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SUMMARY

The cell of origin formostmesenchymal tumors is un-
clear. One cell type that contributes to this lineages
is the pericyte, a cell expressing Ng2/Cspg4. Using
lineage tracing, we demonstrated that bone and
soft tissue sarcomas driven by the deletion of the
Trp53 tumor suppressor, or desmoid tumors driven
by a mutation in Apc, can derive from cells express-
ingNg2/Cspg4. Deletion of the Trp53 tumor suppres-
sor gene in these cells resulted in the bone and soft
tissue sarcomas that closely resemble human sar-
comas, while stabilizing b-catenin in this same cell
type caused desmoid tumors. Comparing expres-
sion between Ng2/Cspg4-expressing pericytes lack-
ing Trp53 and sarcomas that arose from deletion of
Trp53 showed inhibition of b-catenin signaling in
the sarcomas. Activation of b-catenin inhibited the
formation and growth of sarcomas. Thus, pericytes
can be a cell of origin for mesenchymal tumors, and
b-catenin dysregulation plays an important role in
the neoplastic phenotype.

INTRODUCTION

Tumors are initiated by mutations in specific cell types. Since

progenitor cell populations can survive over longer periods of

time, they may be more likely to accumulate mutations that

cause neoplasia (Reya et al., 2001). Identifying the cell of origin

of a tumor type can be used to identify critical events responsible

for tumor formation, and driving oncogenesis in the cell of origin

can be used to develop animal models that more accurately

recapitulate human tumors (Visvader, 2011).
This is an open access article und
Sarcomas are malignancies found in the connective tissues,

composed of cells with mesenchymal characteristics. There is

a broad range of sarcoma types, including those that derive

in bone, cartilage, fat, muscle, or vascular, tissues. Two of

the most common sarcoma types are osteosarcoma and undif-

ferentiated pleomorphic sarcomas, and yet much remains to be

established about the critical steps required for tumor forma-

tion in these subtypes. Desmoid tumors are locally invasive

mesenchymal tumors that do not metastasize. They are

composed of fibroblast-like cells with a proliferative advantage,

driven by somatic mutations activating b-catenin mediated

signaling. Mutations in Apc or in b-catenin itself are identified

in almost all cases of this tumor type (Alman et al., 1997a;

Cheon et al., 2002). The precise cell of origin for these tumors

is unknown. Since they have mesenchymal characteristics,

it is likely that they derive from a mesenchymal lineage

progenitor cell.

In addition to its role in desmoid tumors, b-catenin protein is

also implicated in sarcomas. However, its role in sarcomas has

been controversial. Some studies suggest that activated b-cate-

nin signaling is important to drive the neoplastic phenotype,

while others found an opposite effect (Cai et al., 2010, 2014;

Du et al., 2014; Matushansky et al., 2007; Wan et al., 2014).

In mesenchymal cell development, b-catenin is precisely regu-

lated at different stages for normal differentiation, raising the

possibility that either high or low b-catenin leads to pathology

(Chen et al., 2007; Hoffman and Benoit, 2013; Li et al., 2008;

Wan et al., 2013). Understanding the role of b-catenin-

mediated signaling in neoplasia also has therapeutic implica-

tions, as b-catenin-modulating therapies are being developed

for clinical use.

Pericytes are mesenchymal cells that surround endothelial

cells in capillaries, venules, and small arterioles (Dı́az-Flores

et al., 2009; Hirschi and D’Amore, 1996). These cells express

markers such as chondroitin sulfate proteoglycan 4 (CSPG4),
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Figure 1. Mesenchymal Tumors Can Derive

from Ng2/Cspg4-Expressing Cells

(A) X-gal staining in Ng2/Cspg4-CreER;

Rosa26RlacZ mice, showing blue staining (LacZ) in

the brain (left) and in perivascular tissues in the

skeletal muscle (right).

(B) Representative H&E, X-gal staining, and a

radiograph from a mouse osteosarcoma that

developed in a Trp53-deficient mouse, showing

tumor cells that stained blue, indicating that they

are derived from Ng2/Cspg4-expressing cells.

(C) Representative H&E and X-gal staining from a

mouse soft tissue sarcoma that developed in a

Trp53-deficient mouse showing histology consis-

tent with undifferentiated pleomorphic sarcoma.

Similar to the situation in osteosarcomas, tumor

cells stained blue.

(D) Representative X-gal staining from a mouse

desmoid tumor that developing in an Apc1638N

mouse showing blue staining in the tumor cells.

This shows that these benign mesenchymal tu-

mors also derived from Ng2/Cspg4-expressing

cells.
also termed neuron-glial antigen 2 (NG2), and CD146, also

known as melanoma cell adhesion molecule (Bergers and

Song, 2005; Covas et al., 2008; Crisan et al., 2008, 2012). This

cell type is involved in the stability and contractility of blood ves-

sels but also can be a progenitor for several mesenchymal cell

types (Crisan et al., 2008, 2012; Dellavalle et al., 2007). Interest-

ingly, human sarcomas are known to express genes that are

characteristically expressed in pericytes (Benassi et al., 2009;

Schiano et al., 2012). Thus, pericytes could be a cell of origin

for some mesenchymal tumors.

