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Abstract 

We treat the problem of simultaneously approximating a several-times differentiable function in several 
variables and its derivatives by a superposition of a function, say g, in one variable. In our theory, the domain 
of approximation can be either compact subsets or the whole Euclidean space Rd. We prove that if the domain 
is compact, the function g can be used without scaling, and that even in the case where the domain of 
approximation is the whole space I@, g can be used without scaling if it satisfies a certain condition. Moreover, 
g can be chosen from a wide class of functions. The basic tool is the inverse Radon transform. As a neural 
network can output a superposition of g, our results extend well-known neural approximation theorems which 
are useful in neural computation theory. 

Keywords: Uniform approximation; Approximation of derivatives; Plane wave; Differentiable approximation; Delta 
sequence; Radon transform; Hahn-Banach theorem; Neural network 

1. Introduction 

Several papers published in 1989 dealt with the problem of approximating continuous functions in 
several variables by linear combinations of a sigmoid function: [ 1,2,4,6,9]. So many papers on the 
same topic appeared one after another in that year, probably because they recognized simultaneously 
the importance of the approximation theorem in neural computation theory. They have proved that 
any continuous function f defined on a compact set of lRd can be approximated uniformly by a linear 
combination 

n 
f(X) = C Uig(Ci( Oi ’ X - Ii)) 
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with any accuracy, where x = (x(l), . . . , dd)) E IF?‘, wi E IRid, IwiJ = 1, and the function g is a 
sigmoid function fixed in advance. In other words, they have proved that any continuous function 
defined on compact sets can be approximated by a linear combination of scaled shifted rotations of 
a given sigmoidal plane wave g(w . x). Suppose that a three-layered neural network has d input 
layer units, n second layer units and an output layer unit. Then, the network can output the finite 
sum ( 1 .l), provided that the input layer units receive the components of x E IRd respectively and 
distribute them to the second layer, the second layer units have d input gates and output the value of 
g( Ci( Oi . x - ti) ) respectively, and the output layer unit outputs the weighted sum of outputs of the 
second layer units. Since the input-output functions of biological neurons are sigmoidal, a sigmoid 
function is often used as an input-output function of neural units in neural computation theory. 

In [ 12-141, it is proved that ( 1) the domain of uniform approximation of continuous functions can 
be extended to IKd, (2) any sigmoid function can be used as the function g in the linear combination 
( 1 .l) for uniform approximation on IWd if it can be scaled, (3) any sigmoid function can be used as 
the function g without scaling if the domain of approximation is compact. Further, we have obtained 
a necessary and sufficient condition on sigmoid functions which ensures that they can be used as the 
function g without scaling for approximation on lRd (see the Note in Section 5). 

In [ lo], the importance of simultaneous approximation of derivatives of functions by neural 
networks in economics and robotics is mentioned. It is expected that, in addition to these fields, there 
are many other fields where simultaneous approximations by neural networks are useful, because a 
number of phenomena are described by differential equations and natural laws are basically governed 
by differential equations. In the case where we treat differential equations by neural networks, 
functions and their derivatives must be approximated simultaneously. Consequently, extension of the 
neural approximation theorems to derivatives must be important. Since such differential equations are 
often on functions defined on IWd, our extension of differentiable approximation to the whole space 
IWd may be worthwhile. In [lo] is proved that each derivative Pf of any m-times differentiable 
function f can be approximated by the corresponding derivative aaf of a linear combination j of 
the form ( 1 .l ) if the function g is m-times continuously differentiable and the integral of the mth 
derivative over Iw is nonzero and integrable. Later, Homik [ 81 extended these results by weakening 
the integrability condition of the function g. In [ lo], the accuracy of the simultaneous uniform 
approximation on compact sets is estimated by the supremum norm but not extended to the whole 
space IWd. 

In this paper, we extend not only [ 12-141, but also [ 8,101. Our previous results will be extended in 
a sense that the approximation is extended to derivatives, and the latter will be generalized because we 
prove that the domain of approximation can be extended to IRd and the approximation can be realized 
without scaling of the function g. Moreover, we extend the class of functions useful as g in ( 1 .l> . 
Hereafter, we call the simultaneous approximation of functions and their derivatives difSerentiabZe 
approximation. An input-output function of neural units, such as g in (l.l), is called an activation 
function in neural computation theory. Accompanying the extension of approximation to derivatives, 
we have to remove the restriction that activation functions are sigmoidal because derivatives of a 
sigmoid function are not sigmoidal. We use systematically the inverse Radon transform as well as 
delta sequences. The former was used in [ 121 and the latter will be defined in Section 2 of this paper. 
We show that these tools can be used for approximations both on IRd and on compact sets, although 
there are simpler proofs in the case of differentiable approximation on compact sets as is described in 
[ 151. The existence of the delta sequence can be proved by means of the Hahn-Banach theorem, but 
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in special cases it can be obtained constructively. In such cases, our proofs of the theorems can be 
regarded as algorithms for implementing differentiable approximations by neural networks because 
other parts can be proved constructively. 

2. Construction of delta sequences 

The discriminatory function is first used in [2] in the field of neural network theory. Modifying 
the original one, we have defined other kinds of discriminatory functions [ 13,141. In this article, 
we use only one-dimensional versions of discriminatory functions for guaranteeing existence of delta 
sequences. In order to make this article self-contained, we describe the definitions of one-dimensional 
versions of the respective discriminatory functions, although the definitions in the higher-dimensional 
spaces are described in [ 13,141. Even if not mentioned explicitly, the functions treated in this paper 
are measurable and the measures are signed Bore1 measures. Since sigmoid functions are important 
in neural network theory, we shall remark the relation of sigmoid functions to the respective lemmas 
of this section. 

Let g(r) be a function defined on the line IR. We call g(t - to) a shift of g, g(wt) a rotation of g 
and g( ct) a scaling of g, where to E IR is a shift, w E { - 1, 1) = 9 is a rotator and c 3 0 is a scalar. 
We write gc( t) = g( ct) and call gc( wt - to) a scaled shifted rotation of g, even in the special case 
where c = 1, o = 1 or to = 0. In the higher-dimensional spaces, the rotator will be a unit vector. 

