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Objective: Type 2 diabetes mellitus is characterized bymetabolic dysregulation in the form of hyperglycemia and
insulin resistance and can have a profound impact on brain structure and vasculature. The primary aim of this
study was to identify brain regions where the combined effects of type 2 diabetes and hypertension on brain
health exceed those of hypertension alone. A secondary objective was to test whether vascular impairment
and structural brain measures in this population are associated with cognitive function.
Research design and methods:We enrolled 18 diabetic participants with hypertension (HTN+ T2DM, 7 women,
71.8 ± 5.6 years) and 22 participants with hypertension only (HTN, 12 women, 73.4 ± 6.2 years). Cerebrovas-
cular reactivity (CVR) was assessed using blood oxygenation level dependent (BOLD) MRI during successive
breath holds. Gray matter structure was evaluated using cortical thickness (CThk) measures estimated from
T1-weighted images. Analyses of cognitive and blood data were also performed.

Results: Compared to HTN, HTN + T2DM had decreased CVR and CThk in a spatially overlapping region of the
right occipital lobe (P b 0.025); CVR group differences were more expansive and included bilateral occipito-
parietal areas (P b 0.025). Whereas CVR showed no significant associations with measures of cognitive function
(P N 0.05), CThk in the right lingual gyrus ROI and regions resulting from a vertex-wise analysis (including pos-
terior cingulate, precuneus, superior and middle frontal, and middle and inferior temporal regions (P b 0.025)
were associated with executive function.
Conclusions: Individuals with T2DM and HTN showed decreased CVR and CThk compared to age-matched HTN
controls. This study identifies brain regions that are impacted by the combined effects of comorbid T2DM and
HTN conditions, with new evidence that the corresponding cortical thinningmay contribute to cognitive decline.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Type 2 diabetes mellitus (T2DM) is among themost common condi-
tions that affect individuals over the age of 65 years (Wu et al., 2013).
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Vascular complications associated with diabetes have profound effects
not only on peripheral organs, but also on cerebral circulation. For in-
stance, chronic hyperglycemia decreases elasticity of smooth muscle
cells, reducing the ability of blood vessels to maintain sufficient blood
and nutrient supply to brain tissue (Brownlee, 2005; Ergul, 2011). Vas-
cular impairment increases the risk of neurological events, as seen by
the increased risk of TIA and stroke by 2–5 fold in diabetic individuals
(Baird et al., 2002; Kim et al., 2008). Along with vascular impairment,
T2DM is associated with loss of gray and white matter tissue in excess
of that seen in normal aging (Bresser et al., 2010; Last et al., 2007). Re-
gions most susceptible to diabetic damage include prefrontal (Bruehl
et al., 2009), hippocampal (Bruehl et al., 2009) and occipito-parietal
areas (Last et al., 2007). These structural and vascular changes are
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thought to contribute to increased impairment in speed of information
processing, memory and executive function commonly reported in
T2DM (Brands et al., 2007; Manschot et al., 2007).

There are still many gaps in our understanding on the impact of
T2DM on the brain, one of which is the contribution of hypertension
(HTN) that is comorbid in a reported 75% of individuals with T2DM
(Colosia et al., 2013) as HTN itself contributes to brain vascular (Hajjar
et al., 2010) and structural (Den Heijer et al., 2005) damages through
mechanisms that both overlap with and are independent of T2DM
(Meusel et al., 2012). A recent study demonstrated that individuals
with T2DM have decreased brain tissue volumes and cerebrovascular
reactivity (CVR) compared to healthy age-matched controls (Last
et al., 2007). However, given the lack of control for the effects of HTN,
the specific contributions of T2DM remain unclear. Poor hypertensive
controlwas found to exacerbatemacro- andmicro-vascular T2DMcom-
plications (Turner et al., 1998), therefore, it is critical to not only estab-
lish individual effects of HTN and T2DM on the brain but to also address
the combined effects of the two conditions. As a first step toward under-
standing the combined effects of T2DM and HTN, several studies
contrasted normotensive and hypertensive diabetics and reported
lower CVR (Last et al., 2007) and global volumetric measures
(Schmidt et al., 2004) in those with both conditions, suggesting that
HTNworsens vascular and structural abnormalities in the face of T2DM.

