# An Elementary Proof of a Theorem of Erdös on the Sum of Divisors Function 

Robert E. Dressler<br>Department of Mathematics, Kansas State University, Manhattan, Kansas 66502

Communicated by P. T. Bateman
Received December 10, 1970; revised August 20, 1971

$$
\begin{aligned}
& \text { Let } \sigma(n) \text { be the sum of the positive divisors of the positive integer } n \text {. We give } \\
& \text { an elementary proof of the following theorem due to } \mathrm{P} \text {. Erdös: If } g(x) \text { is the } \\
& \text { number of positive integers } m \text { such that } \sigma(m) \leqslant x \text {, then there is a positive constant } c \\
& \text { such that } g(x)=c x+o(x) \text {. } \\
& \text { In addition we derive } \\
& \left.c=\prod_{p}\{1-1 / p)\left(1+(1 / p+1)+\left(1 / p^{2}+p+1\right)+\left(1 / p^{3}+p^{2}+p+1\right)+\cdots\right)\right\} \text {. } \\
& \text { 1. INTRODUCTION }
\end{aligned}
$$

In an earlier paper an elementary proof of the following theorem of P. Erdös is given: If $\varphi$ is the Euler function and $f(x)$ is the number of positive integers $m$ such that $\varphi(m) \leqslant x$, then there is a positive constant $c_{1}$ such that $f(x)=c_{1} x+o(x)$. It is the purpose of this paper to give an elementary proof of a related theorem also due to P. Erdös: If $\sigma$ is the sum of divisors function and $g(x)$ is the number of positive integers $m$ such that $\sigma(m) \leqslant x$, then there is a positive constant $c_{2}$ such that $g(x)=c_{2} x+o(x)$. Erdös' proofs use analytic results of I.J. Schoenberg, and the above results can also be obtained from the Wiener-Ikehara Theorem. Our proof given here for $\sigma$ is more difficult than our proof for $\varphi$ because the multiplicity of the prime divisors of an integer $m$ must be taken into account-something that can be ignored in the case of $\varphi$.

## 2. Notation

Let $A=\left\{a_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive real numbers $\geqslant 1$. For a positive integer $j$, define $\#(A, j)$ to be the number of integers $i$ such that $a_{i} \leqslant j$ (i.e., the number of elements of $A$ counting multiplicity which are $\leqslant j$ ). We denote the $i$-th prime by $p_{i}$ and $p$ will always be a prime.

## 3. The Main Result

We begin by remarking that a well-known formula for $\sigma$ is

$$
\sigma(n)=n \prod_{p^{e} \| n}\left(1+(1 / p)+\cdots+\left(1 / p^{e}\right)\right)
$$

We define

$$
\sigma_{r, k}(n)=n \prod_{\substack{p^{p_{\|} \| n} \\ p \leqslant p_{r}}}\left(1+(1 / p)+\cdots+\left(1 / p^{\min (e, k)}\right)\right)
$$

We let \#( $\left.\sigma_{r, k}, n\right)$ denote the number of positive integers $m$ such that $\sigma_{r, k}(m) \leqslant n$ and we define $\Delta\left(\sigma_{r, k}\right)=\lim _{n \rightarrow \infty} \#\left(\sigma_{r, k}, n\right) / n$. As a first step we show $\Delta\left(\sigma_{r, k}\right)$ exists and calculate its value.

Corresponding to each $r$-tuple ( $t_{1}, t_{2}, \ldots, t_{\tau}$ ) with $0 \leqslant t_{j} \leqslant k+1$, let $A=A\left(t_{1}, \ldots, t_{r}\right)$ be the set of those integers $m$ such that $p_{j}^{t_{j}} \mid m$ $(j=1,2, \ldots, r)$ but $p_{j}^{t_{j}+1}+m$ if $t_{j}<k+1 \quad(j=1,2, \ldots, r)$. For each $m \in A$ we have

$$
\sigma_{r, k}(m)=m \prod_{j=1}^{r}\left(1+\left(1 / p_{j}\right)+\left(1 / p_{j}^{2}\right)+\cdots+\left(1 / p_{j}^{t_{j}-1+\operatorname{sgn}\left(k+1-t_{j}\right)}\right)\right)
$$

where as usual

$$
\operatorname{sgn} x=\left\{\begin{aligned}
-1 & \text { if } \quad x<0 \\
0 & \text { if } \quad x=0 \\
1 & \text { if } \quad x>0
\end{aligned}\right\}
$$

An integer $m \in A$ satisfies $\sigma_{r, k}(m) \leqslant n$ if and only if it satisfies

$$
m \leqslant n \prod_{j=1}^{r}\left(1+\left(1 / p_{j}\right)+\cdots+\left(1 / p_{j}^{t_{j}-1+\operatorname{sgn}\left(k+1-t_{j}\right)}\right)\right)^{-1}
$$

An easy counting argument then shows that the number of $m \in A$ with $\sigma_{r, k}(m) \leqslant n$ is

$$
\begin{aligned}
& \left\{\prod_{j=1}^{r}\left(p_{j}-\operatorname{sgn}\left(k+1-t_{j}\right)\right) / p_{j}^{t_{j}+1}\right\} \\
& \quad \times\left\{n \prod_{j=1}^{r}\left(1+\left(1 / p_{j}\right)+\cdots+\left(1 / p_{j}^{t_{j}-1+\operatorname{sgn}\left(k+1-t_{j}\right)}\right)\right)^{-1}+\theta p_{1}^{k+1} \cdots \cdots p_{r}^{k+1}\right\}
\end{aligned}
$$

for some $\theta$ satisfying $|\theta| \leqslant 1$.