Here, we addressed the role of Ng2/Cspg4-expressing cells

and b-catenin in the origin of mesenchymal tumors. Lineage-

tracing studies in murine sarcomas driven by the deletion of

the Trp53 tumor suppressor, or desmoid tumors driven by a mu-

tation in Apc, were used to investigate Ng2/Cspg4-expressing

cells as a cell of origin for mesenchymal tumors. We also

determined the ability of Trp53 deletion and/or stabilization of

b-catenin in Ng2/Cspg4-expressing cells to result in tumor

formation.

RESULTS

Mesenchymal Tumors Can Derive from Ng2/Cspg4-
Expressing Cells
To determine if mesenchymal tumors might derive from Ng2/

Cspg4-expressing cells, we undertook lineage-tracing studies

in genetically modified mice that are known to develop mesen-

chymal tumors. We used Trp53 deficient mice to study sar-

comas. These mice are a model for Li-Fraumeni syndrome and

develop malignancies, including lymphomas and sarcomas

(Jacks et al., 1994). To study the origin of a benign tumor, we

investigated desmoid tumors, which are benign locally invasive
918 Cell Reports 16, 917–927, July 26, 2016
mesenchymal lesions driven bymutations

activating b-catenin-mediated signaling.

The Apc1638N mouse (Smits et al.,
1998) harbors a mutation in Apc that results in the development

of multiple desmoid tumors.

NG2/CSPG4 is a cell-surface proteoglycan expressed by

pericytes, neural progenitor cells, chondrocytes, and hair folli-

cles (Feng et al., 2010). To label Ng2/Cspg4-expressing cells,

we crossed Ng2/Cspg4-CreER mice (Zhu et al., 2011) with

Rosa26RlacZ mice (Soriano, 1999). The transgene was activated

by daily tamoxifen injections for 1 week after weaning (Madisen

et al., 2010). b-Galactosidase (X-gal) staining was performed to

identify the distribution of LacZ-positive cells, and this confirmed

that LacZ was expressed in pericytes, neural cells, chondro-

cytes, and hair follicles (Figures 1A and S1A). In contrast, osteo-

blasts did not show expression of LacZ, a finding consistent with

other studies using this animal (Feng et al., 2011), in which LacZ

staining was only observed in bone during mesenchymal repair

processes when the transgene was activated postnatally (Fig-

ure S1B). To verify which cells were expressing LacZ, we disso-

ciated cells and sorted LacZ-positive and negative populations

as in our previous publications (Amini-Nik et al., 2011, 2014).

There was an increase in RNA expression of Ng2/Cspg4 in the

LacZ-positive population (Figure S1C). We next sorted NG2/

CSPG4-positive and negative cells using a cell-surface antibody

and analyzed the populations for expression of LacZ, finding that

the NG2/CSP4-positive population expressed LacZ. We also

analyzed the LacZ-positive and negative populations for the

expression of CD146, a cell-surface marker expressed by peri-

cytes (Wei et al., 2015), and found that the LacZ-expressing

cells also expressed CD146 (Figure S1E). Taken together, these

data show that LacZ effectively labels Ng2/Cspg4-expressing

pericytes.

We next crossed Ng2/Cspg4-CreER;Rosa26RlacZ mice with

Trp53-deficient mice (Jacks et al., 1994) and injected them



Table 1. Tumor Distribution of Ng2/Cspg4-Cre-Mediated Trp53 Conditional Knockout Mice

Genotype

Number

of Mice Bone Sarcoma (OS)

Soft Tissue

Sarcoma (UPS) Lymphoma

Other

Malignancies

Average Latency of Sarcoma

Development (days ± SD)

Ng2/Cspg4-Cre; Trp53flox/flox 50 38 (76.0%) 8 (16.0%) 2 (4.0%) 0 299 ± 56

Male 19 10 (52.6%) 6 (31.6%) 0 0 337 ± 59

Female 31 28 (90.3%) 2 (9.7%) 2 (6.5%) 0 280 ± 44

Ng2/Cspg4-Cre; Trp53flox/� 16 13 (81.2%) 3 (18.8%) 0 0 297 ± 61

Male 4 2 (50.0%) 2 (50.0%) 0 0 212 ± 49

Female 12 11 (91.7%) 1 (8.3%) 0 0 318 ± 43

Ng2/Cspg4-CreER; Trp53flox/flox 30 20 (66.0%) 6 (20%) 0 0 361 ± 59

Male 10 6 2 0 0 324 ± 64

Female 20 14 4 0 0 380 ± 56

NG2-Cre; Trp53flox/+ 12 0 1 (8.3%) 0 0 407
with tamoxifen. 12 sarcomas developed in the mice; 5 were

undifferentiated pleomorphic sarcomas, 6 were osteosar-

comas, and 1 was an angiosarcoma. X-gal staining confirmed

that the sarcomas derived from LacZ-expressing cells (Figures

1B and 1C). Given the expression pattern of LacZ in normal

tissues, this suggests that the tumors derived from pericytes.