The current study attempts to advance this field of research, by specifi-
cally investigating the combined effects of HTN and T2DM(HTN+ T2DM),
relative to hypertension (HTN), as identified by measures of cortical gray
matter thickness (CThk) and CVR. CThk has demonstrated high structural
sensitivity in previous neuroimaging studies (Hutton et al., 2009; Pereira
et al., 2011) and CVR is an established measure of vascular health
(Riecker et al., 2003). Although controlled hypercapnia using CO2 gas inha-
lation is closer to a gold standard, a breath hold technique for CVR assess-
ment was selected for this study because of its ease of implementation
(cognitive fMRI data were also collected and not reported in this
manuscript).

We hypothesized that individuals with HTN + T2DM will show re-
duced regional CThk and reduced CVR relative to anHTN group. In addi-
tion, secondary objectives used measures of executive function,
processing speed and memory to determine whether they have signifi-
cant cognitive associations with CThk and CVR in this population
(Nandipati et al., 2012; Takeuchi et al., 2012).

2. Methods

2.1. Study population

The study protocol was approved by Research Ethics Boards at Baycrest
Centre and Sunnybrook Health Sciences Centre and experiments were
conducted at Baycrest's Rotman Research Institute. Informed consent was
obtained from all participants. Eighteen HTN + T2DM participants and
twenty-two HTN participants were recruited through an internal
participant database and via newspaper and community center adver-
tisement. Participants completed a demographic andmedical question-
naire via telephone. Those who scored within the dementia range on
the Telephone Interview for Cognitive Status (TICS) (Brandt et al.,
1988) or who self-reported having hepatic disease, recent coronary
heart disease, other significant medical or psychiatric disorders affect-
ing cognition (e.g., stroke, major depressive disorder), taking medica-
tions that act on the central nervous system (e.g. depression, sleep
disorders, migraine headaches), hormone replacement therapy, major
inflammatory disorders (e.g. arthritis), inflammatory bowel disease,
rheumatological disorders, heart failure and chronic lung disease were
excluded. Diabetic individuals were invited to participate as long as
their disease, based on self report, did not include the following compli-
cations: retinopathy, nephropathy and neuropathy. Furthermore, con-
trolling for diabetes through diet and/or hypoglycemic medication
were inclusions, whereas use of insulin injections and T2DM diagnosis
for less than 2 years were exclusions. Individuals recruited to the HTN
group had to have fasting blood glucose levels less than 6.1 mmol/l on
two consecutive testing days. Participants in both groups had a history
of hypertension for at least 2 years, which was controlled by long-
acting antihypertensive medications. Participants with MRI-
incompatible metal implants, pacemakers and stents were excluded.
On the first day of testing, participants provided a fasting blood sample
and underwent neuropsychological testing to assess processing speed,
memory and executive function. Blood pressure was measured during
the same session using a blood pressure monitor (BpTRU Medical De-
vices), taken as the average of the last 5 of 6 readings, after participants
had been sitting quietly for 5–10min. During a second session, structur-
al and functional brain MR imaging was performed. The time interval
between neuropsychological testing and MRI was within 3 months
(average 30.5 days; range 0 to 80 days) with the exception of one
participant who was scanned after 372 days.

2.2. MRI

MR imageswere acquired on the 3 TMagnetomTrio Siemens system
with 12-channel head coil. Anatomical imaging included T1-weighted
three-dimensional magnetization-prepared rapid gradient-echo sequence
(3DMPRAGE, TR/TE/TI = 2000/2.63/1100 ms, matrix = 256 × 192,
FOV = 256 × 192 mm2, slice thickness = 1 mm, number of slices =
160, flip angle = 9°, total duration = 6 min 30 s).

Cerebrovascular reactivity wasmeasured as the change in blood ox-
ygenation level dependent (BOLD) signal during a series of breath holds
(BH) (TR/TE= 2000/30 ms, matrix = 64 × 64, FOV= 200 × 200 mm2,
slice thickness = 5 mm, number of slices = 32, flip angle = 90°, with
156 volumes, total duration = 5 min 20 s). The BH challenge consisted
of six breath holds lasting 15 s each following 3 s expiration periodwith
intermittent 30 s periods of normal breathing. The BH instructionswere
projected on the computer screen and included the start and end of the
expiration period and the BH countdown. Fluid attenuation inversion
recovery (FLAIR) images were also obtained to assess white matter
hyperintensities (TR/TE/TI = 9000/96/2500 ms, matrix = 256 × 212,
FOV = 224 × 186 mm2, slice thickness = 5 mm, number of slices =
32, flip angle = 165°, total duration = 3 min 38 s).

