian regular
rings (see [12, Chapter 3]) and strongly π -regular rings (see [11] or [18, Exercise 23.5]) yield that abelian regular
rings and right (or left) perfect rings are strongly clean. In particular right (or left) artinian rings are strongly clean.

Nicholson provides the following useful characterization of strongly clean endomorphisms.

Lemma 1 ([21]). Let MR be a right module and f ∈ End(MR). The following are equivalent:

(1) f is strongly clean.
(2) There exist f -invariant submodules A, B such that

M = A ⊕ B, f : A
∼

−→ A, and 1 − f : B
∼

−→ B.

We will use this lemma frequently, and we shall refer to a pair (A, B) as in the lemma as an (A, B)-decomposition.
Although we will not need it for our purposes, there is an equally useful analogue of Lemma 1 for clean

endomorphisms which can be found in [5].
In general, for a given n > 1, one may wish to characterize rings R for which Mn(R) is strongly clean. For

example, it is easy to see that if R is left (or right) artinian, or if R is locally finite (see [14]; locally finite is Morita
invariant, and is stronger than strongly π -regular), then Mn(R) is strongly clean for all n.

On the other hand, in [25, Example 1], Wang and Chen prove that M2(Z(2)) is not strongly clean by an ad hoc
calculation involving a characterization of the idempotents in the ring M2(Z(2)).

The main goal of this paper is to characterize the commutative local rings R for which Mn(R) is strongly clean;
to do so, we shall study factorization in R[t]. Indeed, restricting to R commutative local, it is already nontrivial to
characterize when Mn(R) is strongly clean. Our results will place the example from [25] that M2(Z(2)) is not strongly
clean in a broader context, and will, in particular, provide a conceptual proof of this result. Furthermore, our results
will provide a large class of examples of semiperfect rings which are not strongly clean, giving further negative
answers to [21, Question 5] (the first having been given in [25]).

During the time our results were being readied for publication, other papers have appeared which independently
address certain special cases of the problem at hand: the characterization of when Mn(R), or an element thereof, is
strongly clean. In parallel to our work, in [10], Chen, Yang and Zhou characterized the commutative local rings R
for which M2(R) is strongly clean, and in [19], Li completed the methods of [10] to characterize when an element
A ∈ M2(R) is strongly clean. Most of the results of [10,19] are special cases of Theorem 12 and Corollary 15.
Proposition 30, as well as many of the results of Section 5, demonstrate how our methods obtain the results for the
case n = 2 which also appear in [10,19]. Proposition 30 and Section 5 also help to place the n = 2 case in context,
displaying some of the properties which are present in the n = 2 case, but which do not prevail for general n.

Following an earlier preprint of the present paper, Yang and Zhou have investigated, in [26], the class of n-SRC
rings defined in Definition 5. Theorem 25 provides a natural result which encompasses many of the examples of [26].

2. Preliminaries and factorization in R[t]

Throughout the remainder of this paper, (R, J ) will denote a commutative local ring R with maximal ideal J ,
and π : R −→ R/J will denote the natural quotient ring homomorphism from R onto the field R/J . We will write
π(r) = r and will have occasion to denote R = R/J . The symbol π and bar-notation will denote the induced ring
homomorphisms R[t] −→ R[t] and Mn(R) −→ Mn(R).

If ϕ ∈ Mn(R), χ(ϕ) = det(t I − ϕ) ∈ R[t] will denote the characteristic polynomial of ϕ, which is a monic
polynomial of degree n. If h ∈ R[t] is a monic polynomial of degree n, Ch ∈ Mn(R) will denote the companion
matrix of h (as defined, e.g. [15, p. 358]). It is an easy exercise to show that χ(Ch) = h, and that, over a field, the
minimal polynomial of Ch is h. Finally, for any basis of Rn

R we will make the usual identification Mn(R) ∼= EndR(Rn).
Recall that the characteristic polynomial of an endomorphism is independent of the choice of basis.

A basic result about local rings we shall need is:

Proposition 2 (See, for Example, [17, Theorem 19.29], [16, Example 1.6(b)]). If (R, J ) is a local ring (not
necessarily commutative), then, any finitely generated projective right R-module P is free of unique rank. In
particular, if Rn ∼= A⊕ B (as right R-modules), then A and B are free right R-modules, and rank(A)+ rank(B) = n.
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We shall use this fact freely without further mention. Also we shall use the fact that if R is commutative,
ϕ ∈ End(Rn) and Rn

= A ⊕ B as R-free R[ϕ]-modules, then χ(ϕ) = χ(ϕ|A)χ(ϕ|B).

Definition 3. For r ∈ R, define

Sr = { f ∈ R[t] : f monic, f (r) ∈ U(R)}.

Recall that U(R) = R \ J when R is local. Also, note that if f is monic, f ∈ Sr if and only if f (r) 6= 0.

Lemma 4. For r ∈ R and ϕ ∈ Mn(R), ψ = r I − ϕ is invertible if and only if χ(ψ) ∈ Sr . In particular,
(1) ϕ is invertible if and only if χ(ϕ) ∈ S0, and
(2) 1 − ϕ is invertible if and only if χ(ϕ) ∈ S1.

Proof. From standard facts concerning linear algebra over commutative rings, r I − ϕ is invertible if and only if
det(r I − ϕ) is a unit in R. But det(r I − ϕ) = χ(ϕ)(r) (by definition of χ(ϕ)), and χ(ϕ)(r) is a unit in R if and only
if χ(ϕ) ∈ Sr . For the last two statements take r = 0 and r = 1, respectively. �

Definition 5. Let x0, . . . , xk ∈ R. A factorization

h = gx0 gx1 . . . gxk

in R[t] of a monic polynomial h is said to be an SR factorization relative to (x0, . . . , xk) if gxi ∈
⋂

j 6=i Sx j . If, in
addition, {gx0 , . . . , gxk } are pairwise coprime in (the PID) R[t], the factorization will be said to be an SRC factorization
relative to (x0, . . . , xk). An SR (resp. SRC) factorization will refer to the special case of an SR (resp. SRC)
factorization relative to (1, 0), but with the subscripts modified as follows. For ease of notation, if h(t) = f1(t) f0(t)
is an SR (resp. SRC) factorization relative to (1, 0), we shall write g0 = f1 and g1 = f0. Explicitly, a factorization
h(t) = g0(t)g1(t) is an SR factorization if g0 ∈ S0 and g1 ∈ S1; if, in addition, g0 and g1 are coprime in R[t], then
h(t) = g0(t)g1(t) is an SRC factorization. We shall say that a ring R is an n-SRC ring (resp. n-SR ring) if every
monic polynomial of degree n has an SRC factorization (resp. SR factorization).

An SR factorization of h is precisely a lift to R[x] of a factorization h = F0 F1 in R[t], F0(0) 6= 0 and F1(1) 6= 0.
Therefore, if h = g0g1 is an SR factorization and h(t) = tr (t − 1)s F(t), where F(0) and F(1) are nonzero, then
g0(t) = (t −1)s G0(t) and g1(t) = tr G1(t) for some G0,G1 ∈ R[t], where G0 and G1 are relatively prime to t (t −1).
This motivates our choice of the abbreviations SR (separates roots) and SRC (separates roots coprimely).

Recall that if R is a ring and a, b ∈ R, we say that (a, b) is right unimodular if a R + bR = R.

Remark 6. Since R[t] is a PID, f , g ∈ R[t] are coprime (have no nonunit common divisors) if and only if ( f , g) is
(right) unimodular in R[t] (e.g. by [15, Theorem 3.11(b)]).