The Apc1638N mouse (Smits et al., 1998) harbors a muta-

tion in Apc that results in b-catenin activation and the

development of multiple desmoid tumors. Ng2/Cspg4-CreER;

Rosa26RlacZ mice were crossed with Apc1638N mutant mice

and injected them with tamoxifen. X-gal staining showed

that the desmoid tumors that developed also express LacZ

(Figure 1D).

Interestingly, not all cells stained blue. Solid tumors contain a

subpopulation of non-tumoral cells, including normal stromal

cells (Mao et al., 2013), but in mesenchymal tumors, there are

no cytologic or cell-surface markers to distinguish stromal cells

from neoplastic cells, making differentiation between tumoral

and stromal cells problematic. We sorted LacZ-stained from

non-stained cells in these tumors. Between 28% and 49% of

cells in the tumors did not stain with LacZ. In desmoid tumors,

we found a higher level of b-catenin in the LacZ-positive cells

(Figure S2). Thus, there is a population of normal cells within

bulk mesenchymal tumors that arise from non-Ng2/Cspg4-

expressing cells.

Trp53 Deletion in Ng2/Cspg4-Expressing Cells Induces
Bone and Soft Tissue Sarcomas
To determine whether mutations in Ng2/Cspg4-expressing cells

could induce sarcomas, we crossed Ng2/Cspg4-Cre mice or

Ng2/Cspg4-CreER mice with Trp53flox/flox mice (Marino et al.,

2000) to generate Ng2/Cspg4-Cre-mediated Trp53 conditional

knockout mice. In the case of mice expressing the Ng2/

Cspg4-CreER allele, the conditional allele was activated by

tamoxifen administration the week following weaning. In Ng2/

Cspg4-CreER;Trp53flox/flox mice treated with tamoxifen, 66%

developed bone sarcomas and 20% developed soft tissue

sarcomas. In Ng2/Cspg4-Cre;Trp53flox/flox mice in which Cre is

constitutively expressed in Ng2/Cspg4+ cells, 76% developed

bone sarcomas and 16.0% developed soft tissue sarcomas

(Table 1). The mice succumbed to tumors by 14 months of
age and had a survival that is better than for the Trp53�/�

mice that we studied in our lineage-tracing analysis (Figure 2A).

This is expected, since these mice only rarely developed tumors

that were not sarcomas (Table 1) and as such succumbed to

sarcoma-related mortality.

We then generated Ng2/Cspg4-Cre;Trp53flox/+ and Ng2/

Cspg4-Cre;Trp53flox/� mice. The mice expressing only the

one conditional allele rarely developed tumors, while the

mice also expressing a null allele developed tumors at a fre-

quency equivalent to Ng2/Cspg4-Cre;Trp53flox/flox mice and

had a nearly identical survival curve (Figure 2B), providing

additional support to the concept that loss of Trp53 specif-

ically in an Ng2/Cspg4-expressing cell predisposes to sar-

coma formation.

The bone sarcomas displayed poorly marginated masses

with osteoid formation, an appearance characteristic of osteo-

sarcoma (Figures 2C and 2D). There was some heterogeneity

in the cytology, with two tumors displaying chondroblastic-

type osteosarcoma characteristics (Figure 2E). The osteosar-

comas arose from multiple bones (Figure 2F). 20% of mice

showed lung metastases (Figures 2G and 2H). Using X chromo-

some inactivation, as previously reported (Tsunashima et al.,

1996), we found the same pattern of inactivation in the bone

and lung lesions from female mice, suggesting that the lesions

derived from the same initial tumor (Figure S3).

Soft tissue sarcomas were also detected in mice (Figure 2I).

They arose from multiple tissues, including the cutaneous tis-

sues, retroperitoneum, muscle, and in one case arose from the

uterus. The soft tissue sarcomas were characterized by spin-

dle-shaped cells forming rough bundles and fascicles with hy-

perchromatic nuclei and abundant atypical mitoses (Figure 2J).

These sarcomas were consistent with undifferentiated pleomor-

phic sarcomas. Mice developing soft tissue sarcomas did not

show distant metastasis.