Definition 2.1. Let g be a function defined on IR. 
(i) We call g discriminatory if, for any measure I/ on IR with compact support, 

J’ 
g,(wt - to) dv(t) = 0, 

for all c 3 0, w E 9 and to E R, implies I/ = 0. 
(ii) We call g strongly discriminatory if, for any measure Y on Iw with compact support, 

(2.1) 

s g( wc - to) dv( t) = 0, (2.2) 

for all to E lR and w E 9, implies v = 0. 
(iii) We call g completely discriminatory if, for any finite measure Y on IR, (2.1) for all c > 0, 

w E 5? and to E IK implies I/ = 0. 
(iv) We call g strongly completely discriminatory if, for any finite measure Y defined on IR, (2.2) 

for all to E IR and w E 5? implies Y = 0. 

The Fourier transform of a function f on IR is defined by 

F’f(s) = (2~)-1/2Jf(t)e-~*dt. 

The Fourier transform can be extended to measures and distributions. We call g a slowly increasing 

function if it is slowly increasing in the sense of distribution. We denote by supp(f) the support of 
a function f. Constants can be regarded as polynomials. 
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Lemma 2.2. (i) Every slowly increasing function g on I% is discriminatory, if it is not a polynomial. 
(ii) Every slowly increasing function g on IL% is strongly discriminatory, if supp(3g) has an 

accumulation point. 
(iii) Every square integrable function g on R is completely discriminatory, if g # 0. 
(iv) Every square integrable function g on IR is strongly completely discriminatory, if and only if 

supp( 3g) is dense on R. 

Proof. We write g,,,(t) = gc( wt) and g,(t) = g( wt) . Recall that supp( 3g) and supp(3v) are 
symmetric. 

(i) Eq. (2.1) implies that g,,, * v = 0. The Fourier transforms of g,,,, v and g,,, * v are well- 
defined. Since 3g,,, is a slowly increasing distribution and 3v is a bounded analytic function, a 
product 3g,,,3u is well-defined and an equation 3(g,,,, * v) = 3g,,,3v holds. Since g is not a 
polynomial, supp(3g) contains a point other than the origin. Hence, 3g,,,3v # 0 for a certain c if 
v # 0. 

(ii) Let {s,,}:~ be points of supp(3g) which converge to an accumulation point so of supp(3g). 
Then, 3g,3v = 0 implies that 3v( s,) = 0 for n = 0, 1, . . . . Hence, by the uniqueness theorem, 
3v = 0, which in turn implies that u = 0. 

(iii) Note that 3v is bounded continuous and supp(3g) has a point other than the origin. Hence, 
if v Z 0, 3g,,,3v # 0 for a certain c. 

(iv) It is obvious that 3g,,,3v f 0 for v # 0 if supp(3g) is dense in Iw. Conversely, if supp( 3g) 
is not dense in Iw, there is a finite measure v # 0 such that supp(3v) n supp(3-g) = 0. Hence, (2.2) 
holds for Y # 0. 0 

If g is slowly increasing and u is a measure with compact support, the products 3g,,,3v and 
3gU3v are well-defined. However, even if v is a finite measure, these products are not necessarily 
defined. For this technical reason, we suppose that g is square integrable in (iii) and (iv). 

If g is a polynomial, supp( 3g) contains only the origin. Hence, 3g,3v = 0 if 3v(O) = 0. This 
implies that any polynomial is neither discriminatory nor strongly discriminatory. An example of a 
discriminatory function which is not strongly discriminatory is sin t. Every square integral nonzero 
function is completely discriminatory, but not necessarily strongly discriminatory. An example of a 
completely discriminatory which is not strongly completely discriminatory is t-l sin t. 

We have supposed that g is slowly increasing in (i) and (ii) of Lemma 2.2 and square integrable 
in (iii) and (iv). However, this does not imply that functions such as rapidly increasing functions 
are irrelevant to our theory because we apply the conditions of the lemma to linear combinations of 
a given function. Even a linear combination of an exponentially increasing function can be strongly 
completely discriminatory. Let g(t) = elfI and set 

G(t) =g(t- 1) +g(t+ 1) - (e+e-‘)g(t). (2.3) 

Then, G is a continuous function with compact support. It can be shown by direct calculation that 
supp(3G) = Iw. Hence, owing to Lemma 2.2, G is strongly completely discriminatory, which implies 
that it is discriminatory, strongly discriminatory and completely discriminatory. 

The function g(t) = elfI is an example of a strongly discriminatory function which increases expo- 
nentially. In fact, let v be a measure with compact support and suppose that J g( t - to) dv ( t) = 0 for 
all to. Then J G( t - to) dv( t) = 0 for all to. This implies that v = 0 because G is strongly discrimi- 
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natory. Hence, g is strongly discriminatory. In this way, we can prove that if a linear combination of 
shifts of a function is slowly increasing and strongly discriminatory, the original function is strongly 
discriminatory. In the same way, the respective statements of Lemma 2.2 can be extended. Extension 
of Lemma 2.2 using a linear combination is important because sigmoid functions are often used as 
activation functions in neural computation theory. If lim,,_, h( 1) = 0 and lim,,, h(t) = 1, and 
h is monotone increasing, then h is called a sigmoidfunction. Since the difference of two distinct 
shifts of any sigmoid function is nonpolynomial and square integrable, all sigmoid functions are dis- 
criminatory, strongly discriminatory and completely discriminatory. However, all sigmoid functions 
are not strongly completely discriminatory because the support of the Fourier transform of a sigmoid 
function is not necessarily dense in If& 

For a function g defined on Iw, we set 

_$(g,C)= kni&,(Wit-li);n> l,Ui,tiER,ci>OTwiESO 

1 i=l 1 

and 

X(g)= kaig(Uit-ti);n> I,Ui,tjElR,OJiESO C . 
i=l > 

(2.4) 

(2.5) 

Let us denote by C (Iw) the space of continuous functions defined on Iw, by C ( K1) the space of 
continuous functions defined on a compact set K1 c Et, by C,(Iw) the space of continuous functions 
defined on R with compact support and by C,, (Iw) the completion of C, (IR) by the uniform topology. 