In fact, for a commutative ring R, for f, g ∈ R[t], with f monic, ( f, g) are unimodular in R[t] if and only if ( f , g)
is unimodular in (R/J )[t]. This follows easily from Nakayama’s Lemma, as follows. Since f is monic, say of degree
n, R[t]/( f ) is free of rank n, so the further quotient R[t]/( f, g) is finitely generated. Since ( f , g) is unimodular in
(R/J )[t], we see that ( f, g)+ J (R)· R[t] = R[t], and hence ( f, g) = R[t] by Nakayama’s Lemma (e.g. [17, Theorem
4.22]), so ( f, g) is unimodular. The reverse implication is obvious.

The following is an expected observation.

Lemma 7. Suppose m ≥ 1. If R is an m-SRC ring (resp. m-SR ring), then R is an n-SRC ring (resp. m-SR ring) for
all 1 ≤ n ≤ m.

Proof. It suffices to show this result when n = m − 1 ≥ 1. Let h ∈ R[t] be a monic polynomial of degree n. We
may assume that h 6∈ S0 ∪ S1; otherwise, h trivially has an SRC factorization. Now, t · h(t) is a monic polynomial
of degree n + 1, and hence, since R is an (n + 1)-SRC ring, t · h(t) = g0(t)g1(t) for some gi ∈ Si such that g0 and
g1 are coprime in R[t]. Now, g0(0)g1(0) = 0, and g0(0) ∈ R \ J = U(R) since g0 ∈ S0, so g1(0) = 0. Therefore,
g1(t) = t f1(t), for some f1(t) ∈ R[t]. We can easily see that f1 ∈ S1, since f1(1) = g1(1) 6∈ J . Also, it is obvious
that f1 and g0 are coprime, since f1 is a divisor of g1, and g0 and g1 are coprime. Now, t (h(t)− g0(t) f1(t)) = 0, but
t is a nonzerodivisor in R[t], so we conclude that h = g0 f1, and hence that h has an SRC factorization. The proof for
SR rings is similar, omitting all references to coprimeness. �
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In the next section, we will show how SRC factorizations are related to strong cleanness of matrices over
commutative local rings. In later sections we will examine the SRC property further (in particular, providing examples
and non-examples of SRC rings in Section 4).

3. SRC factorization and strong cleanness in Mn(R)

In this section, we develop the relationship between SR and SRC factorizations in R[t] and the strong cleanness of
elements in Mn(R).

Lemma 8. If h = h0h1 ∈ R[t] is an SR factorization, then the matrix Ch0 ⊕ Ch1 =

[
Ch0 0

0 Ch1

]
is a strongly clean

matrix that has characteristic polynomial h.

Proof. By Lemma 4, Ch0 and 1−Ch1 are invertible matrices. Thus, the matrix E =

[
0deg(h0) 0

0 1deg(h1)

]
is an idempotent

with respect to which Ch0 ⊕ Ch1 is strongly clean. �

On the other hand, the following lemma shows that the characteristic polynomial of any strongly clean matrix has
an SR factorization.

Lemma 9. If ϕ ∈ Mn(R) is strongly clean, then χ(ϕ) has an SR factorization.

Proof. By Lemma 1, there exist ϕ-invariant R-submodules A and B such that Rn
= A ⊕ B and such that ϕ|A and

(1 − ϕ)|B are both isomorphisms. Therefore, by Lemma 4, χ(ϕ) = χ(ϕ|A)χ(ϕ|B) is an SR factorization. �

In Lemma 9, one cannot replace the SR factorization with an SRC factorization, as the following example shows:

Example 10. Let R = Z(p), with p ≡ 3(mod 4), and consider the polynomial

h = h0h1 = [(t − 1)(t2
+ 1)+ p2

] · [t (t2
+ 1)+ p2

].

The given factorization is an SR factorization which is not an SRC factorization. Observe that h = t (t − 1)(t2
+ 1)2,

and that this is the factorization of h into irreducibles in R[t] ∼= (Z/pZ)[t], because −1 is not a square in Z/pZ. One
can show that h has no roots in Q, much less in R (e.g. by the rational root test). This precludes the existence of any
other SR factorization of h; in particular, h has no SRC factorization. However, by Lemma 8, the matrix

X = Ch0 ⊕ Ch1 ∈ M6(R)

is strongly clean, yet there is no SRC factorization for χ(X). In Theorem 12, we shall see that there exist matrices
with characteristic polynomial h (in particular, the companion matrix of h) which are not strongly clean in M6(R).

First, we need a lemma.

Lemma 11. Let R be a ring, and MR a right R-module. Suppose that g, h ∈ End(MR) with hg = gh = 0, and that
there exist s, t ∈ End(MR) such that sg + th = I d MR , where sh = hs and tg = gt. Then, M = ker(g)⊕ ker(h) (as
right R-modules).

Proof. If x ∈ ker(g) ∩ ker(h), x = s(g(x)) + t (h(x)) = 0 + 0 = 0, so ker(g) ∩ ker(h) = 0. On the other
hand, for x ∈ M , we have x = s(g(x)) + t (h(x)). Note that h(s(g(x))) = s(h(g(x))) = s((hg)(x)) = 0 and
g(t (h(x))) = t (gh(x)) = 0, and hence MR = ker(g)+ ker(h). We conclude that MR = ker(g)⊕ ker(h). �

Theorem 12. Suppose (R, J ) is commutative local, n ≥ 2, and h ∈ R[t] is a monic polynomial of degree n. Then,
the following are equivalent:

(1) For any ϕ ∈ Mn(R) with χ(ϕ) = h, ϕ is strongly clean.
(2) The companion matrix Ch of h is strongly clean in Mn(R).
(3) There exists an SRC factorization of h in R[t].
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Proof. (1) H⇒ (2): This implication is clear, since χ(Ch) = h.
(2) H⇒ (3): By assumption, Ch is strongly clean, so, Lemma 1 guarantees the existence of a decomposition

Rn
= A ⊕ B into Ch-invariant R-submodules, such that Ch |A is invertible on A, and (1 − Ch)|B is invertible on

B. By the discussion following Proposition 2 the characteristic polynomial h of Ch factors as h = g0g1, where g0
is the characteristic polynomial of Ch |A and g1 is the characteristic polynomial of Ch |B . But now, g0 ∈ S0 and
g1 ∈ S1 by Lemma 4. We claim that g0 and g1 are coprime in the principal ideal domain R[t]. Suppose, to obtain
a contradiction, that F ∈ R[t] is a common factor of positive degree of g0 and g1. Since R is a field, the minimal
polynomial of Ch = Ch is h, which has degree n. The minimal polynomial of Ch must also be the least common
multiple of the minimal polynomials of Ch |A and Ch |B , which must divide the least common multiple of g0 and g1
(since the minimal polynomials divide the characteristic polynomials). But the least common multiple of g0 and g1
will be a divisor of g0g1/F , which has degree less than n, which is a contradiction.

