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We study affine operators on a unitary or Euclidean space U up to

topological conjugacy. An affine operator is a map f : U → U of

the form f (x) = Ax + b, in which A : U → U is a linear operator

and b ∈ U. Two affine operators f and g are said to be topologically

conjugate if g = h−1fh for some homeomorphism h : U → U.

If an affine operator f (x) = Ax + b has a fixed point, then f is

topologically conjugate to its linear part A. The problem of classi-

fying linear operators up to topological conjugacy was studied by

Kuiper and Robbin [Topological classification of linear endomor-

phisms, Invent. Math. 19 (2) (1973) 83–106] and other authors.

Let f : U → U be an affine operator without fixed point.

We prove that f is topologically conjugate to an affine operator

g : U → U such that U is an orthogonal direct sum of g-invariant

subspaces V andW,

• the restriction g|V of g to V is an affine operator that in some

orthonormal basis of V has the form

(x1, x2, . . . , xn) �→ (x1 + 1, x2, . . . , xn−1, εxn)

uniquely determined by f, where ε = 1 ifU is a unitary space,

ε = ±1 if U is a Euclidean space, and n� 2 if ε = −1, and

• the restriction g|W of g toW is a linear operator that in some

orthonormal basis ofW is given by a nilpotent Jordan matrix

uniquely determined by f, up to permutation of blocks.
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1. Introduction

We consider the problem of classifying affine operators on a unitary or Euclidean space V up to

topological conjugacy. An affine operator f : V → V is a mapping of the form f (x) = Ax + b, where

A : V → V is a linear operator and b ∈ V .

For simplicity, we always take V = Fn with F = C or R and the usual scalar product, then

f : Fn → Fn has the form

f (x) = Ax + b, A ∈ F n×n, b ∈ Fn.

Two affine operators f , g : Fn → Fn are said to be conjugate if there is a bijection h : Fn → Fn that

transforms f to g; that is,

g = h−1fh (with respect to function composition). (1)

They are

(a) linearly conjugate if h in (1) is a linear operator;

(b) affinely conjugate if h is an affine operator;

(c) biregularly conjugate if h is a biregular map, which means that h and h−1 have the form

(x1, . . . , xn) �→ (ϕ1(x1, . . . , xn), . . . ,ϕn(x1, . . . , xn)), (2)

in which all ϕi are polynomials over F;
(d) topologically conjugate if h is a homeomorphism, which means that h and h−1 are continuous and

bijective.

Conjugations (a)–(c) are topological. Moreover,

(a) ⇒ (b) ⇒ (c) ⇒ (d);
that is, linear conjugacy implies affine conjugacy implies biregular conjugacy implies topological

conjugacy.

Let us survey briefly known results on classifying affine operators up to conjugations (a)–(d):

(a) Each transformation of linear conjugacywith y = Ax + b corresponds to a change of the basis in

Fn and has the form

(A, b) �→ (S−1AS, S−1b), S ∈ Fn×n is nonsingular. (3)

A canonical formof affineoperatorswith respect to these transformations is easily constructed: if

F = C, thenwecan takeA in the Jordan canonical formand reduce bby those transformations (3)

that preserve A; that is, by transformations b �→ S−1b for which S−1AS = A. Since S commutes

with the Jordan matrix A, it has the form described in [[9], Section VIII, §1].

(b) Each transformation of affine conjugacy corresponds to an affine change of the basis inFn.We say

that an affine operator x �→ Ax + b is nonsingular if its matrix A is nonsingular. Blanc [1] proved

that nonsingular affine operators x �→ Ax + b and x �→ Cx + d over an algebraically closed field

of characteristic 0 are affinely conjugate if and only if their matrices A and C are similar; i.e.,

S−1AS = C for some nonsingular S.