Lemma 2.3. Let g be a function defined on II%, and K1 be a compact set of R. 
(i) If g is a slowly increasing nonpolynomial function of locally bounded variation, then any 

f E C ( K1 ) can be uniformly approximated by a member of .Z( g, c) on K1. 
(ii) If g is a slowly increasing function of locally bounded variation and supp(3g) has an 

accumulation point on IR, then any f E C( K,) can be uniformly approximated by a member of X(g) 
on K1. 

(iii) If g is a square integrable nonzero function of uniformly locally bounded variation, then any 
f E CO(R) can be uniformly approximated by a member of Z(g, c) on E%. 

(iv) If g is a square integrable nonzero function of uniformly locally bounded variation and 
supp( 3g) is dense in IF& then any f E CO( II%) can be uniformly approximated by a member of Z(g) 
on II& Conversely, if supp( 3g) is not dense in R, there is a function of CO(R) which cannot be 
approximated by a member of X(g). 

Proof. We describe only the proof of the first statement fully and abbreviate others because higher- 
dimensional versions of these statements are proved in [ 13,141. Let p E C,(R) be a nonzero 
nonnegative function. 

(i) We first prove that X(g * p, c) IK, is dense in C( K,), where jK, stands for the restriction of 
each function of the set to Kr . Suppose that there is a function (Do E C (Ki ) which does not belong 
to the closure of Z( g + p, c) 1 K, in the uniform topology. By the Hahn-Banach theorem [ 17, Theorem 
3.51, there is a bounded functional A such that A(po,) = 0 for any p. E Z(g * p, c) and A(p,) = 1. 
By the Riesz representation theorem [ 16, Theorem 2.141, there is a measure Y with compact support 
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for which A(q) =Jq(t)dv(t) forall ~EC(K,). Since (g*p),,(t-to) belongs to X(g*p,c), 
we have that J( g * p)c,W( t - to) dv( t) = 0 for all c, w and to, which in turn implies that Y = 0 as g * p 
is discriminatory. This is a contradiction. Hence, f can be approximated by a member of -C( g * p, c) . 

Since g is a function of locally bounded variation, g * p can be uniformly approximated on Ki by a 
linear combination of shifts of g. Hence, (i) holds. 

(ii) The proof of this statement is similar to that of (i) . If an appropriate p is chosen, supp( F( g * 
p)) has an accumulation point. Hence, g * p is strongly discriminatory. Follow the proof of (i), 
replacing J5( g * p, c) and Z(g, c) by Z(g * p) and X(g) respectively and using the fact that g and 
g * p are strongly discriminatory. Then, we can confirm that (ii) holds. 

(iii) Similarly to the case (i), we can prove that Z( g * p, c) is dense in Co(R), applying [ 16, 
Theorem 6.191 instead of [ 16, Theorem 2.141. Since g is a function of uniformly locally bounded 
variation, g * p can be uniformly approximated on lR by a linear combination of g. 

(iv) The “if” part of the proof is similar to that of (iii). Follow the proof of (iii), replacing 
X(g * p) by Z(g). Then, it turns out to be the proof of the “if” part. Conversely, if supp(Fg) is not 
dense on IR, there is a rapidly decreasing nonzero function f such that supp(ff) n supp(Fg) = 0. 
Suppose that it can be uniformly approximated by J E _Z( g) . Then, we have 

I f(t) (f(t) - f(t)) dt = 
s 

]F’f(t)]2dt. 

The right-hand side of this equation is a positive constant, but the left-hand side can be arbitrarily 
small. This is a contradiction. 0 

If g is a sigmoid function, this lemma can be simplified. 

Corollary 2.4. Let h be a sigmoidfinction and K, be a compact set of IL?. Then, 

(9 any f E C(K1) can be uniformly approximated by a member of 2( h, c) on K,; 

(ii) any f E C(K,) can be uniformly approximated by a member of J?(h) on K1 ; 
(iii) any f E Co(R) can be uniformly approximated by a member of 2$( h, c) on R; 

(iv) ifsupp(Fg) d is ense in IR, then any f E Co@) can be uniformly approximated by a member 
of Z(h) on IR. Conversely, if supp(3g) is not dense in IL!, there is a function of Co(R) which cannot 

be approximated by a member of _I$( h). 

Proof. The sigmoid function h satisfies the conditions on g of both (i) and (ii) in Lemma 2.3. 
Hence, the statements (i) and (ii) hold. Let g be a difference of two distinct shifts of h. Then, g 
satisfies the condition of the statement (iii). Hence, f E CO( IR) can be uniformly approximated by a 
member of X(g, c), which implies that a member of _Z( h, c) approximates the f. If supp(3h) = IR, 
the difference g satisfies the condition of the statement of (iv). Then, f E CO(R) can be uniformly 
approximated by a member of Z(g) as well as by a member of _Z( h) . The rest of the statement (iv) 
can be proved as in Lemma 2.3. 0 

Now we define delta sequences. 

Definition 2.5. (i) If a sequence {uk}g, of functions on R satisfies the conditions (a) and (b) 
below, we call it a delta sequence on finite intervals: 
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(4 J 
Ilk 

uk (t) dt converges to 1 as k -+ 00, 
--I/k 

(b) luk(t)l < k, for t E [-k9-t] u [f,k]? 

for sufficiently large k. 
(ii) If a sequence {&}pi of functions on R satisfies the conditions (a) above and (c) below, we 

call it a delta sequence on the line: 

cc> 1 
luk(t>l < -7 

k 
fort E (-co,--3 U [i,co). 

