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PAI-1 deficiency reduces liver fibrosis after bile duct ligation in
mice through activation of tPA
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Abstract Plasminogen activator inhibitor-1 (PAI-1) increases
injury in several liver, lung and kidney disease models. The objec-
tive of this investigation was to assess the effect of PAI-1 defi-
ciency on cholestatic liver fibrosis and determine PAI-1
influenced fibrogenic mechanisms. We found that PAI-1�/� mice
had less fibrosis than wild type (WT) mice after bile duct liga-
tion. This change correlated with increased tissue-type plasmin-
ogen activator (tPA) activity, and increased matrix
metalloproteinase-9 (MMP-9), but not MMP-2 activity. Fur-
thermore, there was increased activation of the tPA substrate
hepatocyte growth factor (HGF), a known anti-fibrogenic pro-
tein. In contrast, there was no difference in hepatic urokinase
plasminogen activator (uPA) or plasmin activities between
PAI-1�/� and WT mice. There was also no difference in the level
of transforming growth factor beta 1 (TGF-b1), stellate cell acti-
vation or collagen production between WT and PAI-1�/� ani-
mals. In conclusion, PAI-1 deficiency reduces hepatic fibrosis
after bile duct obstruction mainly through the activation of
tPA and HGF.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Liver fibrosis is the final common pathway leading to liver

failure after many different types of injury. The process from

initial insult to cirrhosis is a complex progression of necrosis/

apoptosis, cell proliferation, inflammation and extracellular

matrix deposition. Each aspect is controlled by specific molec-

ular mediators. Many of these mediators, including matrix
Abbreviations: BDL, Bile duct ligation; HGF, hepatocyte growth
factor; MMP, matrix metalloproteinase; PAI-1, plasminogen activator
inhibitor-1; qRT-PCR, quantitative real time reverse transcriptase
polymerase chain reaction; TGF-b1, transforming growth factor-beta
1; tPA, tissue-type plasminogen activator; uPA, urokinase plasmino-
gen activator; WT, wild type
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metalloproteinases (MMPs), transforming growth factor-beta

1 (TGF-b1) and hepatocyte growth (HGF), are produced as

inactive precursors requiring proteolytic cleavage for activa-

tion. Therefore, controlled protease activity is essential in cel-

lular responses and extracellular matrix (ECM) remodeling

[1,2].

The plasmin protease system, consisting of plasminogen

activator inhibitor-1 (PAI-1), urokinase plasminogen activator

(uPA), tissue-type plasminogen activator (tPA) and plasmin, is

best understood for its role in blood fibrinolysis [3]. PAI-1 pre-

vents the over-production of plasmin by blocking the activity

of tPA and uPA, proteases that convert the inactive protease

plasminogen to the active protease plasmin. PAI-1 is also

important in tissue remodeling and cell migration associated

with tissue repair [4]. For example, studies of PAI-1 over-

expression in transgenic mice demonstrate that PAI-1 pro-

motes fibrin deposition and organ fibrosis [5,6]. In contrast,

PAI-1 deficiency in mice attenuates kidney and lung fibrosis

[6,7].

It was recently reported that PAI-1 deficiency also reduces

liver injury [2] and fibrogenesis [8] in early stages (3–14 days)

after bile duct ligation (BDL). These studies demonstrate that

PAI-1 expression was significantly elevated early after BDL

and that PAI-1 increases neutrophil infiltration and reduces

pro-HGF processing in mice. Furthermore, one of these stud-

ies demonstrated that PAI-1 deficient mice have less collagen

accumulation in the liver 2 weeks after BDL than wild type

(WT) animals [8]. Whether PAI-1 deficiency results in less

fibrosis at later time points after BDL is unknown, and the

mechanism of reduced fibrosis in PAI-1�/� mice after BDL re-

mains poorly understood. For example, PAI-1 deficiency

might be expected to increase the activity of plasminogen acti-

vators (tPA and uPA) and the conversion of plasminogen to

plasmin. Since plasmin is a potent activator of transforming

growth factor b1, a major pro-fibrogenic protein, it might also

be predicted that PAI-1 deficient mice would have elevated lev-

els of activated TGFb1, but this has not yet been evaluated.

Thus, mechanisms that influence fibrogenesis in WT and

PAI-1 deficient mice need additional study.