(3) H⇒ (1): Suppose that ϕ ∈ Mn(R) with χ(ϕ) = h. By assumption, h = g0g1 for some gi ∈ Si , with
g0, g1 coprime in R[t]. Hence, since R[t] is a PID, there exist a0, a1 ∈ R[t] such that a0g0 + a1g1 = 1. Then,
(a0g0 + a1g1)(ϕ) = (1 + α)(ϕ), for some α ∈ J [t]. But now, the right hand side is a matrix whose determinant is in
1 + J , and is hence a unit. In fact, by the Cayley–Hamilton Theorem, the inverse of (1 + α)(ϕ) can be expressed
as a polynomial (1 + f )(ϕ) for some f ∈ J [t]. Therefore, defining matrices fi (ϕ) = ai (1 + f )(ϕ) we have
f0(ϕ)g0(ϕ) + f1(ϕ)g1(ϕ) = I dRn . Note that g0(ϕ)g1(ϕ) = g1(ϕ)g0(ϕ) = h(ϕ) = 0, by the Cayley–Hamilton
Theorem. Also, observe that f0(ϕ), g0(ϕ), f1(ϕ), and g1(ϕ) each belong to R[ϕ], which is a commutative subring
of End(MR). Therefore, by Lemma 11, Rn

= ker(g0(ϕ)) ⊕ ker(g1(ϕ)). Set A = ker(g0(ϕ)) and B = ker(g1(ϕ)).
Clearly both A and B are ϕ-invariant, since ϕ commutes with g0(ϕ) and g1(ϕ).

We claim that ϕ is an isomorphism on A, and 1 − ϕ is an isomorphism on B. Set ψ = ϕ|A. We know that
g0(ψ) = 0, by definition of A. The constant term of g0 is a unit, since g0 ∈ S0 and hence ψ must be invertible with
inverse −g0(0)−1(ψm−1

+ cm−1ψ
m−2

+ · · · + c1 I ), where g0 = tm
+ cm−1tm−1

+ · · · + c1t + c0. Similarly, we see
that (1 − ϕ)|B is invertible on B. Therefore, by Lemma 1, ϕ is strongly clean. �

In particular, we see from Theorem 12 and Example 10 that there cannot exist a characterization of strong cleanness
of a matrix involving only factorization properties of the characteristic polynomial. This is in contrast with the n = 2
case (e.g., see [19]).

Remark 13. Focusing on the set of matrices which have a fixed characteristic polynomial h, Theorem 12 shows that
if the companion matrix Ch is strongly clean, then each of the other matrices in the set is strongly clean. This is
reasonable to expect, however, for the following reasons. Note that ϕ = Ch = Ch has minimal and characteristic
polynomial h. We know that R

n
= ⊕ f K f , where each K f = ∪i≥0 ker( f i (ϕ)) is the generalized eigenspace of

ϕ corresponding to an irreducible factor f of h (cf. rational canonical form). For ϕ = Ch , we claim that each
K f is indecomposable as an R[ϕ]-module (more generally, this conclusion holds whenever the matrix has minimal
polynomial equal to its characteristic polynomial). To see this, suppose that K f = A⊕B is a decomposition of K f into
nonzero R[ϕ]-modules. Then, the minimal polynomials of ϕ|A and ϕ|B are each powers of f (since f n(ϕ) = 0, f is
irreducible, and the minimal polynomials must each divide f n), say f n1 and f n2 , respectively. Therefore, the minimal
polynomial of ϕ|K f is f max(n1,n2). Thus, the minimal polynomial of ϕ has degree no more than n − min(n1, n2),
and hence, the minimal and characteristic polynomials of ϕ cannot be equal, which is a contradiction. Thus, K f is
indecomposable as an R[ϕ]-module.

On the other hand, suppose that Rn
= A ⊕ B, as R[Ch]-modules, as in Lemma 1. Then, A ⊕ B = R

n
, and

intersecting this with the generalized eigenspaces, we find that each generalized eigenspace must belong entirely to
A or B (note that when dealing with a strongly clean matrix whose minimal and characteristic polynomials are not
equal, only Kt ⊆ B and Kt−1 ⊆ A are forced). In fact, A and B are direct sums of generalized eigenspaces. This
substantially restricts the possible SR factorizations corresponding to an (A, B)-decomposition as in Lemma 1. In fact,
every (A, B)-decomposition that witnesses the strong cleanness of Ch corresponds to an SRC factorization, whereas,
in general, an (A, B)-decomposition merely corresponds, by (the proof of) Lemma 9, to an SR factorization.

Suppose ϕ ∈ End(MR) and f is an irreducible factor of χ(ϕ) which is not t nor t −1. If the generalized eigenspace
K f is decomposable as an R[ϕ]-module, there is far greater flexibility in finding an (A, B)-decomposition.

Before stating the corollary characterizing the commutative local rings for which Mn(R) is strongly clean, let us
further characterize n-SRC rings.
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Proposition 14. For R commutative local, the following are equivalent:
(1) R is an n-SRC ring (resp. n-SR ring).
(2) For every x0, x1 ∈ R with x0 − x1 ∈ U(R), every monic polynomial h ∈ R[t] of degree n has an SRC

factorization (resp. SR factorization) relative to (x0, x1).
(3) For every x0, . . . , xk ∈ R, with xi − x j ∈ U(R) whenever i 6= j , every monic polynomial h ∈ R[t] of degree n

has an SRC factorization (resp. SR factorization) relative to (x0, x1, . . . , xk).

Proof. We will only prove the statements involving SRC rings and SRC factorizations. Ignoring any reference to
coprimeness we will prove the analogous statements for SR rings and SR factorizations.

(1) H⇒ (2): We will perform a linear change of variables. Suppose that h ∈ R[t] is a monic polynomial of degree
n. The polynomial

H(t) = (x1 − x0)
−nh((x1 − x0)t + x0)

is a monic polynomial in R[t], and, by hypothesis, there exists a factorization H = G0G1, with Gi ∈ Si . Set

gi (t) = (x1 − x0)
deg(gi )Gi ((x1 − x0)

−1t − (x1 − x0)
−1x0).

Then,

g0(t)g1(t) = (x1 − x0)
n H((x1 − x0)

−1t − (x1 − x0)
−1x0) = h(t).

Observe that gi ∈ Sxi , since gi (xi ) = Gi (i) 6∈ J . Finally, note that g0 and g1 are obviously coprime, since
any common factor would give rise to a common factor (of the same degree) of G0 and G1, upon performing the
appropriate change of variables. Set fx0 = g1 and fx1 = g0. Therefore, h = fx0 fx1 is an SRC factorization relative to
(x0, x1).

(3) H⇒ (2) H⇒ (1): These implications are obvious specializations.
(2) H⇒ (3): We will prove this statement by induction on n. We may assume that h(xi ) = 0 for all i ; otherwise the

factor corresponding to xi can be chosen to be 1. For n = 1, condition (3) holds vacuously. Thus, supposing that n > 1
and that the implication (2) H⇒ (3) holds for j < n, let h ∈ R[t] be a monic polynomial of degree n. By (2), there
exists a factorization h = gx0 gx1 which is an SRC factorization relative to (x0, x1). Now, deg(gi ) < deg(h), since
h(xi ) = 0 for i ∈ {0, 1}. By Lemma 7, R is a deg(gi )-SRC ring, and hence, by our inductive hypothesis, g0 and g1
each have SRC factorizations relative to (x0, x1, . . . , xk), given by gx0 = sx0 sx1 · · · sxk and g1 = rx0rx1 · · · rxk . Thus,
h = (sx0rx0)(sx1rx1) · · · (sxk rxk ) is an SR factorization relative to (x0, . . . , xk), since sxi rxi is obviously in

⋂
j 6=i Sx j

because each Sx j is closed under multiplication. It is easy to check that {sxi rxi }i is pairwise coprime, using the fact
that h = gx0 gx1 is an SRC factorization relative to (x0, x1) and that gx0 = sx0sx1 · · · sxk and gx1 = rx0rx1 · · · rxk are
each SRC factorizations relative to {x0, x1, . . . , xk}. Therefore, h = (s0r0) · · · (skrk) is an SRC factorization relative
to (x0, . . . , xk). �

Corollary 15. For a commutative local ring R and n ≥ 1, the following are equivalent:
(1) Mn(R) is strongly clean.
(2) Every companion matrix in Mn(R) is strongly clean.
(3) R is an n-SRC ring.
(4) For every x0, x1 ∈ R with x0 − x1 ∈ U(R), every monic polynomial h ∈ R[t] of degree n has an SRC factorization

relative to (x0, x1).
(5) For every x0, . . . , xk ∈ R, with xi − x j ∈ U(R) whenever i 6= j , every monic polynomial h ∈ R[t] of degree n

has an SRC factorization relative to (x0, x1, . . . , xk).