2.3. Image analysis

Compliance with BH instructions was monitored using respiratory
below traces recorded during the task. Participants with poor compli-
ance (N = 2 for the HTN + T2DM and 1 for the HTN groups) were ex-
cluded from subsequent analysis. CVR analysis was conducted using
tools available through FMRIB Software Library (FSL, version 4.1,
http://fsl.fmrib.ox.ac.uk/). Preprocessing for BOLD images included:
motion correction (Jenkinson et al., 2002), spatial smoothing with
Gaussian kernel of 5 mm FWHM and high-pass temporal filtering with
100 s cutoff. Statistical analysis was carried out using a general linear
model, i.e. a box-car paradigm was convolved with double-gamma he-
modynamic response function to model the response to BH. Motion pa-
rameterswere added as covariates of non-interest. A participant specific
delay in hemodynamic responsewas estimated for each participant and
incorporated into the model. Delay was computed by averaging the
time difference between BOLD signal peaks in gray matter and the
end of the corresponding BH. This procedure for estimating a response
delay is valid for low to moderate hypercapnia conditions where signal
increases are linear with blood pCO2 (Tancredi and Hoge, 2013). To
avoid bias related to initial compliance and baseline signal drift due to
hyperventilation, for example, the first BH was discarded and analysis
was performed on the remaining five BH trials. A cerebrovascular reac-
tivity (%BOLD change) map for a representative HTN participant is
shown in Fig. 1. CVR maps were generated for each participant and
resampled to an average surface-based reference template. Surface-
based analysis of the CVR data was chosen so as to match the geometry

http://fsl.fmrib.ox.ac.uk/


Fig. 1. Top: a CVR map for a representative HTN participant. Bottom: a mean BOLD time
course for the same participant averaged across the entire brain.
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for the CThk analysis (described below). It also has the advantages of
improved inter-subject alignment and reduced partial volume influence
when compared to the 3D analysis. Furthermore, a 2D representation of
the cortex employed in the surface based analysis is thought to provide
a more accurate anatomical description than a 3D volume-based analy-
sis as it incorporates cortical folding information (Oosterhof et al., 2011;
Tucholka et al., 2012).

Cortical surfaces for CVR registration and CThk measurements were
generated for each participant using a freely available automated proce-
dure in Freesurfer (V 5.1.0, http://surfer.nmr.mgh.harvard.edu/), de-
scribed elsewhere (Fischl and Dale, 2000). Briefly: 1) high-resolution
T1-weighted images were used to remove non-brain structures
(Ségonne et al., 2004) and white matter was segmented, 2) gray mat-
ter/white matter boundary was covered with triangular tessellation
and a deformation algorithmwas applied to produce a final representa-
tion of the boundary between gray andwhitematter as well as the gray
matter/CSF boundary, and 3) CThk was computed as the closest dis-
tance between gray/white and gray/CSF surfaces (Fischl and Dale,
2000). Cortical thickness maps and surface-registered CVR maps were
computed for each participant separately and later registered to a
spherical atlas, applying a 10mm FWHM smoothing kernel, to facilitate
inter-subject comparison (Fischl et al., 1999). FLAIR images were used
in conjunction with in-house software, a fuzzy lesion extractor (FLEX)
(Gibson et al., 2010) that is designed to segment white matter
hyperintensities (WMH).

2.4. Correlation with cognitive scores

Three cognitive tests corresponding to cognitive domains implicated
in previous research on T2DM (Nandipati et al., 2012; Takeuchi et al.,
2012) were selected to examine the correlations with CVR and CThk.
These measures included: 1) Trail Making Test A (time to complete)
to assess processing speed, 2) California Verbal Learning Test (total
number of words remembered over 5 trials) to examine memory
function and 3) Wisconsin Card Sorting Test (number of categories
achieved) to measure executive function.

2.5. Statistical analysis

Demographics, laboratory measurements and cognitive scores that
were normally distributed were compared between the groups using
an unpaired t-test in SPSS (v.21). A non-parametric Shapiro–Wilk test
(SPSS) was used for group comparison of total cholesterol, C-reactive
protein levels, BMI, WMH volumes, and executive scores that were
not normally distributed. Unpaired two-group t-tests were performed
on the cortical surface, i.e. vertex-wise, for CVR and CThk measures
(mri_glmfit).