To clarify the role of PAI-1 in hepatic fibrosis after biliary

tract obstruction at times with more established fibrosis, we

have now determined the extent of activation of tPA, uPA,

plasmin and their substrates in mice 3 weeks after BDL. We

also determined the degree of collagen accumulation in WT

and PAI-1�/� mice at this time point. In agreement with the

prior report [8], the current investigation demonstrates that he-
blished by Elsevier B.V. All rights reserved.
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patic fibrosis is reduced in PAI-1�/� mice 3 weeks after BDL

and that tPA activation is increased after BDL in PAI-1�/�

compared to WT mice. This tPA activation correlates with

the activation of known tPA substrates MMP9 and HGF, pro-

teins that should reduce hepatic fibrosis. However, in contrast

to the study by Bergheim et al. we find that uPA and plasmin

levels are equivalent in PAI-1�/� and WT mice after BDL.

Supporting these data is the observation that uPA and plasmin

substrates MMP2 and TGF-b1 are also equivalent in WT and

PAI-1�/� mice after BDL. Thus, for the first time, we

demonstrate a distinct role of tPA, instead of uPA, in PAI-1

associated liver fibrosis. These data suggest that PAI-1 is

pro-fibrogenic primarily because it reduces tPA activation

after BDL.
2. Materials and methods

2.1. Mouse model
Male 8–10 weeks old (22–26 g) WT (#0664) and PAI-1�/� C57BL/6J

mice (#2507) from the Jackson Laboratory (Bar Harbor, ME) under-
went BDL. The common bile duct was double ligated below the bifur-
cation, single ligated above the pancreas and transected between the
ligatures under methoxyflurane (Schering-Plough Co., Union, NJ)
anesthesia. Sham mice underwent similar laparotomy without BDL.
Three to five mice of each genotype with sham surgery and 5–7 mice
of each genotype with BDL at each time point were sacrificed to obtain
blood and liver samples. The use and humane care of mice were ap-
proved by Washington University’s Animal Care Committee.

2.2. Fibrosis analysis
Morphometric analysis of Masson’s trichrome and Sirius red stained

liver sections [9] was performed on digital images (40·) of entire liver
sections using NIH imageJ 1.30 (NIH, Bethesda, MD). Fibrotic area
% = [collagen area/(total area � vascular lumen area)] · 100%.
Hydroxyproline content was measured colorimetrically [9,10] with
comparison to LL-hydroxyproline standards.

2.3. HGF and smooth muscle a-actin (a-SMA) immunoblot
HGF immunoblot and a-SMA immunoblot analysis was performed

as described [2]. Primary antibodies: anti-human a-SMA (1:100, clone
1A4, Dako) [11], goat polyclonal anti-human a-HGF antibody (1:100,
N-17, Santa Cruz) [12,13].

2.4. a-SMA immunohistochemistry
Activated stellate cell marker a-SMA antibody (1:500, clone 1A4,

Dako) [9] was used with secondary biotinylated IgG and Tyramide
amplification (NEN Life Science Products, Boston, MA). Morphomet-
ric analysis were performed as described above.

2.5. MMP-2, MMP-9, tPA, uPA and plasmin activity
Casein and plasminogen zymography for tPA, uPA and plasmin

activities was performed as described [2]. For MMP activity, gelatin
zymography was performed similarly except 10% Novex Zymogram
Table 1
Primers used for qRT-PCR

Gene symbol UniGene name

GAPDH Glyceraldehyde-3-phosphate dehyd

Col1-a1 Procollagen I alpha 1

a-SMA Smooth muscle actin, alpha 2

a50to 3 0 sequences; f = forward primer; r = reverse-strand primer.
gels containing 0.1% gelatin (Invitrogen, Carlsbad, CA) were used. He-
patic plasmin activity was also measured using a fluorogenic substrate
as described [2].

2.6. TGF-b1 immunoassay (EIA)
Two hundred microgram liver homogenate protein was analyzed for

TGF-b1 using a Quantikine TGF-b1 EIA kit (R&D Systems Inc.,
Minneapolis, MN). Latent TGF-b1 was activated in 40 lL samples
with 1 N HCl (9 lL) and later neutralized with 1.2 N NaOH (6 lL).

2.7. Quantitative real time reverse transcriptase polymerase chain
reaction (qRT-PCR)

mRNA isolated using Micro-FastTrack 2.0 mRNA kit (Invitrogen,
Carlsbad, CA) was reverse transcribed (SMART� PCR cDNA syn-
thesis kit, Clontech Inc., Palo Alto, CA). qRT-PCR was performed
in duplicate using SYBR green PCR Master mix (Applied Biosystems)
and an iCycler iQ (Bio-Rad). Primers are in Table 1 and Ref. [2]. RNA
content was normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) mRNA.