Of course, a delta sequence on the line is that on finite intervals. Elements of a delta sequence on 
finite intervals can be polynomials. The function below satisfies the conditions (a)-(c) : 

uk(t) = (2rr)-‘/*k*exp(-ik4t2). (2.6) 

Lemma 2.6. Let g be a function defined on IF?. 
(i) If g is slowly increasing, nonpolynomial and of locally bounded variation, then X(g, c) 

contains a delta sequence on finite intervals. 
(ii) If g is slowly increasing and of locally bounded variation and supp(Fg) has an accumulation 

point, then X(g) contains a delta sequence on finite intervals. 
(iii) If g is nonzero, square integrable and of uniformly locally bounded variation, then X(g, c) 

contains a delta sequence on the line. 
(iv) If g is nonzero, square integrable and of uniformly locally bounded variation and supp(Fg) 

is dense on II%, then X(g) contains a delta sequence on the line. 

Proof. Lemma 2.3 is useful for proving this lemma. The elements uk of the respective delta sequences 
can be obtained by uniformly approximating functions such as defined by (2.6). Cl 

Lemmas 2.3 and 2.6 guarantee that not only Z(g, c) but also X(g) contains delta sequences both 
on finite intervals and on the line if the function g is one of the familiar functions such as e&/*, 
( 1 + t*) -’ and e-It/. Suppose that h is a sigmoid function. Then, by Corollary 2.4 and Lemma 2.6, 
s( h, c) and Z(h) contain delta sequences both on finite intervals and on the line, if h is one of the 
familiar sigmoid functions such as ( 1 + e-‘) -‘, (27r) -’ JL, e-?/* ds and min( max( 0, t) , 1) . 

Even if g is an exponentially increasing function, _Z( g, c) and Z(g) can contain both kinds of 
delta sequences. It is now obvious that Z( G, c) and X(G) contain both kinds of delta sequences if 
G is the function defined by (2.3) for g(t) = elrl. Hence, X(e 1’1, c) as well as X(el’l) contain both 
kinds of delta sequences. 

It is usually difficult to construct a delta sequence without scaling the function g. However, the 
author [ 12,131 has shown several examples of constructive methods of uniformly approximating 
continuous functions by linear combinations of an unscaled sigmoid function. They can be used for 
constructing delta sequences without scaling the sigmoid function. We present here a few examples 
of delta sequences, the elements of which are linear combinations of unscaled nonlinear functions. 
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Example 2.7. One of the sigmoid functions mentioned above is a ramp function, which is defined 

by 

1 

0, t < 0, 

g(t) = t, O<t<l, 

1, t> 1. 

If g can be scaled, it is easy to construct a delta sequence from g. Even if it cannot be scaled, we can 
construct delta sequences on finite intervals and on the line whose elements are linear combinations 
of unscaled shifts of g. Set 

Then, {uk} is a delta sequence on finite intervals. Set 

u,(t)=$k’(l-$)(g(t+i-m)-2g(t-mj+g(t-f-m)). 

Then, the sequence is a delta sequence on the line. Polygonal functions can also be used for con- 
structing delta sequences. For details, see [ 131. 

Using the following proposition, we can construct a delta sequence on the line. 

Proposition 2.8. Let u and g be square integrable continuousfinctions. Suppose that g is a bounded 
function of uniformly locally bounded variation. If the quotient F’u/F’g is slowly increasing and its 
inverse Fourier transform is a square integrable continuous function, then a linear combination of 
shifts of g can approximate u uniformly on II%. 

Proof. Set u = .7-i (Fu/Fg) . Then, 

u(t) =v*g(t) = 
s 

u(s)g(t - s) ds. (2.7) 

For any E > 0, there is a continuous function w with compact support such that 

I/(r;(s) - w(s))g(t - s) ds/ < E, on IR. 

Since g is a function of uniformly locally bounded variation, the integral J w(s) g( t - s) ds can be 
approximated uniformly on R by a finite sum: 

kW(&)(&- si-*)g(t- Si). (2.8) 
i=l 

This concludes the proof. q 

Remark 2.9. Note that supp(_Y=g) must be dense in IR in this proposition. This implies that g 
must be strongly completely discriminatory. This proposition suggests the importance of strongly 
discriminatory functions. 
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Example 2.10. Let u,(t) = (27~~) -1/2e-t’/2c2 and g(t) = a,( 1 + e-‘)-’ = ewf(l + eel)-*. Then 
3&(t) = (2rr)-‘/*exp(--ic*t*) and Fg(t) = (27r)‘/*t(e”’ -e-“‘)-‘. Hence, Fu,/Fg is a rapidly 
decreasing Coo-function, which implies that U, = .?‘(~‘u,/~g) is also rapidly decreasing. More 
precisely, since 

3u,(t) = (2rrt)-‘exp(-$*t*)(e”’ -eerrt), 

d 
d,vc(‘) = -c-*sin(c-*7rt) exp(ic-*(ir* -t”)). 

Hence, 

s t u,(t) = -c-2 sin(c-*rs) exp(ic-2(?r2 - 3’)) ds. 
--oc) 

Hence, U, can be uniformly approximated on IR by a linear combination of unscaled shifts of g. For 
an appropriate sequence {Q}, {u,,} is a delta sequence on the line. Hence, by approximating g by 
a difference of slightly shifted versions of the unscaled logistic function, we can construct a delta 
sequence on the line whose members are linear combinations of shifts of the logistic function. Thus, 
Proposition 2.8 and Example 2.10 suggest usefulness of the unscaled logistic function. See [3,14] 
for calculation. 

3. Approximation of the inverse Radon transform 

We simplify the notations of derivatives: & = d/k(‘). For the multi-index (Y = (cy, , . . . , CQ), we 
writelal=cul+‘.‘+t-d,(Y!=(Y,!“‘LYd!,aa=ap’...a~andcu~~iifal3Pl,...,cud3Pd.We 
use the notation d, = a/a, for a function in one variable t. Hence, arrg = g(‘). The definition of the 
space C”(a) of m-times continuously differential functions is familiar, where 0 6 m < co and 0 
is the whole space Rd or a compact subset K c Rd. For simplicity, we suppose that a function of 
C”‘(K) is defined in an open set including K. The space C”‘(a) is endowed with a simultaneous 
uniform norm: 

(3.1) 

We denote by Cz(IRd) the restriction of C,‘( Rd) to functions with compact support and by Ct (IRd) 
its completion. The space of rapidly decreasing C” -functions defined on IRd is denoted by S( lRd ) . 