Proof. The equivalence of the first three statements follows immediately from Theorem 12. The equivalence of the
last three statements is as in Proposition 14. �

Remark 16. By Lemma 7 and Corollary 15, we can now see directly that (for R commutative local) if Mm(R)
is strongly clean and n ≤ m then Mn(R) is strongly clean. On the other hand, it is true in general that if S is a
strongly clean ring and e2

= e ∈ S, then eSe is a strongly clean ring (personal communication from T.Y. Lam;
independently, this was proved by Sánchez Campos, and also appears in [8, Theorem 2.4]). This observation together
with Corollary 15 yields an alternate proof of Lemma 7.

Another consequence of Proposition 14 is the following.
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Proposition 17. For n < 6, R is an n-SR ring if and only if R is an n-SRC ring.

Proof. Only the forward implication needs proof. Suppose n < 6 and that R is an n-SR ring. Let h(t) ∈ R[t] be a
monic polynomial of degree n. We may assume h(0), h(1) ∈ J , for otherwise, h has a trivial SRC factorization. Write
h(t) = H(t)

∏m
i=0(t − ri )

ki , where ri 6= r j if i 6= j , ki ≥ 1, and H ∈ R[t] has no roots in R. We may assume r0 = 0
and r1 = 1, since h(0) = h(1) = 0. By Proposition 14, there is an SR factorization h(t) = gr0 · · · grm relative to
(r0, . . . , rm). Set f0 = gr1 and f1 = gr0

∏m
j=2 gr j . Then, h = f0 f1 is an SR factorization, since gr1 ∈

⋂
j 6=i Sr j ⊆ S0,

and gr0

∏m
j=2 gr j ∈ S1. Suppose that f0 and f1 have a common factor. We know that f0 = F0(t)(t − 1)k1 and

f1 = F1(t)tk0
∏m

i=2(t − ri )
ki for some F0, F1 ∈ R[t] which have no roots in R. Therefore, if f0 and f1 have a

common factor D ∈ R[t] of positive degree, then D must be a common factor of F0 and F1. But F0 and F1 have no
roots in R, so deg(D) ≥ 2. Therefore, deg( f0) ≥ 3 and deg( f1) ≥ m +2 ≥ 3. Therefore, n = deg( f0)+deg( f1) ≥ 6,
which is a contradiction. �

Problem 18. For n ≥ 6, do there exist examples of commutative local rings which are n-SR rings but are not n-SRC
rings?

4. Examples of SRC rings

The notion of an S RC factorization is quite similar to the situation of Hensel’s Lemma.

Example 19. A Henselian local ring is a commutative local ring (R, J ) which satisfies Hensel’s Lemma, which
says that if f ∈ R[t] is monic and satisfies f = G H , with G, H ∈ R[t] monic and coprime, then f = gh
for some monic polynomials g, h ∈ R[t], with g = G and h = H . Requiring that Hensel’s Lemma be satisfied
for polynomials of degree ≤ n in R[t] implies that R is an n-SRC ring. Hensel’s Lemma can be used to lift the
factorization f = t i (t −1) j H(t), where H is coprime to t and to (t −1), to a factorization f = g0g1h (which is more
than is needed for an SRC factorization). Therefore, by Corollary 15, any Henselian local ring is an n-SRC ring for
all n. In particular, any local ring which is complete with respect to its maximal ideal is Henselian, and in particular,
must be an n-SRC ring for all n.

In fact, a much more general result is true for Henselian rings.

Theorem 20. Let R be a Henselian local ring. Then, any algebraic R-algebra is strongly clean (here, an associative
ring A is said to be an R-algebra if A is equipped with a unital ring homomorphism ϕ : R −→ A mapping into the
center of A; A is algebraic over R if each a ∈ A satisfies a monic polynomial with coefficients in ϕ(R)).

Proof. Let x ∈ A satisfy a monic polynomial of degree n, with coefficients in ϕ(R). The unital R-subalgebra
S generated by x in A is commutative and is finitely generated as an R-module (generated by 1, x, . . . , xn−1).
By [4, Exercise III.4.3], S is a direct product of local rings; it follows that S is strongly clean, and in particular
that x = e + u with eu = ue for some e2

= e ∈ S and u ∈ U(S). Certainly e is idempotent in A and u is a unit in
A since the identity element of S is the same as the identity element of A. We conclude that x is strongly clean as an
element of A. Therefore, A is strongly clean. �

Corollary 21. If R is a Henselian local ring, then any unital R-subalgebra of Mn(R) is strongly clean.

Proof. By the Cayley–Hamilton Theorem, any element of Mn(R) satisfies a monic polynomial with coefficients in
R. In particular, any unital R-subalgebra of Mn(R) is algebraic over R. �

Remark 22. Looking ahead to Section 7, any incidence ring over a finite preordered set with coefficients in a
Henselian ring R embeds as an R-subalgebra of a full matrix ring, and hence must be strongly clean.

A weaker result which can be seen several times means the following.

Corollary 23. If R is a commutative local artinian ring, then R is an n-SRC ring for all n.

Proof. For such rings and all n, Mn(R) is artinian, and hence Mn(R) is strongly clean for all n. Alternatively, R is
certainly complete with respect to its nilpotent maximal ideal, and hence R is Henselian. �
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To state the next theorem, it will be useful to have the following relative notion of the property that R is
Henselian.

Definition 24. Let R be a commutative local ring, let I be an ideal of R, let R = R/I and let bar-notation denote
the usual quotient map. We say that R is n-Henselian with respect to I if whenever f ∈ R[t] is monic of degree n
and satisfies f = G H , with G, H ∈ (R/I )[t] monic and unimodular, then f = gh for some monic polynomials
g, h ∈ R[t], with g = G, and h = H . We shall say that R is Henselian with respect to I if R is n-Henselian with
respect to I , for each n ∈ N.

In particular, one can show that if R is a local ring which is complete with respect to an ideal I ⊆ J(R), then R is
Henselian with respect to I (e.g. see [4, Section III.4.3, Theorem 1 (p. 215)]).

The following is then a natural generalization of the observation that Henselian local rings (in fact, the n-Henselian
local rings) are n-SRC rings.

Theorem 25. Let R be a commutative local ring, and let I ⊆ J(R) be an ideal, such that R is n-Henselian with
respect to I . Then, R is an n-SRC ring if and only if R/I is an n-SRC ring.

Proof. In the light of Corollary 15 (or directly from the definition), the forward implication is obvious, since, for
instance, Mn(R) strongly clean implies that its quotient Mn(R/I ) is strongly clean.

For the reverse implication, suppose that R/I is an n-SRC ring, and let f ∈ R[t] be a monic polynomial of degree
n. We will obtain a factorization of f in two steps: first we obtain an SRC factorization of the image of f in (R/I )[t]
using the fact that R/I is an n-SRC ring; next, we use the condition that R is Henselian with respect to I to lift that
factorization to R[t].