2.8. Statistical analysis
Data were reported as mean ± S.E.M. Statistical analyses used Stu-

dent t test or Mann–Whitney rank sum test. P < 0.05 was considered
significant.
3. Results

3.1. PAI-1 mRNA level remains elevated after BDL

The final common pathway for many types of liver injury in-

cludes stellate cell activation and collagen accumulation, even-

tually resulting in cirrhosis. Although PAI-1 mRNA was

previously reported to be elevated shortly after BDL [2,8],

whether PAI-1 elevation persists is not yet known. To deter-

mine if PAI-1 mRNA levels remain elevated 3 weeks after

BDL, qRT-PCR was performed and demonstrated a marked

elevation in PAI-1 mRNA compared to sham operated mice

(fold change: BDL 41.7 ± 11.0 versus sham surgery 1.1 ± 0.1,

P < 0.01). This suggests that persistent PAI-1 elevation may

contribute to long-term changes in the liver in the setting of

extrahepatic cholestasis.

3.2. PAI-1 deficiency reduces hepatic fibrosis after BDL

An earlier report suggested that PAI-1 deficiency reduces he-

patic fibrosis 2 weeks after BDL [8]. To confirm and extend

this observation, morphometric analysis of collagen deposition

as demonstrated by Sirius Red and Masson’s trichrome was

performed on liver section obtained 3 weeks after BDL in

WT and PAI-1�/� mice (Fig. 1A–C). This analysis demon-

strated 18–26% reductions in hepatic fibrosis after BDL

(P 6 0.03) in PAI-1�/� compared to WT mice, but compara-

ble hepatic collagen content after sham surgery. The reduced
Sequencesa

rogenase f AACTTTGGCATTGTGGAAGG
r GTCTTCTGGGTGGCAGTGAT

f GAACAGGGTGTTCCTGGAGA
r GGAAACCTCTCTCGCCTCTT

f ATGAAGCCCAGAGCAAGAGA
r ATGTCGTCCCAGTTGGTGAT



Fig. 1. Hepatic collagen content is lower in PAI-1�/� than in WT mice
after BDL. (A) Representative Sirius red stained liver sections were
obtained 3 weeks after BDL (40·, Scale bar = 300 lm). (B, C)
Quantitative image analysis of collagen fibers with Masson’s trichrome
or Sirius red staining 3 weeks after BDL demonstrates that PAI-1�/�

mice develop less fibrosis than WT animals. (D) Quantitative analysis
of hepatic hydroxyproline content in liver tissue 3 weeks after BDL
confirms reduced collagen content in PAI-1�/� compared to WT mice.
Data represent means ± S.E.M. for 3–5 sham and 5–7 BDL mice.
#P 6 0.03 versus WT. *P < 0.001 versus sham of the same genotype.

Fig. 2. Gel zymography analysis of tPA, uPA, and plasmin activity in
WT and PAI-1�/� mice. (A) Casein/plasminogen zymography dem-
onstrated the level of active uPA, tPA and plasmin in the liver at 3
weeks after BDL. (B) Quantitative analysis of casein/plasminogen
zymography demonstrated increased tPA activity in the liver of PAI-
1�/� versus WT animals after BDL, but no significant differences in
uPA or plasmin activity after BDL and no difference in tPA, uPA or
plasmin activity after sham surgery. Data represent means ± S.E.M.
for 3–5 sham and 5–7 BDL mice. *P 6 0.02 versus WT.
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collagen accumulation in PAI-1�/� mice after BDL was also

confirmed by measuring hepatic hydroxyproline content

(Fig. 1D). Thus, consistent with a previous report [8], PAI-1

deficiency attenuates liver fibrosis at later time points after

BDL.