We denote by W”’ (0) the space of functions defined on 0 which are m-times differentiable in the 
sense of distribution if the mth derivatives are functions. Let f be a function of W”*( 0). We say 
that a function f, E Wm( 0) approximates f in Wm( LJ), if IIf - fr Iln,,R is sufficiently small. The 
Heaviside function belongs to W(R) = W() (Et) and a polygonal sigmoid function belongs to W’ (R) . 

Any sigmoid function, not necessarily continuous, belongs to W(R). 
A unit vector w is an element of the unit sphere Sd-’ . Let w.~, . . . , 0.d be the components of w 

andseto”=wP,‘+..wP$. Denote by y a directed grand arc on S”-’ and by d, the differentiation along 
y. We denote by Ct(R x Sd-‘) the space of Cm-functions defined on II% x Sd-’ whose derivatives up 
to order m, m < 00, converge to 0 as ItJ -+ 00, and by S(lR x Sd-‘) the space of rapidly decreasing 
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C”-functions defined on IR x Sd-‘. Let m,,, be a uniform measure with unit density on a hyperplane 
{X E Eqo. x = t}. The Radon transform of f E S( IRd) is defined by 

f(tv w> = 1 f(x) W,,(x). (3.2) 

Further, let ,u be the uniform measure on Sd-’ with unit density. Set 0, = a:. For convenience, we 
define an operator L with respect to the variable t by 

Ldt. @I = & (--0,)‘d-‘J’2p( t, 0). 

Then we have that 

f(x) = / L&J . x, ~1 @u(w). 

For the details of these definitions, see [ 5,7,12]. 
The lemma below holds for the integrand of (3.4). 

(3.3) 

(3.4) 

Lemma 3.1. Suppose that f E S ( Rd) . Then, 
(a) Lf E CO”(IR x Sd-‘); 
(b) Lfv(w.x,w) =Lf(-WX,-w); 
(c) for any k 3 0 and any directed grand arcs yl, . . . , yq there is a positive constant Mk,? ,,..., ?,, 

such that 

l4%, . . -a,kRt, 41 < Mk.y,,...,y,(ItJd+k + I)-‘, for all (t,4; 

(d) in particulal; Lf E S(IR x Sd-‘) for odd d. 

By (c) and (d) of the lemma, Lf is integrable over t for all d. 

Lemma 3.2. For f E S(Rd), we have 

L((ay)V) (t, 0) = daJ%f(t, w), on R x sd-! 

Proof. We have, for example, that, for el = (1, 0, . . . ,O), 

a,f(x> dm!,, = k~ jj 
- .I 

(f(x + hel) - ./Xx>) dm,,, 

f(X) dmr+ho.,,o - f(x) dmt,o 

=l&$f(t+hw.l,W)-~(t,W))=O.l .a,f(tdo). 

Repeating this procedure, we obtain 

(3.5) 

I WW dm,,, = daj”lf( t, CO). 
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In [ 121, it is proved that the order of the operators at and L can be interchanged. Hence, 

L 
s 

J”f( x) dm,,, = ~~~~~~ Lf( t, w) . 

This concludes the proof. 0 

Lemma 3.3. (i) Let {uk}g, be a delta sequence of Wm-functions on finite intervals. Then, we have 

J q(t - s)u~“(s) ds = J qdr’(t - s)uk(s) ds, 0 < Y < m, (3.6) 

for any p E C,“(R) f or suficiently large k. This quantity converges uniformly to 50”’ (t) on any 

compact set of R for all r < m. 

(ii) Let {uk}& b e a delta sequence of W”‘-functions on the line. If u:“, r < m, are bounded 
respectively, we then have (3.6) for any function p E C~(IR) f or su.ciently large k. In this case, 
the quantity (3.6) converges uniformly to sp(‘)( t) on IR for all r < m. 

Proof. Eq. (3.6) is obvious by integration by parts. We have 

In both cases, the first integral on the right-hand side converges to sp(‘) uniformly on R. In the case 
(i), the second integral is bounded by k-’ J Ip(‘)( t) 1 dt on any compact set for sufficiently large 
k. In the case (ii), the second integral is bounded by k-’ J I$“)( t) 1 dt on R. Hence, the lemma 
follows. 0 

In the lemma below, we use a sequence {@N}rz, of infinitely differentiable symmetric functions 
defined on R by 

1, 
&v(t) = 

if ItI < N, 

q5(ltl - N), if ItI > N, 
(3.7) 

where 4 is a symmetric C” -function such that 4(O) = 1, 4(t) = 0 for t > 1, #“) (0) = 0 for n 3 1 
and 0 < 4(t) < 1 on IR. 

Proposition 3.4. (i) Let {q!~~}~~, b e a sequence of functions defined by (3.7) and {uk}g, be a delta 
sequence of W”‘-functions on finite intervals. For f E S(IRd), set 

fN.k(x) = / /dMt)Lf(t, w)urJw. x - t> dtd,4o). (3.8) 
J J 

Then, for any E > 0 and any compact set K c IRd, we have that if N and k are suficiently large, 

lJ”f (x) - +“fn,k(x)) < E, on K, (3.9) 

for all a, IcyI < m. 
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(ii) Let {uk} be a delta sequence of W”‘-functions on the line and suppose that a:u, are bounded 
for all k and Y < m. For f E S(IRd), set 

fk(x) =SSLi(t,w)u,(x.o-t)dtd~(~). (3.10) 

Then, for any E > 0, we have that if k is sufJiciently large, 

lJ”f(x> - Pfk(x)J <E, on Rd, 

for all a, IayJ < m. 

(3.11) 

Proof. ( i) Set 

f/+(x) =SCn(w.x)Lj(w.x,w)d~(~). (3.12) 

For sufficiently large k, we have that, by Lemmas 3.2 and 3.3, 

a”fN,!C(x) 

= 
ss 

~N(t)L~(t,w)dau,(o.x- t)dtdp(w) 

= (-1P /I +N(t)Lj? t, ~)ddj%&~. x - t) dtd,x(w) 

I4 

SJC I4 = 
i=o i!(JauJ-i)! 