(c) Blanc [1] also obtained classification of nonsingular affine operators over an algebraically closed

field K of characteristic 0 up to biregular conjugacy:

• two nonsingular affine operators over K with fixed points are biregularly conjugate if and

only if their matrices are similar (p is called a fixed point of f if f (p) = p);

• each nonsingular affine operator f : Kn → Kn without fixed point is biregularly conjugate

to an “almost-diagonal” affine operator

(x1, x2, . . . , xn) �→ (x1 + 1, λ2x2, . . . , λnxn), (4)

in which 1, λ2, . . . , λn ∈ K \ 0 are all eigenvalues of the matrix of f repeated according to

their multiplicities. The affine operator (4) is uniquely determined by f , up to permutation of

λ2, . . . , λn.
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(d) Affine operators on R2 were classified up to topological conjugacy by Ephrämowitsch [8]. In the

present paper, we extend this classification to affine operators on Rn and Cn.

In Sections 2 and 3, we classify affine operators of the following two types, respectively:

Type 1: affine operators that have fixed point and have no eigenvalue being a root of 1. The problem of

classifying affine operators with fixed point up to topological conjugacy is the problem of classifying

all linear operators up to topological conjugacy. Indeed, each linear operator x �→ Ax can be considered

as the affine operator x �→ Ax + 0 with the fixed point x = 0. Conversely, if affine operators are

considered up to topological conjugacy, then each x �→ Ax + b with a fixed point can be replaced

by its linear part x �→ Ax since by Lemma 2.1 from Section 2 they are topologically conjugate.

Kuiper and Robbin [14,16] obtained a criterion of topological conjugacy of linear operators over R
without eigenvalues that are roots of 1. In Theorem 2.2, we recall their criterion, extend it to linear

operators over C, and give a canonical form for topological conjugacy of a linear operator over R and

C without eigenvalues that are roots of 1.

For simplicity,we do not consider linear operatorswith an eigenvalue being a root of 1; the problem

of topological classification of such operators was studied by Kuiper and Robbin [14,16], Cappell and

Shaneson [3,4,5,6,7], Hsiang and Pardon [10], Madsen and Rothenberg [15], and Schultz [17].

Type 2: affine operators without fixed point.

In Theorem 3.1 we prove that each affine operator f over F = C or R without fixed point is

topologically conjugate to exactly one affine operator of the form

x �→ (Ik ⊕ J0)x + [1, 0, . . . , 0]T
or, only if F = R,

x �→ (Ik ⊕ [−1 ] ⊕ J0)x + [1, 0, . . . , 0]T ,
in which k � 1 and J0 is a nilpotent Jordan matrix uniquely determined by f , up to permutations of

blocks (J0 is absent if f is bijective).
For each squarematrix A over F ∈ {C,R}, there are a nonsingular matrix A∗ and a nilpotent matrix

A0 over F such that

A is similar to A∗ ⊕ A0, (5)

We summarize criteria of topological conjugacy of affine operators in the following theorem.

Theorem 1.1. Let f (x) = Ax + b and g(x) = Cx + d be affine operators over F = C or R.

• Suppose that f and g have fixed points. Then f and g are topologically conjugate if and only if x �→ Ax

and x �→ Cx are topologically conjugate.
• Suppose that f has a fixed point and g has no fixed point. Then f and g are not topologically conjugate.
• Suppose that f and g have no fixed points.

– If F = C then f and g are topologically conjugate if and only if A0 is similar to B0.
– If F = R then f and g are topologically conjugate if and only if the determinants of A∗ and C∗
have the same sign ( i.e., det(A∗C∗) > 0) and A0 is similar to C0.

2. Affine operators with fixed point

In this section, we give a canonical form under topological conjugacy of an affine operator

f (x) = Ax + b that has a fixed point and whose matrix A has no eigenvalue that is a root of unity.

We may, and will, consider only linear operators since the following lemma reduces the problem

of classifying affine operators with fixed point to the problem of classifying linear operators.