Per subject average CThk and CVR values were extracted from re-
spective ROIs identified by the group comparison and examined for cor-
relation with vascular risk factors and cognitive scores. A step-wise
vascular risk factor linear regression (SPSS) was used to identify factors
that contribute to observed CThk and CVR changes. Vascular risk factors
included gender, age, total cholesterol, systolic blood pressure and
WMH volume.

Associations between average CThk/CVR, extracted from respective
ROIs, and cognitive scoreswere examined using partial correlation, con-
trolling for the effects of age and education.

Finally, vertex-wise correlations of the brain measures were also
conducted with the cognitive scores, with age and education and diag-
nosis as covariates. The group and regression analyses included correc-
tion for multiple comparisons using a Monte-Carlo simulation method
(Hagler et al., 2006) with vertex P-value threshold of 0.05 and cluster-
wise threshold of P= 0.025 (P= 0.05/2, to account for separate analy-
sis of 2 hemispheres).

3. Results

3.1. Demographics

Demographic characteristics, laboratory measures, cognitive scores
and WMH volumes were compared between HTN + T2DM and
HTN groups (Table 1) and revealed that the groups were matched
for age and sex. The HTN + T2DM group had higher hemoglobin A1C
(P b 0.0001) and fasting blood glucose (P b 0.0001). Systolic blood
pressure (P = 0.02), LDL cholesterol (P b 0.0001) and total cholesterol
(P b 0.0001), on the other hand, were higher in the HTN group. Cogni-
tive scores andWMH volumes were not significantly different between
the two groups (P N 0.2).

3.2. Group differences in cerebrovascular reactivity and cortical thickness

CVR was significantly lower in the HTN + T2DM group in: 1)
Bilateral — lingual gyrus, cuneus and superior parietal areas; 2)
Right — lateral occipital, inferior parietal and precuneal regions;
and 3) Left — pericalcarine cortex (P b 0.025), relative to the HTN
group. Cortical thickness was lower in the HTN + T2DM group,
compared to the HTN group, in the right lingual and fusiform gyri
(P b 0.025). CVR and CThk results are both shown in Fig. 2, illustrat-
ing the spatially overlapping findings.

Post-hoc analyses of the vertex-wise correlations between CThk/
CVR and HBA1C (a measure of glucose control), and between CThk/
CVR and C-reactive protein level (a measure of inflammation), both
commonly present at higher than normal levels in T2DM and HTN,
showed no significance (P N 0.05, data not shown).

3.3. Correlation with vascular risk factors

Vascular risk factors could not explain between-subject differences
in CThk and CVR, using functionally relevant ROIs (described in
Section 3.2) and a step-wise linear regression (P N 0.05).

3.4. Correlation with cognitive scores

Average CThk in the right lingual gyrus ROI identified in group
comparison was significantly associated with executive function (P =
0.048), after adjustment for age and education, whereas processing
speed and attention were not (P N 0.05). No significant associations
were found between average CVR and cognitive function (P N 0.05).
Results of the vertex-wise analysis were similar to that of the ROI
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Table 1
Participant demographics.

HTN group HTN + T2DM group Between-group comparison (P-value)

N 22 18 NS
Gender (women/men) 12/10 8/10 NS
Age (years) 73.4 ± 6.2 71.8 ± 5.6 NS
Diabetes duration (years) NA 10.9 ± 6.6 NA
Hypertension duration (years) 10.4 ± 6.9 10.3 ± 7.3 NS
HBA1C % 5.7 ± 0.3 6.9 ± 0.5 b0.0001
Fasting glucose (mmol/l) 5.3 ± 0.3 7.2 ± 1.3 b0.0001
Fasting insulin (pmol/l) 58.8 ± 19.3 65.0 ± 37.4 NS
Systolic blood pressure (mm Hg) 137.9 ± 15.8 125.1 ± 15.9 0.02
Diastolic blood pressure (mm Hg) 75.1 ± 10.7 70.6 ± 9.2 NS
HDL (mmol/l) 1.7 ± 0.4 1.5 ± 0.3 NS
LDL (mmol/l) 3.0 ± 1.0 1.9 ± 0.6 b0.0001
Total cholesterol (mmol/l) 5.3 ± 1.1 3.9 ± 0.8 b0.0001
C-reactive protein (mmol/l) 2.1 ± 1.4 3.6 ± 7.1 NS
BMI 26.3 ± 2.7 27.3 ± 4.0 NS
WMH volume (cc) 3.9 ± 7.4 2.8 ± 4.0 NS
Cognitive scores
Executive function (num. of categories) 5.1 ± 1.4 4.4 ± 1.8 NS
Processing speed (s) 35.2 ± 9.9 35.5 ± 12.0 NS
Memory function (num. of words) 42.6 ± 10.2 41.8 ± 12.2 NS