(af~,)(t)(aJ”‘-‘L~)(t,o)Wauk(O.x- t)dtd,u(w) 

UC 

(Y! 
= 

,,,P!(a-PP)! 
@JPalP’#%V> ( t) (w “-Pd,+‘P’Lj(t, W))U&II . x - t) dtd/x(w) 

c 
CZ! 

= 
fl+ P! (a - P)! IS 

wP(dJP’~,)(t)L((~a-Pf)V)(t,o)uk(w.x- t)dtd,u(w). (3.13) 

By Lemma 3.3, the right-hand side of (3.13) converges uniformly to 

c a! ,,,PVa-PV 
oP(dJP'~~)(w.x)L((d"-Pf)V)(w.x,w)d~(w), (3.14) 

as k -+ cc on any compact set. This limit coincides with PfN(x). Hence, we have 

lJaf~(x) - d”fhdx)I < +E, if 1x1 < N (3.15) 

Each summand with p # 0 on the right-hand side of (3.14) converges uniformly to 0 on K as 
N -+ co, because d:@,(t) = 0 on {It\ < N} U {ItI > N + l}. Hence, we have 

lim d”fN(x) = 
N-CC2 J 

L((Pf)“)(W.x,ti)d,z(W), on K. 

By (3.4), the right-hand side of this equality is equal to a”f(x). Moreover, this convergence is 
uniform on K. Hence, 

la”f(x) - d”fN(x)) < i&, on K, (3.16) 
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for sufficiently large N. From (3.15) and (3.16), inequality (3.9) follows. 
(ii) By Lemmas 3.2 and 3.3, we have that if Icy] < m, 

d”fk(X) = Sl Lj(t, w)d”uk(x. w - t) dtd,u(w) 

= (-l)‘~‘/S~~(t,o)o”a!“l~~(x.w-r)d~d~(w) 

= JJ w"(d~"'Lf)(t,w)u&x~ w - t) dtdp(w) 

= JS L((~“~)“)(~,~)u~(x.w- t)dtd,u(w). (3.17) 

Hence, by Lemma 3.3 and (3.4), a”fk converges to a0f uniformly on II@. This concludes the 
proof. Cl 

Thus, the function f and its derivatives can be approximated by the integral (3.8) on compact sets 
and by the integral (3.10) on the whole space. 

4. Approximation theorems 

In this section, we prove several approximation theorems. They are obtained by approximating the 
integrals (3.8) and (3.10) by finite sums of an element uk of a delta sequence. Since & is obtained 
as a finite sum of scaled or unscaled shifted rotations of the component function, say g, the integrals 
are approximated by finite sums of g in conclusion. Recall that constants are regarded as polynomials 
and that a rotation of a function g in one variable is actually g(t) or g( -t). We use partitions of 
[-N-l,N+l] xS”-’ andIWxSd-‘. 

Theorem 4.1. Let g be a function of W”‘(R) and K be a compact set of Rd. Suppose that there 
is a linear combination G of scaled shifted rotations of g such that the derivative 13yG is a slowly 
increasing nonpolynomial function of locally bounded variation. Then, for any f E: C”‘(K) and any 

E > 0, there are a positive integer n, coejficients ai, scalars ci, rotators (c)i and shifts ti, i = 1, . . . , n, 
for which 

J(x) = kUigc.(Ui * X - ti) (4.1) 
i=l 

satis$es 

la”f(x) - a”f(x>l < E, on K, (4.2) 

for all a, [LY] < m. 

Proof. Since there is a function of s(Rd) whose restriction to K approximates f in C”‘(K), we may 
suppose that f E S ( lRd) . By Lemma 2.6 (i) there is a delta sequence { uk} on finite intervals whose 
members are linear combinations of scaled shifted rotations of G. Hence, f can be approximated in 
W”‘(K) by an integral of the form (3.8). Since a:G is a function of locally bounded variation, so 
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are a:G and a:uk for Y < m. As the domain of f is restricted to K, it is not difficult to prove that 
there is a finite partition {Ai};!, of [-N - 1, N + 1 ] x Sd-’ for which 

satisfies 

lJaYf~,k(x> - d”_f~,k,~(~)l < 8, on K, 

for all (Y, IcyI < m, where (t;, Oi) is an arbitrary point of Ai. Since G is a linear combination of 
scaled shifted rotations of g, the proof is concluded. q 

This theorem is an extension of the original neural approximation theorem proved in [4,9] and 
elsewhere. Under the restriction that m = 0 and g is a sigmoid function, this theorem is reduced to 
the original one. 

Theorem 4.2. Let g be a function of W”“(R) and K be a compact set of Rd. Suppose that there is 
a linear combination G of shifted rotations of g such that the derivative a:“G is a slowly increasing 

nonpolynomial function of locally bounded variation. Then, for any f E C”‘(K) and any E > 0, there 
are a positive integer n, coefJicients ai, rotators wi and shifts ti, i = 1, . . . , n, for which 

f(X) = 2 aig(Ui ’ X - ti) 
i=l 

(4.3) 

satisfies (4.2) for all a, [al < m. 

Proof. This theorem can be proved similarly to Theorem 4.1. By Lemma 2.6(ii), each member of the 
delta sequence on finite intervals can be approximated by a finite sum of unscaled shifted rotations 
of G. Hence, we obtain the theorem as in the proof of the Theorem 4.1. Cl 

This theorem corresponds to [ 13, Theorem 2.61. Now we treat simultaneous approximation of a 
function and its derivatives on Rd. 