We have two quotient rings under consideration. The use of a subscript 1 will denote the image in (R/I )[t], and
the subscript 2 will denote the image in (R/J )[t].

By hypothesis R/I is a (local) n-SRC ring with maximal ideal J/I , so f1 ∈ (R/I )[t] has an SRC factorization
f1 = G H . That is, G and H are monic, their images are unimodular in (R/J )[t], and finally, G(0) and H(1) are
units of R/I . Since R is n-Henselian with respect to I , the factorization f1 = G H lifts to a factorization f = gh
in R[t], where g and h are monic polynomials for which g1 = G and h1 = H . We claim that f = gh is an SRC
factorization. Indeed, g2 = G2 and h2 = H2 are coprime in (R/J )[t], and also G(0) = g1(0) and H(1) = h1(1) are
units in R/I . Thus, the images of g(0) and h(1) in R/I are units. Since I ⊆ J(R), it follows that g(0) and h(1) are
units. We conclude that f = gh is an SRC factorization, as desired. �

Theorem 25 can be used to provide simpler, more conceptual proofs of some of the results of [26]. For instance,
[26, Theorem 2.6] is immediate because R[[x]] is complete with respect to the ideal (x), and R[[x]]/(x) ∼= R. In
addition, we can generalize [26, Theorem 2.9] as follows (which deals with the case when p = 2), and provide a
much simpler proof thereto.

Corollary 26. Let p be a prime number, G a finite abelian p-group, and let R be a commutative local ring for which
p = 0 in R. Then, RG is n-SRC if and only if R is n-SRC.

Proof. We claim that the augmentation ideal ∆(RG) is nilpotent, and hence that RG is complete with respect to
∆(RG). If g ∈ G, then (1 − g)|G|

= 1 − g|G|, since p = 0 in R, so (1 − g)|G|
= 0. Now, ∆(RG) is generated, as an

ideal, by the finite set {1 − g : g ∈ G}, all of whose elements are nilpotent. Since RG is commutative, we conclude
that ∆(RG) is nilpotent. It follows that RG is complete with respect to ∆(RG); in particular, RG is Henselian with
respect to ∆(RG). Since RG/∆(RG) ∼= R, we conclude from Theorem 25 that RG is n-SRC if and only if R is
n-SRC. �

We now turn our attention to an example. We thank Pace Nielsen for permitting us to include the following
construction of a 2-SRC ring which is not a 3-SRC ring.

Example 27 (P. Nielsen, Personal Communication). Let K be the quadratic closure of Q. Let S be the ring of integers
in K (i.e. S is the set of elements of K which satisfy monic polynomials over Z). Now, let p be a prime in Z. Then
p−1 is not an integral element, hence it does not lie in S. Let I be a prime ideal of S containing p (which exists since
p is not invertible in S). For ease, we will set p = 3.
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Define R to be the ring S localized at I . Notice that R naturally embeds in K . The polynomial f (x) = x2(x −1)+3
is irreducible over Q, and hence over K , since the degree of every finite extension of Q contained in K is a power of
2. Therefore, R is not a 3-SRC ring.

On the other hand, R is a 2-SRC ring. To see this, let f (x) = x2
− ax + b ∈ R[t] with f (0), f (1) ∈ J . Then, f

certainly has two roots in K , since K is the quadratically closed, and these roots are integral over R. But now, S is
integrally closed in K , since it is the integral closure of Z in K , and hence, R is integrally closed in K . Therefore, f
must factor into linear polynomials over R, and hence, by Corollary 15, we conclude that R is a 2-SRC ring.

Problem 28. For each n > 2, does there exist a commutative local ring R such that R is an n-SRC ring, but R is not
an (n + 1)-SRC ring? Equivalently, does there exist a commutative local ring R for which Mn(R) is strongly clean
but Mn+1(R) is not strongly clean?

Problem 29. If R is a commutative local ring which is an n-SRC ring for all n ∈ N, must R be a Henselian local ring?

The following Proposition will allow us to draw the conclusions of [25, Example 1] more simply, and to extend
their observations to odd primes. It will also provide a simpler description of 2-SRC rings. Many of the main results
in [19,10] are special cases of this proposition.

Proposition 30. Let (R, J ) be a commutative local ring. Then, the following are equivalent:

(1) M2(R) is strongly clean,
(2) R is a 2-SRC ring,
(3) The polynomial t2

− t + j ∈ R[t] has a root for every j ∈ J .

If char(R/J ) 6= 2 (equivalently, 2 ∈ U(R)), the above are equivalent to

(4) Every element of the multiplicative group 1 + J has a square root (in 1 + J ).
(5) Every element of 1 + J has a square root in R.

Proof. The first two statements are equivalent by Theorem 12.
(2) H⇒ (3): Assume R is a 2-SRC ring, and let h(t) = g0g1 be an SRC factorization of h(t) = t2

− t + j , where
j ∈ J . Since h(0) = h(1) = j ∈ J , whereas g0(0) and g1(1) are not in J , we conclude that deg(g0) = deg(g1) = 1,
and hence that g0(t) = t − a and g1(t) = t − b for some a, b ∈ R.
(3) H⇒ (2): Let h(t) ∈ R[t] be a monic polynomial of degree 2. We seek an SRC factorization for h. We may

assume that h 6∈ S0 ∪ S1, and hence h(0), h(1) ∈ J , since otherwise a trivial SRC factorization exists. Writing
h(t) = t2

− at + b, we have b = h(0) ∈ J , and 1 − a + b = h(1) ∈ J , so a is a unit in 1 + J . Consider
g(t) = a−2h(at) = t2

− t + a−2b. By assumption, since a−2b ∈ J , g(t) has a root, and hence there is a factorization
g(t) = (t − r)(t − s). Since rs ∈ J , r + s = 1, and J is maximal, we conclude that either r ∈ J or s ∈ J . Without
loss of generality, r ∈ J , s ∈ 1 + J , so ar ∈ J and as ∈ 1 + J . Therefore, h(t) = a2g(a−1t) = (t − ar)(t − as) is
an SRC factorization.

For the remainder of the proof, suppose that char(R/J ) 6= 2; equivalently, that 2 is a unit in R.
(3) H⇒ (4): Let j ∈ J , and consider the polynomial h(t) = t2

− t +
j
4 . By assumption, there exists r ∈ R such

that h(r) = 0. We see easily that h(1 − r) = 0 as well. Since r(r − 1) =
− j
4 ∈ J , we may assume, without loss of

generality, that r ∈ J . Now, (1 − 2r)2 = 1 − 4r + 4r2
= 1 − 4r(r − 1) = 1 − 4− j

4 = 1 + j . Since 1 − 2r ∈ 1 + J ,
we conclude that every element of 1 + J has a square root in 1 + J .
(4) H⇒ (5): This is an obvious weakening.
(5) H⇒ (4): Suppose that x2

= 1 + b, where b ∈ J . Then, x2
= 1, so x ∈ {1,−1}. Therefore, either x ∈ 1 + J ,

or else −x ∈ 1 + J , and x2
= (−x)2 = 1 + b.