Data are means ± SD unless specified otherwise.
Blood pressure measurements were not available for 3 participants (2 from HTN + T2DM and 1 from HTN groups).
Hemoglobin A1C (HbA1C) is an average measure of blood glucose levels over the prior 6–8 weeks.
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analysis. Only executive function was significantly correlated with CThk
(P b 0.025), after adjustment for age, education and diagnosis. Better ex-
ecutive function was associated with higher CThk in the: 1) bilateral —
isthmus and posterior cingulate, precuneus, superior frontal, medial
and lateral orbito-frontal regions; 2) left —middle and inferior temporal
gyri and 3) right— rostral middle frontal areas (Fig. 3). CVR was not sig-
nificantly associated with any of the cognitive scores (P N 0.05).

4. Discussion

This study demonstrates that the combination of T2DM and HTN is
associated with decreased CThk and CVR in a spatially overlapping re-
gion of the occipital lobe, relative to a control group with HTN alone.
Fig. 2. Blue — regions of decreased CVR in HTN + T2DM group compared to HTN group;
Orange— region of decreased CThk in HTN+ T2DM group; Yellow— overlapping region
of decreased CVR and CThk. Inset highlights region of CVR and CThk overlap which was
overlaid on the inflated surface for enhanced visualization.
CVR was significantly reduced in brain regions that extended beyond
the occipital finding, which included bilateral occipito-parietal areas.
Our secondary cognitive finding demonstrated that in individuals with
systemic vascular conditions, such as T2DM and HTN, higher executive
function is associated with preserved CThk in posterior cingulate,
precuneus as well as temporal and frontal regions.

Diabetes leads to perfusion abnormalities, as reported in studies that
compare patients and age-matched healthy controls (Kaplar et al.,
2009; Last et al., 2007). Several studies also report reduced CVR com-
pared to healthy individuals (Kaplar et al., 2009; Last et al., 2007). Yet
in many instances, it is unclear whether T2DM per se, or commonly
comorbid HTN, or a combined impact of the two, underscores these vas-
cular changes. The results of the current study in older adults suggest
Fig. 3. Highlighted regions (red, orange and yellow) showed significant correlation be-
tween higher cortical thickness and better executive function. Executive function was
assessed based on WCST score (number of categories achieved) and adjusted for
age, education and diagnosis. Results are based on all participants included in the study
(N= 37).

image of Fig.�2
image of Fig.�3


40 E. Tchistiakova et al. / NeuroImage: Clinical 5 (2014) 36–41
that the presence of both conditions, T2DMandHTN, contribute to cere-
brovascular and structural abnormalities and that these changes are in
excess of those apparent in older adults with HTN alone. Specifically,
the combined effects of T2DM and HTN had a deleterious impact on
both CVR and CThk in the occipito-parietal areas. Our CVR findings are
regionally more localized compared to a previous report (Last et al.,
2007), which may be due to our study design that included HTN in
both study and control groups.

A regional decrease in CThkwas detected in the right occipital region
in the HTN + T2DM group compared to the HTN group. The region of
reduced CThk was smaller in spatial extent but overlapping with the
CVR results, which is a novel finding relative to the literature that has
primarily focused on CThk in T2DM (Ajilore et al., 2010; Brundel et al.,
2010; Chen et al., 2013; Leritz et al., 2011; Seo et al., 2012) andHTN sep-
arately (Seo et al., 2012; Vuorinen et al., 2013). A previous study involv-
ing older adults demonstrated that blood glucose levels and blood
pressure were both associated with CThk thinning in occipital regions,
among others (Leritz et al., 2011). These metrics of metabolic and hy-
pertensive control identify regions that may be preferentially impacted
by T2DM and HTN. The results of the current study are in agreement
with these earlier findings and emphasize that occipital regions show
greater impairment among adults with both T2DM and HTN conditions.
This localized impact could be due to preferential impairment of poste-
rior circulation. For example older adults with T2DM are more likely to
develop infratentorial infarcts (Kameyama et al., 1994) and have a
higher degree of vertebral stenosis (Iwase et al., 1998) than non-
T2DM. Diabetes induced structural changes are often attributed to
chronic exposure to hyperglycemia (Korf et al., 2006), inflammation
(Novak et al., 2011), as well as direct and indirect effects of insulin dys-
regulation on the brain (Craft andWatson, 2004; Korf et al., 2006). Nev-
ertheless, hyperglycemia aswell as its underlying oxidative stress result
in the release of proinflammatory cytokines that contribute to endothe-
lial dysfunction (Monnier et al., 2006), reduce production of vasodilator
nitric oxide (Brownlee, 2005; Kameyama et al., 1994) and increase con-
centration of vasoconstrictor endothelin-1 (Kalani, 2008). In case of the
chronic exposure, such as in T2DM, these factors can lead to diminished
vessel wall elasticity and impaired CVR (Last et al., 2007).