Localized Trp53 Deletion and Expression of KrasG12D in
Ng2/Cspg4-Expressing Cells Induces Soft Tissue
Sarcomas
We then investigated a mouse in which soft tissue sarcomas can

be generated using an inducible KrasG12D mutation and Trp53

deletion driven by Cre recombinase (Kirsch et al., 2007). These
Cell Reports 16, 917–927, July 26, 2016 919



Figure 2. Deletion of Trp53 in Ng2/Cspg4-Expressing Cells Causes Sarcomas, while Expression of a Stabilized Form of b-Catenin in Ng2/

Cspg4-Expressing Cells Causes Desmoid Tumors

(A) Kaplan-Meier survival curves inmonths of survival for mice expressing conditional Trp53 null alleles driven byNg2/Cspg4-Cre (red curve) andmice expressing

a germline deletion of Trp53 in both alleles (green curve). There is a significantly better survival inmice expressing Trp53 null alleles only inNg2/Cspg4-expressing

cells (P < 0.01).

(B) Kaplan-Meier survival curves in months of survival for Ng2/Cspg4-Cre;Trp53flox/flox (green curve) and Ng2/Cspg4-Cre;Trp53flox/- (red curve) showing little

difference in survival. )

(C–H) Osteosarcomas developed in the mice lacking Trp53 in Ng2/Cspg4-expressing cells. Radiographs (C), histology showing an osteoblastic (D) or a rare

chondroblastic phenotype (E), anatomic location of the osteosarcomas (F), and lung metastasis that developed (G and H).

(I and J) Soft tissue sarcomas developed in mice lacking Trp53 in Ng2/Cspg4-expressing cells. Gross (I) and histologic (J) view of a tumor, showing typical

histology for an undifferentiated pleomorphic sarcoma.

(K) Kaplan-Meier curves in weeks following localized 4-hydroxy-tamoxifen intramuscular injection in Ng2/Cspg4-CreER;Trp53flox/flox;KrasG12D mice for the

development of a palpable tumor.

(L) Typical histology of the soft tissue tumors that developed, an appearance consistent with undifferentiated pleomorphic sarcoma.

(M) Gross view of desmid tumors in the peritoneum of a mouse (arrows show tumors).

(N) Histology showing a typical appearance of a desmoid tumor that developed following tamoxifen regulated activation of the conditional stabilized b-catenin

allele.

920 Cell Reports 16, 917–927, July 26, 2016



Figure 3. Comparative Expression between

Mouse and Human Tumors Showing Simi-

larities between Mouse and Human Osteo-

sarcomas

(A) Gene set enrichment analysis demonstrating

that genes differentially regulated in mouse

osteosarcoma are significantly enriched in human

osteosarcoma.

(B) Table showing gene set enrichment analysis

statistics for comparison of genes differentially

regulated in mouse osteosarcoma and various

subtypes of human sarcoma.
mice develop localized sarcomas when injected with a virus

expressing Cre recombinase into muscle. To determine if Ng2/

Cspg4-expressing cells would drive soft tissue sarcomas in

LSL-KrasG12D;Trp53flox/flox mice, we crossed them with Ng2/

Cspg4-CreER mice, and drove expression of the conditional

alleles using localized tamoxifen injection into muscle. In this

way, recombination would occur in Ng2/Cspg4-expressing cells

at the injection site. 12 mice were studied, and they developed

a palpable soft tissue lesion 12 weeks following injection (Fig-

ure 2K), resulting in tumors with histology identical to that seen

in the soft tissue sarcomas generated by Trp53 deletion in the

same cell types (Figure 2L).

b-Catenin Stabilization in Ng2/Cspg4-Expressing Cells
Induces the Formation of Desmoid Tumors
To determine if stabilizing b-catenin mutations could induce

desmoid tumors, we crossed Ng2/Cspg4-CreER mice with

b-catenin conditionally stabilized Ctnnb1ex3 mice (Harada

et al., 1999). The conditional b-catenin Ctnnb1ex3 allele lacks

the phosphorylation sites in the amino terminal of b-catenin,

preventing its ubiquitin-mediated degradation, thus activating

b-catenin-mediated transcription. Mice were treated with

tamoxifen and developed desmoid tumors with an histology

identical to that seen in other murine desmoid tumors,

including infiltration into local muscle tissues (Figures 2M

and 2N).

Sarcomas from Ng2/Cspg4-CreER;Trp53flox/flox Mice
Show Expression of Genes Similar to Those Seen in
Human Tumors
A similar microarray platform as has been used in human tumors

was used to compare mRNA from sarcomas that developed

in Ng2/Cspg4-CreER;Trp53flox/flox mice with human tumors.

The mouse sarcoma data were deposited in the GEO database

(GEO: GSE63631). Gene expression data from a variety of hu-

man tumors were downloaded from the GEO (GEO: GSE2553).

Differential expression was compiled as a gene set that was

compared to expression data from various human cancer types

andwas called for each gene within each cancer type comparing

it to the aggregate of all other cancer types using a moderated

t-statistic. Gene set enrichment analysis (Mootha et al., 2003)
C

was carried out to identify the signifi-

cance of enrichment of the mouse genes

with the most differentially expressed hu-
man genes that differentiate each cancer type. This showed the

strongest similarities between the same mouse and human sar-

coma subtypes (Figure 3). The expression pattern for the soft tis-

sue sarcomas was nearly identical to that previously reported

(Mito et al., 2009).