Theorem 4.3. Let g E W”‘(R). Suppose that a certain linear combination G of scaled shifted 
rotations of g is a nonzero function such that JFG, 0 < r < m, are square integrable functions of 
uniformly locally bounded variation. Then, for any f E Ct (lRd) and any E > 0, there are a positive 

integer n, coejjkients ai, scalars ci, rotators wi and shifts ti, i = 1, . . . , n, for which a finite sum 

f(X) = 2 aigc, (Oi ’ X - ti) 
i=l 

(4.4) 

satisjes 

ja”f (X) - a”_?(x) I < E, on II%“, (4.5) 

for all a, (al < m. 
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Proof. There is a function of S(lRd) which approximates f uniformly on lRd in Cg(lR?). Hence, we 
may suppose that f E S(Rd). By Lemma 2.6(iii), there is a delta sequence {uk} on the line whose 
members are linear combinations of scaled shifted rotations of G. Hence, we can obtain a function 
fk defined by (3.10) which satisfies (3.11) . Since J:G are square integrable functions of bounded 
variation, so are a;uk. Set 

fk,r(~) = /‘~,<~~~(uJ)uI(~ .x - t) dtdp(w). 

Then, by Lemma 3.2, we have that 

(4.6) 

a”fk,T(x> = JJ w”ala’L~(t,w)~k(~.~--)dtd~(~). 
Ifl<T 

Since PLf( t, w) are integrable and uk is bounded, there is T > 1 such that 

(auf(x) - a".fk,T(X>( < & on Rd9 

for all LY, [LYE < m. Suppose that N is sufficiently large and set 

(4.7) 

(4.8) 

E x,N = 

Then, Ex,~ is an equatorial belt of the unit sphere with poles at fx/lxj. Moreover, ,u(E~,N) can be 
arbitrarily small. If 1x1 > 4NT, we have 

{ 
WI I~.x-tl 6 ;,lrl 6 T 

> 
c Ex,m. 

Since Ex,2N C Ex,N and the distance between Ex,2N and Sd-‘\E,,N is positive, there is a fine partition 

{Ali} Of [-T, T] X Sd-' such that 

B~,N = IJ{dlilAlin E,QN # S} C Ex,~. 

For X, 1x1 > 4NT, set B:,, = Sd-‘\B,,N and divide the integral (4.7) into two parts: 

a”fk,T(X) = {IL,,,,., + /~,sr:m~.JW.a~~‘Lf(~. u)uk(x. w - t) dtd,dw). 

Let (ti, Oi) be an arbitrary point of Ali and N be sufficiently large. We then have 

JJ ItlQJA’ 
Iw~~~~'L~(~,w)u~(X.W- t)Idtd/.@) < a& 

and 

c,Jl,.l 
~~a,~Lf(t,w)Idtd,~(w) Iuk(wi’ 

” ” 
X - ti) I < i&l 

where c, stands for a sum over i such that Ali C Bx,N. Since 

wlj~.~-tl> k , for all t, ItI < T, 
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we have that, for sufficiently large k, 

and 

CJJ 2 
Iw’j,,a)“‘~f’(t,w)Idrd~(w)uk(wi.x-ti)I < $E, 

where C2 stands for a sum over i such that Ali c B:,,,. Hence, 

(4.9) 

for X, 1x1 > 4NT, where C = C, +x2. 
Now let us suppose that 1.~1 < 4NT. Since x is confined in the compact set and the integral (4.7) 

is over a compact set, there is a partition {&} of [-T, T] x 9-l such that 

Let {Ai} be a partition of [-T, T] x Sd-’ finer than both {Ali} and {dzi}. Then, 

(4.10) 

on IRd for all (Y, JQI < m. Since uk is a linear combination of scaled shifts of G which is a linear 
combination of scaled shifts of g, inequalities (4.8)-(4.10) conclude the proof. 0 

This theorem can be extended as below. For a neighborhood U, of the infinity, we write ir, = 

k\M. 

Theorem 4.4. Let f E Cnt(IRd) and g E Wm(R). Suppose that a member G1 of 2’( g, c) as well 
as its derivatives a:G,, 1 < r < m, are functions of bounded variation, and another member G2 of 
z((g, c) as well as its derivatives a:G2, 1 6 r < m, are square integrable functions of uniformly 
locally bounded variation. Then, statement (1) implies (2): 

( 1) there is a neighborhood U, of injinity such that f can be approximated in W*‘(u) by a linear 
combination of scaled shifted rotations of GI; 

(2) f can be approximated in W”’ (Rd) by a linear combination of scaled shifted rotations of g. 

Proof. Suppose that statement (1) holds and let f, be a linear combination of scaled shifted rotations 
of G1 such that Ilf - fl IInI,u, < E. S ince f and its derivatives are continuous, jump heights of 7, and 

its derivatives are less than 2~ at all discontinuity points in 0,. Hence, using the fact that d;Gr are 
functions of bounded variation, we can prove that, for a mollifier p with sufficiently small support, 

IV1 - JI * PIIm,nV < 2E holds. Since f - f, * p E Cm(IRd) and I(f - fl * plJ,,o, < 3.~ there is 

a function f2 E Cr(IEX’) such that II f - _?, * p -f II 2 nl,~d < 4~. By Theorem 4.3, there is a linear 
combination f2 of the form (4.1) for which 11 f2 - j 2 nt,Wd < E holds. From these results, we obtain (I 
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that Ilf - fl- _&II ,,,,nd < 5~. Since fr + f2 is a linear combination of the form (4.1)) the proof is 
concluded. Cl 

Denote by Ed the one-point compactification of W’ and suppose that g satisfies the condition of 
this theorem for m = 0. For an appropriate to, g( -to) is a nonzero constant, which implies that any 

f E C (@?) can be approximated uniformly in a neighbourhood of the origin. Hence, by Theorem 

4.4, such f can be approximated uniformly on 2 by a linear combination of scaled shifted rotations 

of g. Since any sigmoid function satisfies the condition of the theorem, any f E C (Ed) can be 

approximated in W(Ed) by any sigmoid function. This result is proved in [ 141. 