Lemma 2.1 [2]. An affine operator f (x) = Ax + b over C or R is topologically conjugate to its linear part

flin(x) = Ax if and only if f has a fixed point. If p is a fixed point of f , then

flin = h−1fh, h(x):=x + p.
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Proof. If f (p) = p, then Ap + b = p and

(h−1fh)(x) = (h−1f )(x + p) = h−1(A(x + p) + b)

= h−1(Ax + (p − b) + b) = h−1(Ax + p) = Ax = flin(x).

Conversely, if f and flin are topologically conjugate, then f and flin have the same number of fixed

points. Since flin(0) = 0, f has a fixed point too. �

For each λ ∈ C, write

Jn(λ):=

⎡
⎢⎢⎢⎣

λ 0

1 λ
. . .

. . .

0 1 λ

⎤
⎥⎥⎥⎦ (n-by-n).

For each n × n complex matrix A = [akl + bkli], akl, bkl ∈ R, we write

A = [akl − bkli] (6)

and denote by AR the realification of A; that is, the 2n × 2n real matrix obtained from A by replacing

each entry akl + bkli with the block

akl −bkl
bkl akl

(7)

Each square matrix A over F ∈ {C,R} is similar to

A0 ⊕ A01 ⊕ A1 ⊕ A1∞, (8)

in which all eigenvalues λ of A0 (respectively, A01, A1, and A1∞) satisfy the condition

λ = 0 (respectively, 0 < |λ| < 1, |λ| = 1, and |λ| > 1).

Note that A0 is the same as in (5) and A01 ⊕ A1 ⊕ A1∞ is similar to A∗ in (5).

In this section, we prove the following theorem; its part (a) in the caseF = Rwas proved by Kuiper

and Robbin [14,16].

Theorem 2.2. (a) Let f (x) = Ax and g(x) = Bx be linear operators over F = R or C without eigenvalues

that are roots of unity, and let A0, . . . , A1∞ and B0, . . . , B1∞ be constructed by A and B as in (8).

(i) If F = R then f and g are topologically conjugate if and only if

A0 is similar to B0, size A01 = size B01, det(A01B01) > 0,

A1 is similar to B1, size A1∞ = size B1∞, det(A1∞B1∞) > 0.
(9)

(ii) If F = C then f and g are topologically conjugate if and only if

A0 is similar to B0, size A01 = size B01,

A1 ⊕ A1 is similar to B1 ⊕ B1, size A1∞ = size B1∞.
(10)

(b) Each linear operator over F = R or C without eigenvalues that are roots of unity is topologically

conjugate to a linear operator whose matrix is a direct sum that is uniquely determined up to permutation

of summands and consists of

(i) in the case F = R :
• any number of summands

Jk(0), [ 1/2 ], Jk(λ)R, [ 2 ] (11)
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([ 1/2 ] and [ 2 ] are the 1 × 1 matrices with the entries 1/2 and 2), in which λ is a complex

number of modulus 1 that is determined up to replacement by λ̄ and that is not a root of unity,

• at most one 1 × 1 summand [ −1/2 ], and
• at most one 1 × 1 summand [ −2 ];

(ii) in the case F = C :
Jk(0), [ 1/2 ], Jk(λ), [ 2 ], (12)

in which λ is a complex number of modulus 1 that is determined up to replacement by λ̄ and that is

not a root of unity.

Proof. (a) The statement (i) was proved by Kuiper and Robbin [14,16]. Let us prove (ii).

The abelian group V = Cn with respect to addition can be considered both as the n-dimensional

vector space VC over C and as the 2n-dimensional vector space VR over R. Moreover, we can consider

VC as a unitary space with the orthonormal basis

e1 = [1, 0, . . . , 0]T , e2 = [0, 1, . . . , 0]T , . . . , en = [0, 0, . . . , 1]T , (13)

and VR as a Euclidean space with the orthonormal basis

e1, ie1, e2, ie2, . . . , en, ien. (14)

For each

v = (α1 + β1i)e1 + · · · + (αn + βni)en ∈ V, αk,βk ∈ R,

its length in VC and in VR is the same:

|v| = (α2
1 + β2

1 + · · · + α2
n + β2

n )
1/2.