Mouse Sarcomas Express Genes that Are Distinct from
Trp53 Mutant Cells from which They Derive
Ng2/Cspg4-expressing cells were dissociated from non-

cancerous skeletal muscle and sorted using an Ng2/Cspg4

antibody. RNA was extracted and RNA sequencing performed

to determine gene expression differences between these cells

and sarcomas that developed in the same mice. The data

were deposited in the GEO database (GEO: GSE63679). Differ-

entially expressed genes were analyzed using gene set enrich-

ment analysis (Mootha et al., 2003), identifying the differential

regulation of multiple genes associated with decreased b-cate-

nin signaling in the tumors compared to the Ng2/Cspg4-

expressing cells (Figures 4A and 4B). Using RT-PCR, we veri-

fied differential expression of several b-catenin transcriptional

target genes (Figures 4C and 4D). While both activation and

inactivation of b-catenin transcription in sarcomas have been

reported (Dieudonné et al., 2010; Hoang et al., 2004; Iwao

et al., 1999; Iwaya et al., 2003; Lin et al., 2013; Matushansky

et al., 2007; Sakamoto et al., 2002; Wan et al., 2014),

our data showed that b-catenin-mediated transcription was

inactivated in both the bone and soft tissue sarcomas when

compared to Ng2/Cspg4-expressing cells.

Activation of b-Catenin Suppresses Sarcoma
Development and Growth
To determine the role of b-catenin stabilization in sarcoma for-

mation, we generated Ng2/Cspg4-Cre;Trp53flox/flox;;KrasG12D;

Ctnnb1ex3 mice in which Ng2/Cspg4-expressing cells would

harbor a mutation causing sarcomas and also express a stabi-

lized form of b-catenin. When the conditional alleles were acti-

vated using tamoxifen, mice did not develop tumors. Since

mice expressing the Ctnnb1ex3 allele would not form tumors,

we analyzed cells from sarcomas induced by a localized

injection of an adenovirus expressing Cre recombinase into

Trp53flox/flox;; KrasG12D mice. Sarcoma cells were dissociated
ell Reports 16, 917–927, July 26, 2016 921



Figure 4. b-Catenin-Mediated Signaling Is

Downregulated in Sarcoma, and Its Activa-

tion Inhibits Tumor Growth

(A and B) Gene set enrichment analysis from RNA-

sequencing data comparing tumors to Ng2/

Cspg4-expressing cells lacking Trp53 showing

inhibition of b-catenin-mediated signaling in both

soft tissue sarcomas (A) and osteosarcomas (B).

(C and D) RT-PCR verifying downregulation of

expression of b-catenin transcriptional target

genes in murine tumors, soft tissue sarcomas (C),

and osteosarcomas (D). Data are given as relative

expression compared to Ng2/Cspg4-expressing

cells lacking Trp53, which is arbitrarily defined

as ‘‘1.’’

(E and F) Treatment of soft tissue sarcomas from

Trp53flox/flox;KrasG12D mice grafted into immuno-

deficient mice treated with lithium results in a

5-fold increase in b-catenin protein level (E) and

a significantly lower weight in grams (F) as

compared to controls.

(G) Soft tissue sarcomas from Trp53flox/flox;

KrasG12D mice expressing a stabilized version of

b-catenin grafted into immunodeficient mice had a

significantly lower weight in grams as compared to

controls.

(H–J) Treatment of human undifferentiated pleo-

morphic sarcomas and osteosarcomas estab-

lished as xenografts in immunodeficient mice with

lithium results in a more than 5-fold increase

b-catenin protein level in both tumor types (H)

and a lower weight in grams in treated soft tissue

sarcomas (I) and osteosarcomas (J). Means

and 95% confidence intervals are shown for all

data, with an asterisk indicating a decline with a

p < 0.05.
and studied as grafts in immunodeficient NOD-scid IL2rgnull

mice (Wang et al., 2012). 10,000 cells were implanted subcuta-

neously, along with Matrigel. b-Catenin was activated by adding

lithium to the drinking water at a known effective dose (Chen

et al., 2007). As a second approach, the cell cultures were

infected with a lentivirus expressing the DN89-b-catenin
922 Cell Reports 16, 917–927, July 26, 2016
(a stabilized form of b-catenin that retains

its signaling functions) construct, or

an empty control, as previously reported

(Fuerer and Nusse, 2010; Li et al.,

1998). With lithium treatment (Figures 4E

and 4F) or with expression of the stabi-

lized form of b-catenin (Figure 4G),

we observed significantly smaller tumor

weights after 4 weeks.