Cognitive impairment associated with T2DM (Brands et al., 2007;
Manschot et al., 2007) and HTN (Dahle et al., 2009; Gifford et al.,
2013) is well established, although it is still debated whether structural
and/or vascular abnormalities play amediating role.We observed a sig-
nificant association between executive function and CThk in the superi-
or and middle frontal gyri, middle and inferior temporal gyri and
parietal regions. To our knowledge, this is the first study that examined
the correlation between cognitive function and regional CThk focusing
on individuals with T2DM and HTN. A study on a more general popula-
tion, however, identified similar regions of association between CThk
and executive function, namely in lateral prefrontal and parietal cortices
(Burzynska et al., 2012). Others have also observed a negative correla-
tion between subcortical atrophy and executive function and subcorti-
cal and cortical atrophy and information processing speed in
individuals with T2DM (Manschot et al., 2006). Finally, in a recent
large scale T2DM study,Moran et al. demonstrated that global graymat-
ter atrophy can mediate differences in cognitive performance between
individuals with and without T2DM, particularly in visuospatial memo-
ry and cognitive speed domains (Moran et al., 2013).

Although both T2DM and HTN are known to impact brain hemody-
namics no studies to date reported on the correlation between regional
CVR and cognitive function in this population. In the earlier T2DM stud-
ies global CVR (Brundel et al., 2012) and global baseline blood flow
(CBF) (Brundel et al., 2012; Tiehuis et al., 2008) were examined for cor-
relations with cognitive function. Similar to the results of the current
study, no correlation was detected between CVR and cognition
(Brundel et al., 2012), although CBFwas associatedwith executive func-
tion (Brundel et al., 2012; Tiehuis et al., 2008) and processing speed
(Brundel et al., 2012). Our findings in conjunction with this earlier
work suggest that CBF but not CVRmay act as a hemodynamicmediator
on cognitive function in adults with T2DM and HTN, but further re-
search is required.

In conclusion, our results demonstrate that CVR and CThk were able
to provide independent and converging evidence of the adverse effects
of combined T2DM and HTN, principally in the occipital lobes. Cortical
thickness was correlated with executive function, which argues for the
‘real world’ relevance of cortical thinning in this population. As such it
may serve as a useful imaging biomarker of cognitive decline in popula-
tions with commonly occurring HTN and T2DM.
5. Limitations

This study used a cross-sectional design, thus we can only speculate
on the causal relationship between CVR and cortical thinning in the spa-
tially overlapping occipital findings. Longitudinal studies are required to
address a possible link between these two brain measures. The study
was intentionally designed to exclude individualswith diabetes compli-
cations, such as retinopathy, neuropathy, and nephropathy, and study
participants were in reasonably good diabetes control. Further study is
needed to determine how these results extend to those with more se-
vere or poorly controlled diabetes. For example, others have reported
that retinopathy associates with greater CVR impairment (Last et al.,
2007).

Other limitations include the lack of information on hematocrit and
blood CO2 levels during the CVR experiment that may contribute to indi-
vidual CVRdifferences. AngiographicMRdatawere not available to judge
steno-occlusion of major vessels, which could also influence CVR. Our
CVR findingswere largely confined to occipital regions, whose functional
roles include processing visual information. Given that the breath hold
task instructions were displayed on the screen, it is possible that some
of the group differences may be attributed to neuronal activation differ-
ences. Structural changes were however detected in the same region,
which would suggest that there is a structural or neurovascular basis
for the differences observed between HTN + T2DM and HTN groups.

Higher blood pressure and cholesterols levels were observed in the
control HTN-only group. Although unexpected, this might be explained
by HTN + T2DM group selection criteria, with many participants con-
trolling their diabetes through diet and exercise and the fact that they
were in reasonably good metabolic control.
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