Thus,

a mapping h : V → V is a homeomorphism of VC if and only if h is a

homeomorphism of VR.
(15)

Each linear operator f : VC → VC defines the linear operator fR : VR → VR (f and fR coincide as

mappings on the abelian group V). By (15),

two linear operators f , g : VC → VC are topologically conjugate if and

only if fR, gR : VR → VR are topologically conjugate.
(16)

Let f (x) = Ax and g(x) = Bx be linear operators on VC without eigenvalues that are roots of unity.

Clearly, A and B are their matrices in the orthonormal basis (13). Considering f and g as the linear

operators fR and gR of VR, we find that thematrices of fR and gR in the basis (14) are the realifications

AR and BR of A and B (see (7)).

Since

S−1AS = A0 ⊕ A01 ⊕ A1 ⊕ A1∞
for some nonsingular S, we have

(SR)−1ARSR = AR
0 ⊕ AR

01 ⊕ AR
1 ⊕ AR

1∞.

Analogously,

BR is similar to BR
0 ⊕ BR

01 ⊕ BR
1 ⊕ BR

1∞.

By (16) and the statement (i) of Theorem 2.2(a), f and g are topologically conjugate if and only if fR

and gR are topologically conjugate if and only if

AR
0 is similar to BR

0 , size AR
01 = size BR

01, det(AR
01B

R
01) > 0,

AR
1 is similar to BR

1 , size AR
1∞ = size BR

1∞, det(AR
1∞BR

1∞) > 0.
(17)



T. Budnitska / Linear Algebra and its Applications 434 (2011) 582–592 587

For each complex matrixM, its realification MR is similar to M ⊕ M (see (6)) because

[
1 1

−i i

]−1 [
a −b

b a

] [
1 1

−i i

]
=

[
a + bi 0

0 a − bi

]
.

Since the Jordan canonical form of A0 is a nilpotent Jordan matrix, A0 is similar to A0. Thus, the

condition “AR
0 is similar toBR

0 ” is equivalent to thecondition “A0 ⊕ A0 is similar toB0 ⊕ B0” is equivalent

to the condition “A0 is similar to B0”. The condition “ size AR
01 = size BR

01” is equivalent to the condition

“ size A01 = size B01”. The condition “det(AR
01B

R
01) > 0” always holds since

det(AR
01B

R
01) = det(A01B01)

R = det(A01B01 ⊕ A01B01) > 0.

We consider the remaining 3 conditions in (17) analogously and get that (17) is equivalent to (10),

which proves the statement (ii).

(b) This statement follows from (a) and the theorems about Jordan canonical form and real Jordan

canonical form [[11], Theorems 3.1.11 and 3.4.5]. �

3. Affine operators without fixed points

In this section, we prove the following theorem, which gives a criterion of topological conjugacy

and a canonical form under topological conjugacy for affine operators that have no fixed points.

Theorem 3.1. (a) Let f (x) = Ax + b and g(x) = Cx + d be affine operators over F = C or R without

fixed points. Let A∗,A0 and C∗, C0 be constructed by A and C as in (5).

• If F = C then f and g are topologically conjugate if and only if A0 is similar to B0.• If F = R then f and g are topologically conjugate if and only if the determinants of A∗ and C∗ have

the same sign ( i.e., det(A∗C∗) > 0) and A0 is similar to C0.

(b) Each affine operator f over F = C or R without fixed point is topologically conjugate to exactly one

affine operator of the form

x �→ (Ik ⊕ J0)x + [1, 0, . . . , 0]T (18)

or , only if F = R,

x �→ (Ik ⊕ [−1 ] ⊕ J0)x + [1, 0, . . . , 0]T , (19)

in which k � 1 and J0 is a nilpotent Jordan matrix determined by f uniquely, up to permutations of blocks

(J0 is absent if f is bijective).