Individual cells from ten primary human

osteosarcomas or undifferentiated pleo-

morphic sarcomaswere used to establish

xenografts in immunodeficient NOD-scid

IL2rgnull mice as previously reported

(Wang et al., 2012). Similar to the work

in murine tumors, mice were treated

with lithium (Chen et al., 2007). This re-
sulted in a substantial increase in b-catenin protein levels in

the tumor tissues (Figure 4H) and a substantial decrease in tumor

volume (Figures 4I and 4J). These data are consistent with the

notion that b-catenin transcriptional activity is lower in sarcomas

than in the cells they arise from and that stabilization of b-catenin

in sarcomas can suppress tumor growth.



DISCUSSION

Identifying the cell of origin of tumors is critical to determine

the genetic events important in neoplastic progression and to

develop models of cancers in mice that more accurately reflect

human disease. However, for common sarcomas, the precise

cellular origin is unclear. Since sarcomas have mesenchymal

properties, mesenchymal stromal cells (MSCs) have been inves-

tigated as the cell of origin. Indeed, driving expression of onco-

genes in this cell type can give rise to sarcomas (Mohseny

et al., 2009; Rubio et al., 2013; Shimizu et al., 2010; Xiao et al.,

2013). However, MSCs are a heterogeneous population of cells.

Pericytes are mesenchymal cells that surround endothelial cells,

have a multi-differentiation mesenchymal potential, and express

genes that can be used as lineage markers in vivo (Covas et al.,

2008; Crisan et al., 2008; Dellavalle et al., 2007). Our studies

showed that both sarcomas and desmoid tumors can derive

from Ng2/Cspg4-expressing cells, most likely from pericytes.

By also using tamoxifen-inducible mice, our interpretation

of the cell of origin for these mesenchymal tumors is not

confounded by unanticipated expression of Cre during develop-

ment, which has been shown for some constitutive Cre lines,

such as Myf6-Cre.

Ng2/Cspg4 is expressed not only in pericytes but also in other

cell types. As such, our lineage-tracing studies with Ng2/Cspg4-

Cre mice cannot rule out the possibility that the mouse tumors

are derived from other Ng2/Cspg4-expressing cells. However,

our analysis of LacZ-labeled cells in the absence of tumors in

the limbs shows that Ng2/Cspg4-expressing cells express high

levels of the pericyte marker CD146. It is also possible that sar-

coma cells in this model might activate Ng2/Cspg4 expression

during early tumorigenesis and thereby lineage-tag the tumor

cells. While this possibility cannot be completely eliminated,

the generation of sarcomas in Ng2/Cspg4-CreERmice following

tamoxifen-inducible Cre suggests that the cell of origin of these

mesenchymal tumors expresses Ng2/Cspg4 at tumor initiation.

Mice with Trp53 mutations in Ng2/Cspg4 developed both oste-

ogenic and soft tissue sarcomas a finding consistent with the

notion that pericytes can differentiate into a variety of mesen-

chymal cell types. The concept that a mesenchymal progenitor

can form both bone and soft tissue sarcomas is in agreement

with data from driving oncogenic mutations in MSCs, showing

that the same mutation in MSCs can result in either bone or

soft tissue sarcomas (Rubio et al., 2010, 2013). Furthermore,

we found that different mutations in the same cell type can cause

differentmesenchymal tumors. Driving a stabilized form of b-cat-

enin in Ng2/Cspg4-expressing cells results in desmoid tumors,

while Trp53 deletion causes sarcomas. Therefore, the same

cell of origin can give rise to a variety of benign and malignant

tumor types, with the type of mutation determining the tumor

type that develops.

Tumors are intimately related to non-neoplastic stromal cells,

but since sarcomas have mesenchymal characteristics, the

identification of such cells in sarcomas has been problematic.

In our lineage-tracing studies, we found that sarcomas contain

a subpopulation of mesenchymal cells that do not stain for

LacZ. These cells likely represent a population of reactive

mesenchymal stromal cells within the sarcomas. The intermin-
gling of reactive stromal cells within the neoplastic mesenchymal

cells raises complexity in the interpretation of pathologic data in

these tumor types, as it is difficult to distinguish these stromal

cells from the neoplastic cells. Indeed, some of the controversy

regarding roles in cell signaling activation and gene expression in

these tumor typesmay be related to detecting expression or bio-

logic findings from these normal cells. This is a notion supported

by the finding of normal mesenchymal progenitor cells in human

sarcomas (Morozov et al., 2010).

Other mouse osteosarcoma models have been developed

based on the conditional deletion or mutation of Trp53 (Berman

et al., 2008; Lin et al., 2009; Walkley et al., 2008). However,

driving deletion in a subset of cells and developing a sarcoma

does not necessarily identify a specific cell of origin. In our

work, a combination of lineage tracing and targeted deletion

supports the pericyte as a cell of origin. The anatomic distribu-

tion of tumors in our mouse model closely mimics the situation

in human sarcomas, the distal femur, proximal tibia, and prox-

imal humerus. In contrast, driving deletion of Trp53 in other

cell types, such as osteoblasts, results in 80% lesions in axial

skeletal sites (Berman et al., 2008; Lin et al., 2009; Walkley

et al., 2008).