3.3. PAI-1 deficiency increases tPA activity after BDL, but not

uPA or plasmin activity

PAI-1 inhibits tPA and uPA. Since tPA and uPA are plas-

minogen activators, it might also be expected that PAI-1

would inhibit plasminogen activation as it does in classically

described fibrinolytic pathways [3]. Indeed, another group re-
cently reported that both uPA and tPA activity were elevated

in PAI-1�/� compared to WT mice after BDL [8]. In contrast,

we had previously found that tPA activity was elevated in PAI-

1�/� compared to WT mice, but uPA and plasmin activity

were equivalent [2]. To determine if tPA and uPA are activated

in a more established liver fibrosis model, we measured the

activity of these proteins and their mRNA levels in PAI-1�/�

and WT mouse liver 3 weeks after BDL using casein/plasmin-

ogen zymography and qRT-PCR, respectively. These studies

demonstrated equivalent tPA and uPA mRNA levels in WT

and PAI-1�/� mice after BDL. Furthermore, although uPA

enzymatic activity was not statistically different between WT

and PAI-1�/� mice, tPA enzymatic activity was 43% higher

in PAI-1�/� than WT mice 3 weeks after BDL (Fig. 2,

P = 0.02), but comparable in WT and PAI-1�/� after sham

surgery. Together these data suggest that PAI-1 is an impor-

tant regulator of tPA activity after cholestatic liver injury,

but that uPA activity is primarily controlled by other mecha-

nisms.

Because tPA activates plasminogen by proteolysis to plas-

min, one might hypothesize that increased tPA activity in

PAI-1�/� mice after BDL would cause higher plasmin activity.

To test this hypothesis we measured hepatic plasmin activity
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by casein gel zymography (Fig. 2), but found similar plasmin

activity levels in WT and in PAI-1�/� mice 3 weeks after

BDL. These findings were confirmed using a fluorogenic plas-

min substrate assay (data not shown). Plasminogen mRNA

levels were also equivalent in WT and PAI-1�/� mice after

BDL. Together these data suggest that mechanisms other than

PAI-1 control hepatic plasmin activity after BDL.
3.4. TGF-b1 activation, stellate cell activation and collagen

synthesis are equivalent in PAI-1�/� and WT mice before

and after BDL

The extent of fibrosis depends on rates of collagen synthesis

and degradation. Because PAI-1�/� mice have reduced colla-

gen accumulation after BDL, we were interested in determin-

ing whether rates of collagen production were also reduced.

Stellate cell activation is an important mechanism of hepatic

fibrogenesis and TGF-b1, a key stellate cell activator, is pro-

duced as an inactive precursor that can be activated by plas-

min. Active and latent TGF-b1 levels were therefore

measured in liver homogenates by enzyme immunoassay.

Although active and latent TGF-b1 were elevated at 1 and 3

weeks after BDL compared to sham surgery (Fig. 3A), PAI-

1 deficiency, did not influence the level of active or latent

TGF-b1 in liver homogenates. Pro-collagen I alpha 1 mRNA

levels were also comparable in WT and PAI-1�/� mice after

BDL (Fig. 3B).

To evaluate stellate cell activation, we performed liver

immunohistochemistry for the activated stellate cell marker

a-SMA. While hepatic a-SMA+ cells increased dramati-

cally after BDL, there was no difference between WT and

PAI-1�/� mice (Fig. 4A and B). These results were confirmed

by measuring a-SMA mRNA using qRT-PCR (Fig. 4C) and
Fig. 3. TGF-b1 activation and pro-collagen I a1 mRNA production
are equivalent in WT and PAI-1�/� mice after BDL. (A) Active and
latent hepatic TGF-b1 levels as measured by EIA are equal in WT and
PAI-1�/� mice at 1 and 3 weeks after BDL. (B) Pro-collagen I a 1
mRNA levels as evaluated by qRT-PCR are equal at 1 week and 3
weeks after BDL in WT and PAI-1�/� mice. Data represent
means ± S.E.M. for 3–5 sham and 5–7 BDL mice. #P < 0.01 versus
sham mice of the same genotype.

ig. 4. Stellate cell activation is equivalent in WT and PAI-1�/� mice
fter BDL. (A) Stellate cell activation 3 weeks after BDL was
valuated by a-SMA immunohistochemistry (100·, scale bar =
50 lm) and cell morphology. Arrows show a-SMA expression in
lood vessels. Inserts with arrow head show the morphology of
ctivated stellate cells (scale bar = 50 lm). (B) Quantitative image
nalysis of a-SMA positive area 3 weeks after BDL demonstrates that
AI-1�/� and WT mice have equivalent amount of stellate cell
ctivation. (C) Quantitative real-time PCR demonstrates that mRNA
xpression of a-SMA in liver 3 weeks after BDL is equivalent in PAI-
�/� and WT mice. (D) Hepatic a-SMA levels determined by protein

munoblot analysis are equivalent in WT and PAI-1�/� mice at 1
eek and 3 weeks after BDL. Data represent means ± S.E.M. for 3–5

ham and 5–7 BDL mice. #P < 0.01 versus sham mice of the same
enotype.
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by protein immunoblot analysis (Fig. 4D). Collectively these

data demonstrate that PAI-1 deficiency does not influence he-

patic collagen accumulation by affecting collagen production

or stellate cell activation.
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3.5. MMP9 levels are higher in PAI-1�/� than WT mice after