(4) H⇒ (3): Suppose that j ∈ J . We seek a root of h(t) = t2
− t + j . By hypothesis there is a square root x ∈ 1+ J

of 1 − 4 j ∈ 1 + J . Consider r1 = 2−1(1 + x) and r2 = 2−1(1 − x). Note that r1 ∈ 1 + J and r2 ∈ J . Observe that
r1 + r2 = 1 and r1r2 = 4−1(1 − x2) = j . Therefore, h(t) = (t − r1)(t − r2) is an SRC factorization, since r1 ∈ 1 + J
and r2 ∈ J . �

In [25, Example 1], Wang and Chen show that
[

8 6
3 7

]
∈ M2(Z(2)) is not strongly clean. Proposition 30 shows, in

fact, for any prime p ∈ Z, the ring Z(p) of integers localized at the prime ideal (p) is not a 2-SRC ring, so M2(Z(p)) is
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not strongly clean, because t2
− t + p has no roots in Q (much less in Z(p) ⊆ Q) since its discriminant is 1 − 4p < 0.

Specifically, for any prime p, the matrix
[

1 p
−1 0

]
∈ M2(Z(p)) is not strongly clean.

5. Other types of factorizations

In this section, we will examine the relationship between SRC factorization and various other types of
factorizations. Note that many of these types of factorizations collapse to the same concept if n = 2.

Definition 31. Let h ∈ R[t] be a monic polynomial of degree n. A factorization h = g0g1 f is said to be a PR
factorization if g0 = tm , g1 = (t − 1)k , for some m, k ∈ N, and f (0), f (1) are both nonzero (equivalently,
f ∈ S0 ∩ S1).

Remark 32. The terminology ‘PR’ factorization refers to ‘powers of roots’. Example 19 shows that any monic
polynomial over a Henselian local ring has a PR factorization.

Lemma 33. Let h ∈ R[t] be a monic polynomial of degree n. Consider the following conditions

(1) h factors as a product of linear polynomials in R[t],
(2) h has a PR factorization,
(3) h has an SRC factorization.

In general we have (1) H⇒ (2) H⇒ (3). If n = 2 and if h 6∈ S0 ∪ S1, then additionally, we have (3) H⇒ (1).

Proof. (1) H⇒ (2): This is immediate, grouping together the linear factors corresponding to roots belonging to J ,
1 + J and R \ (J ∪ (1 + J )) respectively.
(2) H⇒ (3): If h = g0g1 f is a PR factorization, it is straightforward to check that h = (g1)(g0 f ) = (g1 f )g0 are

each SRC factorizations.
If n = 2 and h 6∈ S0 ∪ S1, then any SRC factorization gives h as a product of linear polynomials. �

Thus, we have the following corollary:

Corollary 34. Let (R, J ) be a commutative local ring, and suppose that h ∈ R[t] is a monic polynomial of degree 2,
with h 6∈ S0 ∪ S1. Then, the following are equivalent:

(1) Every ϕ ∈ M2(R) with χ(ϕ) = h is strongly clean.
(2) Ch is strongly clean.
(3) h has an SRC factorization in R[t].
(4) h factors as a product of linear polynomials in R[t].
(5) There exist r1 ∈ J and r2 ∈ 1 + J such that h(ri ) = 0.
(6) There exists r ∈ R such that h(r) = 0.
(7) h has a PR factorization in R[t].

Proof. The equivalence of the first three statements is exactly the statements in Theorem 12 when n = 2. Observe
that the condition that h 6∈ S0 ∪ S1 is precisely the condition that h(0), h(1) ∈ J .
(3) H⇒ (4): This is proved in Lemma 33.
(4) H⇒ (5): By hypothesis, h = (t − r1)(t − r2). Hence r1r2 = h(0) ∈ J and h(1) = (1 − r1)(1 − r2) ∈ J . Since

R is local, we conclude (without loss of generality) that r1 ∈ J , and r2 ∈ 1 + J .
(5) H⇒ (6): This implication is immediate.
(6) H⇒ (4): Suppose that h(r) = 0. Write h(t) = t2

+ at + b. Observe that

(t − (−a − r))(t − r) = t2
+ at − r(a + r) = t2

+ at + (b − h(r)) = t2
+ at + b.

(4) ⇐⇒ (7): As in Lemma 33. �

We thank T.Y. Lam for kindly pointing out the argument used in (4) ⇐⇒ (5) ⇐⇒ (6).
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Corollary 35. Let (R, J ) be a commutative local ring. Then, M2(R) is strongly clean if and only if every
degree 2 monic polynomial h 6∈ S0 ∪ S1 has a root.

Proof. Let ϕ ∈ M2(R), and set h = χ(ϕ). If h ∈ S0 ∪ S1, either ϕ or 1 − ϕ is a unit, and hence ϕ is strongly clean.
Otherwise, we appeal to Corollary 34. �

Remark 36. Note that even if M2(R) is strongly clean, there still may exist monic polynomials of degree 2 in S0
which have no roots. For instance, the ring Zp of p-adic integers is a Henselian local ring, hence a 2-SRC ring, but it
is easy to see that the polynomial t2

− p ∈ S0 has no roots in Zp. We thank George Bergman for bringing this example
to our attention.

Theorem 12 gave conditions on a polynomial h that are equivalent to strong cleanness of all matrices with
characteristic polynomial h. Let us now examine how the strong cleanness of a particular matrix relates to the
factorization properties of its characteristic polynomial.

Theorem 37. Let ϕ ∈ Mn(R) such that neither ϕ nor 1 − ϕ is a unit, with characteristic polynomial h = χ(ϕ).
Consider the following conditions:

(1) h factors as a product of linear polynomials.
(2) h factors as a product L · h1(t), where h1 ∈ S0 ∩ S1, and L is a product of linear polynomials.
(3) There exists a PR factorization for h.
(4) There exists an SRC factorization for h
(5) ϕ is strongly clean.
(6) There exists an SR factorization for h.

For every n ≥ 2, (1) H⇒ (2) H⇒ (3) H⇒ (4) H⇒ (5) H⇒ (6). For n = 2, (6) H⇒ (1). In general, none of these
implications are reversible, even for ϕ for which ϕ and 1 − ϕ are nonunits.

Proof. (1) H⇒ (2): This is an obvious weakening.
(2) H⇒ (3): This implication is straightforward and is similar to (1) H⇒ (2) from Lemma 33.
(3) H⇒ (4): This is done in Lemma 33.
(4) H⇒ (5): This is the implication (3) H⇒ (1) from Theorem 12.
(5) H⇒ (6): This is the content of Lemma 9.
(2) 6H⇒ (1): Over the real numbers, the polynomial x(x − 1)(x2

+ 1) has a factorization as in (2), but has no
factorization into linear polynomials.
(3) 6H⇒ (2): Suppose that (R, J ) is a commutative local domain with an element j ∈ J which is not a square in

R. For instance, take R = Z(2), with j = 2. The factorization h(t) = (t2
+ j)((t + 1)2 + j) is a PR factorization, but

this factors no further, since there are no square roots of j in R.
(4) 6H⇒ (3): This is similar to Example 10. Let R = Z(p), with p ≡ 3(mod 4), and now consider SRC factorization

h(t) = h0h1 = [(t − 1)(t2
+ 1)+ p2

] · t.