Desmoid tumors are a clonal proliferation of mesenchymal

cells driven by mutations in APC or CTNNB1 driving b-catenin

protein stabilization (Alman et al., 1997a, 1997b; Tejpar et al.,

1999). Interestingly, while a subset of desmoid tumors were pre-

viously thought to be mutation negative when analyzed by tradi-

tional Sanger sequencing, deep sequencing (Aitken et al., 2015)

found that most of these mutation negative tumors do indeed

harbor mutations. Similar to the finding in sarcomas, not all

desmoid tumor cells in the mice stained for LacZ in the line-

age-tracing studies, and these non-staining cells may be non-

neoplastic stromal cells in the tumors. A high proportion of

normal cells in a tumor mass can mask the detection of a muta-

tion using traditional Sanger sequencing. Previous studies using

mice that develop desmoid tumors (Cheon et al., 2002; Smits

et al., 1998) to compare these tumors to normal cells are limited,

as themost appropriate normal cell control is unknown. Here, we

found a source of normal precursor cells for such analysis. The

finding that these tumors derive from pericytes is consistent

with data showing a correlation between numbers of mesen-

chymal progenitors and numbers of desmoid tumors that form

in Apc mutant mice (Wu et al., 2010).

The role of b-catenin in sarcomas has been controversial, with

both activation and inhibition reported. In addition, both activa-

tion and inhibition are suggested to increase tumor invasiveness

(Chen et al., 2007; Hoffman andBenoit, 2013; Li et al., 2008;Wan

et al., 2013). We found that b-catenin is inactivated in the sar-

comas compared to the Ng2/Cspg4-expressing cell from which

they derive. One possibility is that the undifferentiated pericytes

maintain a high b-catenin level and this must be downregulated

for differentiation into cells that become sarcomas. While our

data cannot rule out this possibility, the finding that stabilization

of b-catenin in these cells results in desmoid tumors, suggests

that high b-catenin alone does not maintain the pericytes in a

native undifferentiated state. Furthermore, driving b-catenin

stabilization in sarcomas also suppressed tumor growth. Thus,

similar to the situation in mesenchymal cell differentiation during
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development and repair, the level of b-catenin protein is impor-

tant in mesenchymal neoplasia, with higher or lower levels

contributing to pathology. In this situation, its activation causes

a benign locally invasive tumor, but its inhibition is required for

sarcoma formation. This is a notion similar to that in colon can-

cer, where b-catenin needs to be maintained at the right level

for cancer development (Albuquerque et al., 2002). The require-

ment for the precise regulation of b-catenin in mesenchymal

neoplasia raises the possibility that modulating its level could

be developed into a therapeutic approach for these tumor types.

EXPERIMENTAL PROCEDURES

Genetically Modified Mice

We used Trp53 mutant (Jacks et al., 1994), Apc1638N (Smits et al., 1998),

Trp53flox/flox conditional (Marino et al., 2000), LSL-KrasG12D, Catnbex3 (Harada

et al., 1999), Ng2/Cspg4-Cre and Ng2/Cspg4-CreER transgenic (Feng et al.,

2010; Zhu et al., 2008, 2011), and Rosa26RlacZ reporter (Soriano, 1999)

mice as previously reported. Ng2/Cspg4-CreER;Rosa26RlacZ mice, Ng2/

Cspg4-CrERe;Rosa26RlacZ;Trp53+/� mice, Ng2/Cspg4-CrERe;Rosa26RlacZ;

Trp53�/� mice, and Ng2/Cspg4-CreER;Rosa26RlacZ;Apc1638N mice were

generated by crossing these mouse lines for lineage tracing studies. Ng2/

Cspg4-CreER;Trp53flox/flox, Ng2/Cspg-CreER;Trp53flox/�, Ng2/Cspg4-CreER;
Trp53flox/+, Ng2/Cspg4-CreER;Catnbex3, Ng2/Cspg4-Cre;Trp53flox/flox, Ng2/

Cspg4-Cre;Trp53flox/�, and Ng2/Cspg4-Cre;Trp53flox/+ mice were generated

by crossing the mice and used to determine if driving mutations in Ng2/

Cspg4-expressing cells causes tumors. In addition, Ng2/Cspg4-Cre;

Trp53flox/flox;Catnbex3 mice were generated. In the case of inducible Cre

strains, the transgene was activated by daily intraperitoneal injection of tamox-

ifen for 1 week after weaning. Trp53flox/flox;; LSL-KrasG12D mice (Kirsch et al.,

2007), were used in crosses with Ng2/Cspg4-CreERmice to generate soft tis-

sue sarcomas, but tamoxifen was injected locally into the muscle. All of the

comparisons from different genotypes were performed on littermates. An

equal number of male and female mice were used in each study. The endpoint

for the Kaplan-Meier survival curve was when amouse was found dead or was

sacrificed due to poor health. Mice that were sacrificed or found dead were

investigated using a systematic autopsy to identify the exact tumor type and

tumor location. Radiographs of the whole bodies of mice were obtained by us-

ing the Faxitron MX20 X-ray system (Faxitron Bioptics). All mouse protocols

were approved by the animal care committee of the Toronto Center for Pheno-

genomics or the Institutional Animal Care and Use Committee committee of

Duke University.

qPCR

Total RNA from mouse sarcomas and non-cancerous tissues was extracted

using TRIzol reagent (Invitrogen). RNA was used to generate single-strand

cDNA using SuperScript II reverse transcriptase (Invitrogen). To detect

mRNA level, real-time qPCR was performed. TaqMan primers were used

and the DDCt method was used for the analysis of the data.