BDL

Because PAI-1 deficiency does not alter collagen production

after BDL, we hypothesized that reduced fibrosis in PAI-1�/�

mice was due to increased collagen degradation. Since tPA in-

creases MMP-9 synthesis [14] while uPA increases both MMP-

2 and MMP-9 activity [15,16], we measured MMP-2 and

MMP-9 activity in liver homogenates 3 weeks after BDL using

gelatin zymography. Both pro-MMP-9 and MMP-9 were sig-

nificantly elevated in PAI-1�/� compared to WT liver

(Fig. 5). In contrast, pro-MMP2 and MMP2 levels were com-

parable in WT and PAI-1�/�mice. Collectively, these data sug-

gest that reduced collagen accumulation in PAI-1�/�mice after

BDL results from increased collagen degradation rather than

reduced collagen synthesis.
Fig. 5. Gel zymography analysis of MMP-9 and MMP-2 activity in
WT and PAI-1�/�mice. (A, B) Gelatin zymography demonstrated both
active and pro-MMP proteins (MMP-2 and MMP-9) in the liver after
BDL. (A) Zymogram was incubated 18 h to demonstrate MMP-9
activity. (B) Zymogram was incubated for 42 h to demonstrate MMP-2
activity. (C) Quantitative analysis of gelatin zymography demonstrates
increased MMP-9, but not increased MMP-2 levels in PAI-1�/� mice
compared to WT animals 3 weeks after BDL. Data represent
means ± S.E.M. for 5–7 BDL mice. *P < 0.01 versus WT.

Fig. 6. Protein immunoblot analysis demonstrates increased mature
and a-HGF in PAI-1�/� mouse liver after BDL compared to WT mice.
(A) Liver homogenates were analyzed by immunoblot with an
antibody to a-HGF. Bands representing pro-HGF, non-reduced a,b-
chain mature HGF, and a-chain HGF (reduced mature HGF) are
indicated. (B) Quantitative analysis of HGF at 3 weeks after BDL
demonstrated increased mature a-HGF in PAI-1�/� mice. HGF levels
were equivalent in WT and PAI-1�/� mice after sham surgery. Data
represent means ± S.E.M. for 3–5 sham and 5–7 BDL mice. *P 6 0.02
versus WT at the same time point.
3.6. PAI-1 deficiency increases hepatocyte growth factor (HGF)

activation

Our recent analysis of early events after BDL in PAI-1�/�

mice demonstrated increased HGF activation in mutant ani-

mals [2]. To determine if increased HGF activation persisted

3 weeks after BDL in PAI-1�/� mice, we performed protein

immunoblot analysis (Fig. 6). These studies confirmed elevated

active HGF in PAI-1�/� compared to WT mice after BDL, but

normal levels of active HGF after sham surgery. This increase

in active HGF may in part explain the increased pro-MMP9

levels [17,18] observed in PAI-1�/� mice.
4. Discussion

Liver fibrosis represents a wound-healing process character-

ized by stellate cell activation and collagen deposition in re-

sponse to a variety of chronic injury stimuli [19,20]. Collagen

deposition reflects the balance between production and degra-

dation. PAI-1 could potentially influence both collagen pro-

duction and collagen degradation by controlling proteolytic

processing of key regulatory molecules and the ECM. For sev-

eral reasons we hypothesized that PAI-1 deficiency would in-

crease collagen production. First, PAI-1 deficiency was
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anticipated to increase both uPA and tPA activity. This, in

turn, should have increased conversion of plasminogen to plas-

min [3]. Because plasmin is a prominent TGF-b1 activator and

TGF-b1 stimulates stellate cell activation and collagen produc-

tion [21,22], we predicted increased plasmin activity, increased

TGF-b1 activation, increased stellate cell activation, and in-

creased collagen production in PAI-1�/� compared to WT

mice after BDL. All of these predictions were proved wrong

in this study. In contrast, we also predicted increased tPA pro-

teolytic activity would activate HGF and matrix metallopro-

teinases that could reduce hepatic fibrosis after BDL. These

predictions were demonstrated correct in this report.