We give an affine operator f (x) = Ax + b by the pair (A, b) and write f = (A, b).
For twoaffineoperators f : Fm → Fm and g : Fn → Fn,define the affineoperator f ⊕ g : Fm+n →

Fm+n by

(f ⊕ g)

[
x

y

]
:=

[
f (x)
g(y)

]
;

that is,

(A, b) ⊕ (C, d) =
([

A 0

0 C

]
,

[
b

d

])
.

We write f
F∼ g if f and g are topologically conjugate over F. Clearly,

f
F∼ f ′ and g

F∼ g′ �⇒ f ⊕ g
F∼ f ′ ⊕ g′. (20)
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3.1. Reduction to the canonical form

In this section, we sequentially reduce an affine operator y = Ax + b over F = C or R without

fixed point by transformations of topological conjugacy to (18) or (19).

Step 1: reduce y = Ax + b to the form

p⊕
i=1

(Jmi
(1), ai) ⊕

r⊕
i=p+1

(Jmi
(1), ai) ⊕ (J0, s) ⊕ (B, c), (21)

inwhich J0 is the Jordan canonical formof A0 (see (5)), 1 and0 are not eigenvalues of B, each of a1, . . . , ap
has a nonzero first coordinate, each of ap+1, . . . , ar has the zero first coordinate.

Wemake this reduction by transformations of linear conjugacy (3) over F.
Step 2: reduce (21) to the form

p⊕
i=1

(Jmi
(1), ai) ⊕

r⊕
i=p+1

(Jmi
(1), 0) ⊕ (J0, 0) ⊕ (B, 0), (22)

in which every ai has a nonzero first coordinate.

Wemake this reduction by using (20) and the conjugations

(Jm(1), a)
F∼ (Jm(1), 0), (J0, s)

F∼ (J0, 0), (B, c)
F∼ (B, 0), (23)

in which the first coordinate of a is zero. The conjugations (23) hold by Lemma 2.1 since (Jm(1), a),
(J0, s), and (B, c) have fixed points (for example, (Jm(1), a) has a fixed point, which is a solution of the

system Jm(1)x + a = x; i.e., of the system Jm(0)x = −a).

Note that p� 1 since otherwise (22) is a linear operator with the fixed point 0, but f has no fixed

point.

Step 3: reduce (22) to the form

p⊕
i=1

(Jmi
(1), e1) ⊕ (C, 0) ⊕ (J0, 0), (24)

in which e1 = [1, 0, . . . , 0]T and C := ⊕r
i=p+1 Jmi

(1) ⊕ B is nonsingular.

We use the conjugation

(Jm(1), a)
F∼ (Jm(1), e1), (25)

in which the first coordinate of a is nonzero; that is, a is represented in the form

a = b[1, a2, . . . , an]T , b /= 0.

The conjugation (25) is linear (see (3)); it holds since

(SJm(1)S−1, Se1) = (Jm(1), a)

for

S = b

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

a2 1

a3 a2 1

. . .
. . .

. . .
. . .

an
. . . a3 a2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 4: reduce (24) to the form

p⊕
i=1

(Imi
, e1) ⊕ (C, 0) ⊕ (J0, 0). (26)
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We use the conjugation

(Jm(1), e1)
F∼ (Im, e1), (27)

which was constructed by Blanc [1]; he proved that

h(Jm(1), e1) = (Im, e1)h,

in which the homeomorphism h : Fm → Fm is biregular (see (2)) and is defined by

h : (x1, . . . , xm) �→ (x1, x2 + P1, x3 + P2, . . . , xm + Pm−1)

with

Pk :=(−1)k
(
x1 + k − 1

k + 1

)
k +

k−1∑
i=1

(−1)i
(
x1 + i − 1

i

)
xk+1−i

and (
ϕ
r

)
:= ϕ(ϕ − 1)(ϕ − 2) · · · (ϕ − r + 1)

r! for each ϕ ∈ F[x1].
Step 5: reduce (26) to the form

(I1, [1]) ⊕ (D, 0) ⊕ (J0, 0), (28)

in which D := I ⊕ C is nonsingular.