This factorization, for the same reasons as given in Example 10, cannot be refined. In particular, the factorization is
an SRC factorization, but it is not a PR factorization. (The irreducible polynomial (t − 1)(t2

+ 1) + p2, is also an
example, but its companion matrix is a unit.)
(5) 6H⇒ (4): See Example 10.
(6) 6H⇒ (5): Take the polynomial in Example 10, and let ϕ be its companion matrix, which is not strongly clean

by Theorem 12. �

6. Strongly π -regular matrix rings

We now address the question of when a matrix ring (or an element thereof) over a commutative local ring is
strongly π -regular (which, as noted in the introduction, is a stronger property than strongly cleanness). As we shall
now demonstrate, it follows from results in the literature that if R is a commutative (not necessarily local) ring, then
Mn(R) is strongly π -regular if and only if R is strongly π -regular. The purpose of this section is to give a new way to
look at this result, using the techniques of the previous sections.
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By [1, Theorem 1.1], for any ring R, Mn(R) is a strongly π -regular ring if and only if for every finitely generated
left (right) R-module M , injective endomorphisms of M are isomorphisms (i.e. M is cohopfian). In [24], Vasconcelos
proved that for a commutative ring R, injective endomorphisms of finitely generated R-modules are isomorphisms
if and only if every prime ideal of R is maximal. By [17, Ex. 4.15], for a commutative ring R, every prime ideal of
R is maximal if and only if R is strongly π -regular. Combining these results, we see that, for any commutative ring,
Mn(R) is strongly π -regular if and only if R is strongly π -regular. In particular,

Proposition 38. Let R be a commutative local ring. Then, the following are equivalent (see Lemma 39 below):

(1) J(R) is nil,
(2) R is strongly π -regular,
(3) Mn(R) is strongly π -regular.

On the other hand, there exists a noncommutative local ring (R, J ) with J locally nilpotent (in particular, R is
strongly π -regular) for which M2(R) is not strongly π -regular (see [22,7]).

As we shall see in this section, our previous methods apply to the study of strongly π -regular endomorphisms as
well. Using these methods, we shall obtain an elementwise characterization of strongly π -regular endomorphisms
in terms of factorization, and in turn an alternate proof of the fact that for R commutative local, Mn(R) is strongly
π -regular if and only if J(R) is nil.

Recall that an element a ∈ R is called left π -regular if the chain

Ra ⊇ Ra2
⊇ Ra3

⊇ · · ·

terminates, and right π -regular if the chain

a R ⊇ a2 R ⊇ a3 R ⊇ · · ·

terminates, and is called strongly π -regular if it is both right and left π -regular. Dischinger proved [11] that if every
element of R is right π -regular, then every element of R is left π -regular.

Let us recall some well-known facts about strongly π -regular rings, whose basic proofs are left to the reader.

Lemma 39. (1) If R is a strongly π -regular ring, and e2
= e ∈ R, then eRe is strongly π -regular.

(2) For any ring R, every nilpotent element and every unit of R is strongly π -regular.
(3) If a ∈ J(R), then a is strongly π -regular if and only if a is nilpotent.
(4) A local ring R is strongly π -regular if and only if J(R) is nil.

It follows that if Mn(R) is strongly π -regular, then R is strongly π -regular by Lemma 39, and hence J (R) must
be nil.

The following lemma which is similar to Lemma 1 also appeared in [21],1 and allows us to apply our previous
methods to the study of strong π -regularity.

Lemma 40 ([21]). Let R be a ring, MR a right R-module, and α ∈ End(MR). Then, the following are equivalent

(1) α is strongly π -regular in End(MR).
(2) There exists a decomposition M = A ⊕ B (as R-modules), where A and B are α-invariant, α|A ∈ End(AR) is an

isomorphism, and α|B ∈ End(BR) is nilpotent.

We shall need one useful general proposition.

Proposition 41. Let R be a nonzero commutative ring. Then, ϕ ∈ Mn(R) is nilpotent if and only if χ(ϕ) ≡

tn(mod Nil(R)), where Nil(R) is the nilradical of R.

1 Note that in [21], Nicholson asserts that Lemma 40 above, with other equivalent conditions, is true, by an argument (which he omits) similar
to the proof of [21, Theorem 3]. Nicholson attributes the implication (1) ⇐⇒ (2) to [1, Proposition 2.3]. However, [1, Proposition 2.3] contains
only the ring theoretic version of Lemma 40, as opposed to the elementwise version which Nicholson states. See [2] for a complete proof of the
equivalent conditions asserted in [21].
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Proof. For the reverse implication, suppose that χ(ϕ) = tn
−an−1tn−1

−· · ·−a0, where ai ∈ Nil(R) for 0 ≤ i ≤ n−1.
By the Cayley–Hamilton Theorem, φn

= an−1φ
n−1

+ · · · + a1φ + a0 I . Consider the (commutative) subring S of
Mn(R) generated by an−1φ

n−1, . . . , a1φ, a0 I . For 0 ≤ i ≤ n − 1, aiφ
i is nilpotent. Since S is commutative, and is

generated by a finite collection of nilpotent elements, we conclude that every element of S is nilpotent. In particular,
φn

∈ S is nilpotent.
To prove the forward implication, we will make a series of reductions. We shall first prove the result assuming that

R is a domain. In this case, we may embed R in an algebraic closure F of its quotient field, and we may thus view ϕ as
a nilpotent element of Mn(F). Since F is algebraically closed, it is clear that the characteristic polynomial of ϕ over
F is tn , since ϕ clearly has no nonzero eigenvalues. The characteristic polynomial of ϕ is unchanged by embedding R
in F , and hence the characteristic polynomial of ϕ over R is tn . Suppose that R is any nonzero commutative ring, and
that ϕ ∈ Mn(R) is nilpotent. Write χ(ϕ) = tn

+ an−1tn−1
+ · · · + a0. For any prime ideal P of R, the image ϕ′ of ϕ

in Mn(R/P) is nilpotent. But R/P is a domain, so the characteristic polynomial of ϕ′ is tn , and hence we conclude
that ai ∈ P for 0 ≤ i ≤ n − 1. Since

Nil(R) =

⋂
P∈SpecR

P,

we conclude that ai ∈ Nil(R) for 0 ≤ i ≤ n − 1, as desired. �

Definition 42. For r ∈ R, define

Pr = { f ∈ R[t] : f monic, and f − (t − r)deg( f )
∈ Nil(R)[t]}.

Thus, by Proposition 41, ϕ − r I is nilpotent if and only if χ(ϕ) ∈ Pr , if and only if h(ϕ) = 0 for some monic
polynomial h ∈ Pr . Before stating our results, let us define another type of factorization.

Definition 43. A factorization h = h0 p0 is an SP factorization if h0 ∈ S0 and p0 ∈ P0.

Since Nil(R) ⊆ J , it is immediate that h0, p0 ∈ (R/J )[t] are coprime, since p0 is a power of t , and h0(0) 6= 0. An
SP factorization is a lift of a factorization H(t)tn

∈ (R/J )[t], where H(0) 6= 0, with the restriction that p0 (which is
a monic lift of tn to R[t]) satisfies p0 − tn

∈ Nil(R) (rather than simply p0 − tn
∈ J ).

In analogy with Theorem 12, we have the following result, whose proof is similar to the proof of that of Theorem 12.

Proposition 44. Let R be a commutative local ring and let h ∈ R[t] be a monic polynomial of degree n. Then, the
following are equivalent:

(1) Every ϕ ∈ Mn(R) with χ(ϕ) = h is strongly π -regular.
(2) There exists ϕ ∈ Mn(R) with χ(ϕ) = h such that ϕ is strongly π -regular.
(3) h has an SP factorization.

Proof. (1) H⇒ (2): This is an obvious weakening.
(2) H⇒ (3): By Lemma 40 there exists a decomposition Rn

= A ⊕ B as R[ϕ]-modules such that ϕ|A is invertible
on A, and ϕ|B is nilpotent on B. The characteristic polynomial of ϕ then factors as h = h0 p0, where h0 ∈ S0 (by
Lemma 4) and p0 ∈ P0 (by the remarks after Definition 42).
(3) H⇒ (1): Suppose that ϕ ∈ Mn(R), and suppose χ(ϕ) = h = h0 p0 is an SP factorization. Note that h0 and p0

are coprime in R[t] (since Nil(R) ⊆ J ).
As in the proof of Theorem 12, there exist polynomials f0 and f1 such that f0(ϕ)h0(ϕ) + f1(ϕ)p0(ϕ) = I dRn .