Theorem 4.5. Let g E Wm (R). Suppose that a certain linear combination G of shifted rotations of g 
is a nonzero function such that a:G, 0 < r < m, are square integrable functions of uniformly locally 
bounded variation and supp (3G) is dense on II%. Then, for any f E C2(IRd) and any E > 0, there 

are a positive integer n, coefJicients ai, rotators Wi and shifts ti, i = 1, . . . , n, for which a finite sum 

_fCx) = f: Uig(CWi * X - ti) 
i=l 

(4.11) 

satisfies 

P”f (x) - d”“?(x) 1 < E, on I@, (4.12) 

for all ff, JLYI < m. 
Conversely, if supp(3G) is not dense on IR, there is a function f of C$(lRd) and E > 0 for which 

any linear combination of shifted rotations of G never satisjes (4.12). 

Proof. By Lemma 2.6(iv), there is a delta sequence on the line, each member of which is a linear 
combination of unscaled shifted rotations of G. Hence, the proof of the first half of the theorem is 
similar to that of Theorem 4.3. 

Set G,,,(x) = G( w. x - t) and let 3d stand for the Fourier transform on Rd. The support of 3G is 
symmetric with respect to the origin. Hence, if it is not dense on IR, there is a spherically symmetric 
open set B c IRd which has no intersection with the set 

u suPP(3dG,,,). 
w,t 

There is a function f of s(lRd) whose support is contained in B. Analogously to the proof of 
Lemma 2.3(iv), we can prove that f cannot be approximated by a linear combination of G,,r’s. This 
concludes the proof. 0 

This theorem can be extended as follows. 

Theorem 4.6. Let f E Cm(lRd) and g E W”‘( IR). Suppose that a member G1 of X(g) as well as its 
derivatives 6’:G,, 1 < r < m, are functions of bounded variation, and another member G of S(g) as 
well as its derivatives J;G, 1 < r < m, are square integrable functions of uniformly locally bounded 
variation. Then, if supp(3G) is dense in R, statement ( 1) implies (2): 
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( 1) there is a neighborhood U, of infinity such that f can be approximated in Wm( 0) by a linear 
combination of scaled shifted rotations of G,; 

(2) f can be approximated in W”‘( IRd) by a linear combination of scaled shified rotations of g. 
Conversely, if supp( FG) is not dense on IL%, there is a function f of C$‘( JRd) which satis$es ( 1) 

but not (2). 

Proof. The proof of the first half is similar to that of Theorem 4.4 and the proof of the second half 
to that of Theorem 4.5. 17 

Let g be a sigmoid function. Then, a constant can be approximated uniformly in a neighbourhood 
of the infinity by a linear combination of shifted rotations of g. Hence, this theorem implies that if 

and only if supp(Fg) is dense on I& any f E C(Ed) can be approximated uniformly on Ed by a 
linear combination of shifted rotations of g. This fact is also proved in [ 141 by a distinct method. 

5. Discussion 

In this paper, we have shown systematically the usefulness of the inverse Radon transform for 
differentiable approximation both on compact sets and on the whole space IKd by neural networks. 
However, there are alternative easier proofs of Theorems 4.1 and 4.2 which guarantee the differential 
approximation on compact sets. As described in [ 131, approximation of functions on compact sets 
is easier than approximation on the whole space in many cases. This is true in the case where the 
approximation is extended to derivatives, too. By Nachbin’s theorem, a function of Cm(K) can be 
approximated in P(K) by a polynomial for any compact set K of IRd and any polynomial can 
be expressed as a linear combination of powers of the form (w - x)” [ 131. Let {uk}g, be a delta 
sequence of functions of W”’ (R) on finite intervals, the derivatives of which are functions of locally 
bounded variation. For any finite closed interval F c IL?, there is a function U, E C,-(Iw) which 
coincides with t’ in a neighbourhood of F. Hence, by Lemma 3.3, t’ can be approximated in Cm(K) 
by a convolution of U, and an element uk of the delta sequence. The convolution can be approximated 
in C”*(K) by a linear combination of shifts of uk as in the proof of Theorem 4.1. Hence, Theorems 
4.1 and 4.2 can be proved without implication of the inverse Radon transform. 

All theorems described in [ 12-141 are extended in this paper not only because the approximation 
is extended to derivatives, but also because the class of useful functions as the component function 
g in ( 1 .l) is extended. Although we have used a different method here than in previous papers, the 
results of this paper contain all the previous results. Hence, the present method can be regarded as an 
extended alternative method of the proofs of the respective previous theorems. For example, in [ 141 a 
necessary and sufficient condition is obtained which ensures that a linear combination of an unscaled 
sigmoid function can approximate any function of CO(IWd). The condition is that supp( Fph) is dense 
in R, which, coincides with the condition on supp(FG). This implies that the proof of Theorem 4.5 
is an alternative proof of the extension of [ 14, Theorem 3.51. Note: There is a mistake in [ 141: 
“supp(R(F~~))” must be replaced by “supp(F(~~)“. 

This paper not only extends [ 12-141, but also [ 8,101 which have dealt with differentiable approx- 
imation. When compared with these papers, the extension in this paper is threefold: (a) in the case 
of approximation on compact sets, the class of component functions is extended to slowly increas- 
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ing function of W” (R?) ; (b) the domain of differentiable approximation is extended to the whole 
space lF@; (c) another extension attained in this paper is the implementation of differentiable uniform 
approximation without scaling the activation function. 

It must be noted that not any polynomial can be the activation function. This is obvious because a 
superposition of polynomials of order n is a polynomial of order equal to or less than 12. From our 
point of view, the reason is that the Fourier transform of a polynomial has a support restricted at the 
origin. The statement of Lemma 2.2(i) excludes explicitly polynomials as component functions and 
the respective conditions of statements (ii)- of the lemma automatically exclude polynomials. It 
is interesting that the same conclusion was obtained in [ 151 by a distinct method. 

The proofs in this paper can be regarded to be constructive, except for the proof of existence 
of the delta sequences. However, we can easily construct a delta sequence in many cases as we 
have described. Even if the component function cannot be scaled, construction of a delta sequence 
is sometimes possible. Then, a three-layered neural network, which can implement differentiable 
approximation, can be constructed in principle according to the proofs of this paper, although it may 
be a somewhat laborious work. 
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