We use the conjugations

p⊕
i=1

(Imi
, e1)

F∼ (Ip, [1, . . . , 1]T ) ⊕ (Iq, 0)
F∼ (I1, [1]) ⊕ (Iq+p−1, 0);

the last conjugacy holds since (I2, [1, 1]T ) F∼ (I2, e1), which follows from(
S−1I2S, S

−1

[
1

1

])
= (I2, e1), S :=

[
1 0

1 1

]
(see (3)).

Step 6: reduce (28) to the form (18) or (19). In this step we consider two cases.

Case F = R. For ε = ±1 and each nonsingular real m × m matrix F that has an even number of

Jordan blocks of each size for every negative eigenvalue, we have the conjugation

f
R∼ g, f := (I1, [1]) ⊕ (εF, 0), g := (I1, [1]) ⊕ (εIm, 0). (29)

Indeed, g = h−1fh for the mapping h : Rm+1 → Rm+1 defined by

h :
[
x

y

]
�→

[
x

εFxy

]
, x ∈ R, y ∈ Rm

since

hg

[
x

y

]
= h

[
x + 1

εy

]
=

[
x + 1

ε2Fx+1y

]
= f

[
x

εFxy

]
= fh

[
x

y

]
.

The mapping h is a homeomorphism since

• h is continuous because the series

Fx = exG = I + xG + (xG)2

2! + (xG)3

3! + · · · (30)

has indefinite radius of convergence, where G is a real matrix such that F = eG (it exists since

by [[12], Theorem 6.4.15(c)] for a real M there is a real N such that M = eN if and only if M is

nonsingular and has an even number of Jordan blocks of each size for every negative eigenvalue);
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• the inverse mapping

h :
[
x

y

]
�→

[
x

εF−xy

]
, x ∈ R, y ∈ Rm

is continuous too.

This proves (29).

Applying transformations of linear conjugation (3) to (28), we reduce D to the form P ⊕ (−Q), in
which P is a nonsingular real p × p matrix without negative real eigenvalues, and Q is a nonsingular

real q × qmatrixwhose eigenvalues are positive real numbers. The affine operator (28) takes the form

(I1, [1]) ⊕ (P, 0) ⊕ (−Q, 0) ⊕ (J0, 0);
by (20) and (29), it is topologically conjugate to

(I1, [1]) ⊕ (Ip, 0) ⊕ (−Iq, 0) ⊕ (J0, 0). (31)

Taking ε = 1 and F = −I2 in (29), we obtain

(I1, [1]) ⊕ (−I2, 0)
R∼(I3, e1).

Applying this conjugation several times, we reduce (31) to the form (18) or (19). We have proved

that each affine operator over R without fixed point is topologically conjugate to (18) or (19).

Case F = C. Let us prove that

f
C∼ g, f := (I1, [1]) ⊕ (D, 0), g := (I1, [1]) ⊕ (Im, 0), (32)

inwhichD is thenonsingular complexm × mmatrix from(28). Indeed,g = h−1fh,whereh : Cm+1 →
Cm+1 is defined by

h :
[
x

y

]
�→

[
x

Dxy

]
, x ∈ C, y ∈ Cm.

The mapping h is a homeomorphism since Dx is represented in the form (30) with F := D (the

matrix G exists since by [[12], Theorem 6.4.15(a)] if M is nonsingular then there is a complex N such

thatM = eN).

This proves (32). Using it, reduce (28) to the form (18). We have proved that each affine operator

over C without fixed point is topologically conjugate to (18).

3.2. Uniqueness of the canonical form

In this section, we prove the uniqueness of the canonical form defined in Theorem 3.1(b).