By the Cayley–Hamilton Theorem, we have h0(ϕ)p0(ϕ) = p0(ϕ)h0(ϕ) = h(ϕ) = 0. Also, f0(ϕ), h0(ϕ), f1(ϕ),
and p0(ϕ) are contained in R[ϕ], which is a commutative subring of End(Rn

R). By Lemma 11, Rn
= ker(h0(ϕ)) ⊕

ker(p0(ϕ)) (as right R-modules). As in the proof of Theorem 12, it is easy to see that ker(h0(ϕ)) and ker(p0(ϕ)) are
ϕ-invariant submodules of Rn .

Finally, we claim that ϕ is an isomorphism on ker(h0(ϕ)) (cf. Theorem 12 for the proof), and ϕ is nilpotent
on ker(p0(ϕ)). For the second statement, we know that p0(ϕ|ker(p0(ϕ))) = 0, where p0 ∈ P0. By the remark
following Definition 42, ϕ|ker(p0(ϕ)) is nilpotent. By Lemma 40, ϕ is strongly π -regular, with A = ker(h0(ϕ)) and
B = ker(p0(ϕ)). �
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The coprimeness forced by the SP factorization makes this result easier to prove than its analogue; here we do not
need to deal with companion matrices. The following corollary is immediate.

Corollary 45. Let R be a commutative local ring. Then, the following are equivalent.

(1) Mn(R) is strongly π -regular,
(2) Every monic polynomial of degree n in R[t] has an SP factorization.

We shall now study condition (2) of Corollary 45 to obtain an alternate proof of Proposition 38. The implications
(3) H⇒ (2) H⇒ (1) follow from Lemma 39. Thus, it suffices to show that if J (R) is nil, then every monic polynomial
of R[t] has an S P factorization. We shall show this with the aid of one general lemma.

Lemma 46. Let R be a ring, let I ⊆ J(R) be an ideal of R, and let bar-notation denote the natural quotient map
from R to R = R/I . For a, b ∈ R, (a, b) is right unimodular in R if and only if (a, b) is right unimodular in R.

Proof. The forward implication is immediate, and does not require the hypothesis I ⊆ J(R). Conversely, if
a R + bR = R, there must exist x, y ∈ R such that z = ax + by ∈ 1 + I . But 1 + I ⊆ 1 + J(R) ⊆ U(R), so
z is a unit, and hence a(xz−1)+ b(yz−1) = 1. Therefore, a R + bR = R. �

Corollary 47. Let (R, J ) be a commutative local ring with J nil. Then, R is a Henselian local ring. Furthermore,
every monic polynomial h ∈ R[t] has an SP factorization.

Proof. Let f ∈ R[t] be monic, and pick a factorization f = G H ∈ (R/J )[t] where (G, H) is unimodular in
(R/J )[t]. Take any monic lifts g1, h1 ∈ R[t] of G and H , respectively, and consider the ideal I generated by the
coefficients of f − g1h1. It is clear that the coefficients of f − g1h1 lie in J , since g1 = G, h1 = H and f = G H .
Now, I is a finitely generated ideal contained in the nil ideal J , since R is commutative, it follows that I is nilpotent.
Thus, R is Henselian with respect to I . The image f ′ of f in (R/I )[t] factors as g′

1h′

1, where the prime notation
denotes the image in (R/I )[t]. By Snapper’s Theorem [17, Theorem 5.1], J(R[t]) = Nil(R)[t] = J (R)[t]. It follows
that (g1, h1) is unimodular in R[t] by Lemma 46, and hence that (g′

1, h′

1) is unimodular in (R/I )[t]. Since R is
Henselian with respect to I , we can lift the factorization f ′

= g′

1h′

1 to a factorization f = gh in R[t]. It is clear that
g = G and h = H (since g and h agree with g1 and h1 modulo I ). Thus, R is Henselian. The last remark follows by
lifting the factorization f = tm H(t) ∈ (R/J )[t], where H(0) 6= 0 in R/J , and using the fact that J (R) = Nil(R),
since J is nil. �

Note that Example 27 gives a local ring R (necessarily with J(R) 6= Nil(R)) for which M2(R) is strongly clean
but is not strongly π -regular.

7. Further questions

The related question of when Tn(R), the ring of upper triangular matrices over R, is strongly clean is addressed
in [21] (for n = 2, R local), [25] (for R = Z(2)), in [9], and by the present authors in [3] (for arbitrary n, R local).

In particular, if R is a commutative local ring, Tn(R) is always strongly clean, whereas we have seen that Mn(R)
need not be strongly clean. From this small piece of evidence (as well as some other special cases for small values of
n), we ask the following questions (primarily for R local):

Problem 48. If Mn(R) is strongly clean, must Tn(R) be strongly clean?

A stronger elementwise question is the following.

Problem 49. If ϕ ∈ Tn(R) ⊆ Mn(R) is strongly clean as an element of Mn(R), must it be strongly clean as an
element of Tn(R)?

Certainly, an affirmative answer to Problem 49 would yield an affirmative answer to Problem 48.
There is a more general context in which one can state natural generalizations of Question 48 and 49. Let R be a

ring and let P = (X,≤) be a locally finite preordered set; that is, ≤ is reflexive and transitive, and for any x, y ∈ X ,
the interval [x, y] = {a ∈ X | x ≤ a ≤ y} is finite. We shall define the incidence ring I (P, R). Before doing so, we
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direct the interested reader to [23], which is an accessible reference for the standard facts about incidence rings. As a
set,

I (P, R) = { f : P × P −→ R | f (x, y) = 0 if x 6≤ y}.

Addition is usual addition of functions with range R and multiplication is defined by

( f · g)(x, y) =

∑
z∈[x,y]

f (x, z)g(z, y).

The identity and zero elements are the diagonal maps with value 1 and 0, respectively. It is easy to check that I (P, R)
is an associative ring.

Incidence rings form a natural generalization of both full matrix rings and upper triangular matrix rings. To see
this, let X = {1, 2, . . . , n}. If P is the usual total order on X , then I (P, R) ∼= Tn(R). On the other hand, if P is the
full preorder on X , where i ≤ j for all i, j ∈ X , then I (P, R) ∼= Mn(R). If P is the trivial preorder on X (where
i ≤ j if and only if i = j), then I (X, R) ∼= R × R × · · · × R, the direct product of n copies of R.

Suppose that X is a set, and suppose that P = (X,≤) and P ′
= (X,≤′) are preorders on X , such that P ′ refines

P(x ≤ y H⇒ x ≤
′ y). Then, there is a natural embedding I ((X, P), R) ⊆ I ((X, P ′), R).

We ask (again, primarily for R local):

Problem 50. If I (P ′, R) is strongly clean, must I (P, R) be strongly clean?

Its stronger elementwise counterpart is:

Problem 51. If α ∈ I (P, R) ⊆ I (P ′, R) is strongly clean as an element of I (P ′, R), must it be strongly clean as an
element of I (P, R)?

In the case that |X | = n, P ′ is the full preorder, and P is a total order on X , I (P, R) ∼= Tn(R) and
I (P ′, R) ∼= Mn(R) (and the embedding of I (P, R) into I (P ′, R) is compatible with these isomorphisms). Thus,
these special cases of Problems 50 and 51 are precisely Problems 48 and 49.
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