Microarray

For microarray, total RNAs were extracted from osteosarcomas (n = 4) and soft

tissue sarcomas (n = 4) that developed in Ng2/Cspg4-Cre;Trp53flox/flox mice.

Skeletal muscle tissues (n = 2) and bone marrow tissues (n = 2) were used as

controls. Biotinylated cRNAwas hybridized ontoMouseWG-6 v2.0 Expression

BeadChips (Illumina). To identify gene signatures differentially expressed be-

tween sarcomas and non-cancerous tissues, linear models for microarray

data were used. The false discovery rate was set at 0.01, and evaluated using

Benjamini and Hochberg multiple testing procedures. Differential expression

was compiled as a gene set thatwas compared to expression data from various

humancancer types,withgeneexpressioncalled foreachgenewithineachcan-

cer type comparing it to the aggregate of all other cancer types using a moder-

ated t-statistic. Gene set enrichment analysis (Mootha et al., 2003) was carried

out to identify the significance of enrichment of the mouse genes with the most

differentially expressed human genes that differentiate each cancer type.
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To isolateNg2/Cspg4-expressing cells, tissueswere harvested frommice, and

dissociated into individual cells as previously reported (Wang et al., 2012; Wu

et al., 2007). Flow cytometry was used to sortNg2/Cspg4-expressing cells us-

ing an NG2 Ab (Abcam). Sorting for LacZ (Amini-Nik et al., 2011) and CD146

(Wei et al., 2015) was performed as we previously reported.

RNA Sequencing

For each sample, 10 ng total RNA was processed using the SMARTTM cDNA

synthesis protocol including SMARTScribe Reverse Transcriptase. The ampli-

fied cDNA was subject to Illumina paired-end library construction. RNA-

sequencing analysis was performed by the Genome Sciences Centre at the

British Columbia Cancer Agency (Vancouver, Canada) using Illumina HiSeq

2000 sequencing at 75 base PET indexed lane, pooling two libraries per

lane. Data were processed using the TrimGalore toolkit (Chen et al., 2014) to

trim low-quality bases and Illumina sequencing adapters from the 30 end of

the reads. Only pairs where both reads were 35 nt or longer were kept for

further analysis. Reads were mapped to the GRCm38.73 version of the mouse

genome and transcriptome (Kersey et al., 2012) using the STAR RNA-

sequencing alignment tool (Dobin et al., 2013). Gene counts were compiled

using the HTSeq tool (http://www-huber.embl.de/users/anders/HTSeq).

Normalization and differential expression were carried out using the DESeq2

(Love et al., 2014) Bioconductor (Gentleman et al., 2004) package with the R

statistical programming environment (http://www.r-project.org). A negative

binomial generalized linear model was employed to identify differentially ex-

pressed genes across sample types. Pathway analyses were performed using

gene set enrichment analysis with parameters set to 2,000 gene set per muta-

tions and gene sets size between 8 and 500 (Subramanian et al., 2005). Gene

sets were obtained from the KEGG, MsigDB-c2, NCI, Biocarta, IOB, Netpath,

Human Cyc, Reactome, and Gene Ontology (GO) databases (Kanehisa and

Goto, 2000; Merico et al., 2010). An enrichment map was generated using Cy-

toscape with parameters set for a nominal p value of < 0.005, a false discovery

rate < 0.25, and the Jaccard coefficient set to 0.5 (Saito et al., 2012).

Xenograft in Immunocompromised Mice

Primary sarcomaswere dissociated into single cells (Wang et al., 2012). 10,000

dissociated cells were suspended with Matrigel (Becton Dickinson) and in-

jected subcutaneously into 6- to 8-week-oldNOD-scid IL2rgnull (NSG)mice. Af-

ter injection, themicewereobserved for 3weeks, and then lithiumwasadded to

the drinking water at a dose previously shown to increase b-catenin in mesen-

chymal tissues (Chen et al., 2007). The DN89-b-catenin construct, or empty

control, was used as previously reported (Fuerer and Nusse, 2010; Li et al.,

1998). Western analysis using an antibody to actin as a loading control (Tejpar

et al., 1999) was used to determine b-catenin levels, and the tumors were

weighed using an analytical balance, as previously reported (Wanget al., 2012).
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