In agreement with an earlier study indicating that collagen I

alpha 1 mRNA levels were equivalent in PAI-1�/� and WT

shortly after BDL [8], we also found comparable levels of col-

lagen I alpha 1 mRNA in PAI-1�/� and WT mice 3 weeks after

BDL. Therefore, the simplest explanation for reduced collagen

accumulation in PAI-1�/� mice, is that collagen degradation is

increased by PAI-1 deficiency. While ECM remodeling is a

complex process involving a variety of proteases and protease

inhibitors [23], we focused on MMP2 and MMP9 because they

have altered expression after hepatic injury and have been

hypothesized to influence fibrosis [24–27]. Furthermore, their

activity is influenced by plasminogen activators. Our studies

directly demonstrate increased pro-MMP9 and MMP9 in

PAI-1�/� compared to WT mice after BDL. In contrast, pro-

MMP2 and MMP2 activity were equivalent in PAI-1�/� and

WT mice. These observations are consistent with known effects

of tPA on MMP9 activation [14]. In contrast uPA influences

both MMP2 and MMP9 [15,28]. Thus, the lack of MMP2 ele-

vation in our studies is consistent with the similar uPA activity

in PAI-1�/� and WT mice. One additional explanation for the

increase in pro-MMP9 in PAI-1�/� mice is the previously de-

scribed ability of HGF to increase MMP9 synthesis [17] and

increased HGF activation in PAI-1�/� mice.

Our new data demonstrating that uPA and plasmin activities

are equivalent in WT and PAI-1�/� 3 weeks after BDL, but

tPA activity is elevated are also consistent with our previous

observation that uPA and plasmin activities were similar at

72 h [2,8] and 1 week [2] after BDL. In contrast, another group

recently reported elevated uPA activity levels in PAI-1�/� com-

pared to WT mice 2 weeks after BDL [8]. While the explana-

tion for these discrepant findings is not clear, similar effects

of PAI-1 deficiency on tPA, but not uPA were also observed

in a renal injury model [7,29] and an arthritis model [30] sug-

gesting that factors other than PAI-1 critically regulate plas-

min and uPA at least in some settings. For example, plasmin

is also regulated by Serpinf 2 [31]. Given the equivalent levels

of plasmin activity in PAI-1�/� compared to WT mice after

BDL, the finding that TGF-b1 activity, stellate cell activation

and collagen production were equivalent in PAI-1�/� and WT

mice is more easily understood because plasmin is one of the

more important TGF-b1 activators.

Interestingly, the reduction in fibrosis in PAI-1�/� mice after

BDL in this report appears less dramatic than the reduction in

fibrosis in other model systems [6–8]. Furthermore, blocking

PAI-1 is not always protective. For example, PAI-1�/� mice

have dramatically more severe renal injury than WT animals

in a passive anti-glomerular basement membrane glomerulone-

phritis model [32]. In this case, PAI-1 deficiency increases

both uPA and tPA activity. Furthermore, both tPA and uPA

can activate latent TGF-b in vitro [32]. Thus, the effect of
PAI-1 deficiency on both injury and repair may critically de-

pend on the type of injury and organ affected. This is not sur-

prising since distinct regulatory systems may be more

important in some tissues than others and mechanisms con-

trolling fibrosis are complex. For example, latent TGF-b1 is

activated not only by tPA, uPA and plasmin, but also by

MMP2, MMP9, thrombospondin-1, and by some integrins

(avb6 and avb8) [33]. Thus, the effect of altering PAI-1 depends

on cellular context and the expression of other key regulatory

molecules.

Together these studies suggest PAI-1 inhibition may be use-

ful as part of a strategy to prevent cirrhosis resulting from bil-

iary tract obstruction. Because our study has shown that

blocking PAI-1 increases HGF activation and reduces fibrosis

by increasing ECM degradation, this approach might be par-

ticularly useful in combination with strategies to reduce stellate

cell activation and collagen synthesis. Furthermore, while sev-

eral recent approaches to preventing fibrosis have focused on

increasing uPA [16,28,34], these new data suggest that in-

creased tPA activity may also prevent fibrosis and that tPA

and uPA have distinct roles in controlling liver injury after bil-

iary tract obstruction. Consistent with this result, we also have

data to demonstrate a critical role for tPA in reducing hepatic

injury after BDL [35]. These analyses not only demonstrated

that tPA deficiency increases hepatic injury, but also demon-

strated that essentially all of the early protective effects of

PAI-1 deficiency after BDL in mice could be prevented by

blocking tPA.
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