Let f and g be two affine operators of the form (18) or (19); that is,

f = f∗ ⊕ f0, f∗ = (I(ε), e1) : Fp → Fp, f0 = (J0, 0) : Fn−p → Fn−p,

and

g = g∗ ⊕ g0, g∗ = (I(δ), e1) : Fq → Fq, g0 = (J′0, 0) : Fn−q → Fn−q,

in which ε, δ = ±1,

I(1) := I, I(−1) := I ⊕ [−1 ],
and J0 and J′0 are nilpotent Jordan matrices. Let f and g be topologically conjugate.

For each i = 1, 2, . . ., the images of f i and gi are the sets

Vi := f iFn = Fp ⊕ Ji0Fn−p, Wi :=giFn = Fq ⊕ J′i0Fn−q,

and so they are vector subspaces of Fn of dimensions
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dim Vi = p + rank Ji0, dimWi = q + rank J′i0 . (33)

Since f and g are topologically conjugate, there exists a homeomorphism h : Fn → Fn such that

hf = gh. Then

hf i = gih, hf iFn = gih Fn = giFn, h Vi = Wi. (34)

By [13], each two homeomorphic vector spaces have the same dimension; that is, the last equality

implies

dim Vi = dimWi, i = 1, 2, . . .

Fix any odd integer m�max(n − p, n − q). Then Jm0 = J′m0 = 0 and by (33)

p = dim Vm = dimWm = q.

Thus, f∗ = (I(ε), e1) and g∗ = (I(δ), e1) are affine bijections V∗ → V∗ on the same space

V∗ :=Vm = Wm = Fp.

By (34), the restrictionofh toV∗ gives somehomeomorphismh∗ : V∗ → V∗. Restricting theequality
hf = gh to V∗, we obtain

h∗f∗ = g∗h∗. (35)

Therefore, f∗ and g∗ are topologically conjugate.

If F = C, then ε = δ = 1.

Let F = R. For each homeomorphism ϕ on a Euclidean space, write o(ϕ) = 1 or −1 if it is orien-

tation preserving or reversing. In particular, if ϕ is a nonsingular affine operator (A, b), then

o(ϕ) =
{

1 if det A > 0,

−1 if det A < 0.

By (35),

o(h∗f∗) = o(g∗h∗), o(h∗)o(f∗) = o(g∗)o(h∗), o(h∗)ε = δo(h∗),
and so ε = δ.

The nilpotent Jordanmatrices J0 and J′0 coincide up to permutation of blocks since by (33) the number

of their Jordan blocks is equal to n − dim V1, the number of their Jordan blocks of size ≥ 2 is equal to

(n − dim V2) − (n − dim V1), the number of their Jordanblocks of size≥ 3 is equal to (n − dim V3) −
(n − dim V2), and so on.

Thus, ε = δ and f coincides with g up to permutation of blocks in J0 and J′0.

3.3. Conclusion

Let f (x) = Ax + b be an affine operator over F ∈ {C,R}.
We have showed in Sections 3.1 and 3.2 that f is topologically conjugate to exactly one affine

operator of the form (18) or (19), which proves the statement (b) of Theorem 3.1.

Let A∗ and A0 be any nonsingular and nilpotent parts of A defined in (5). Using the reduction of f to

the canonical form described in Section 3.1, we find that

• f reduces to the form (18) if F = R and det A∗ > 0, or if F = C.

• f reduces to the form (19) if F = R and det A∗ < 0,

and J0 in (18) and (19) is the Jordan canonical form of A0. This proves the statement (a) of Theorem 3.1.

Corollary 3.2. An affine operator f (x) = Ax + b over C and R has no fixed point if and only if it is linearly

conjugate to an affine operator of the form
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g(x) = (Jk(1) ⊕ C)x + d, (36)

in which d has a nonzero first coordinate.

Indeed, (36) has no fixed point since the first coordinates of g(v) and v are distinct for all v.

Conversely, if f (x) = Ax + b has no fixed point, then it is linearly conjugate to an affine operator

of the form (21), in which p� 1 by Step 2.
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