Now

$$
\left(\left(p_{j}-1\right) / p_{j}\right)+\left(\left(p_{j}-1\right) / p_{j}^{2}\right)+\cdots+\left(\left(p_{j}-1\right) / p_{j}^{k+1}\right)+\left(p_{j} / p_{j}^{k+2}\right)=1
$$

and so, summing over all $r$-tuples $\left(t_{1}, \ldots, r_{r}\right)$ gives

$$
\begin{equation*}
\#\left(\sigma_{r, k}, n\right)=n \Delta\left(\sigma_{r, k}\right)+\theta^{\prime} p_{1}^{k+1} \cdots \cdot p_{r}^{k+1} \tag{*}
\end{equation*}
$$

where $\left|\theta^{\prime}\right| \leqslant 1$ and

$$
\begin{aligned}
\Delta\left(\sigma_{r, k}\right)= & \sum_{t_{1}, t_{2}, \ldots, t_{r}=0}^{k+1} \prod_{j=1}^{r}\left(p_{j}-\operatorname{sgn}\left(k+1-t_{j}\right)\right) / p_{j}^{t_{j}+1} \\
& \times\left(1+\left(1 / p_{j}\right)+\cdots+\left(1 / p_{j}^{t_{j}-1+\operatorname{sgn}\left(k+1-t_{j}\right)}\right)\right)^{-1} \\
= & \prod_{j=1}^{r} \sum_{t_{1}, t_{2}, \ldots, t_{r}=0}^{k+1}\left(1-p_{j}^{-1} \operatorname{sgn}\left(k+1-t_{j}\right)\right) /\left(p_{j}^{t_{j}}+p_{j}^{t_{j}-1}+\cdots+p_{j}^{1-\operatorname{sgn}\left(k+1-t_{j}\right)}\right) .
\end{aligned}
$$

We note that

$$
\begin{aligned}
\lim _{r, k \rightarrow \infty} \Delta\left(\sigma_{r, k}\right)= & \prod_{p}\{(1-1 / p)(1+(1 /(p+1)) \\
& \left.\left.+\left(1\left(/ p^{2}+p+1\right)\right)+\left(1 /\left(p^{3}+p^{2}+p+1\right)\right)+\cdots\right)\right\}
\end{aligned}
$$

Next notice that for any positive integer $m$, if we have $r_{\mathbf{1}} \geqslant r$ and $k_{1} \geqslant k$, then $\sigma_{r_{1}, k_{1}}(m) \geqslant \sigma_{r, k}(m)$. Thus, for any positive integer $x$ we have $\#\left(\sigma_{r, k}, x\right) \geqslant \#\left(\sigma_{r_{1}, k_{1}}, x\right)$. So, $\Delta\left(\sigma_{r_{1}, k_{1}}\right) \leqslant \Delta\left(\sigma_{r, k}\right)$. In addition $\sigma(m) \geqslant \sigma_{r, k}(m)$ for all positive integers $r, k$, and $m$ and so

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup (\#(\sigma, n) / n) & \leqslant \lim _{n \rightarrow \infty} \sup \left(\#\left(\sigma_{r, k}, n\right) / n\right) \\
& \left.=\lim _{n \rightarrow \infty}\left(\# \sigma_{r, k}, n\right) / n\right)=\Delta\left(\sigma_{r, k}\right)
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} \sup (\#(\sigma, n) / n) \leqslant \lim _{r, k \rightarrow \infty} \Delta\left(\sigma_{r, k}\right)$.
We now prove that $\lim _{n \rightarrow \infty} \inf (\#(\sigma, n) / n) \geqslant \lim _{r, k \rightarrow \infty} \Delta\left(\sigma_{r, k}\right)$. For any positive integers $r, k$, and $m$ we have

$$
\sigma(m)=\sigma_{r, k}(m) \prod_{\substack{p^{e} \ell \\ p>p_{r} \\ p>p_{r}}}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{e}}\right) \prod_{\substack{p^{\varepsilon} \|_{\|} \\ p_{\leqslant} \leqslant p_{r} \\ e>k}} \frac{\left(1+(1 / p)+\cdots+\left(1 / p^{e}\right)\right)}{\left(1+(1 / p)+\cdots+\left(1 / p^{k}\right)\right)} .
$$

So if $\sigma_{r, k}(m) \leqslant y$, we have

$$
\sigma(m) \leqslant y \prod_{\substack{p^{\varepsilon} \| m \\ p>p_{r}}}\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{e}}\right) \prod_{\substack{p^{e} \mid m \\ p_{>} \leqslant p_{r} \\ e>k}}\left(\frac{1+(1 / p)+\cdots+\left(1 / p^{e}\right)}{1+(1 / p)+\cdots+\left(1 / p^{k}\right)}\right) .
$$

So if $\sigma_{r-1, k}(m) \leqslant n T_{m, r-1, k}$, where
$T_{m, r-1, k}=\prod_{\substack{p^{p} \| m \\ p>p_{r-1}}} \frac{1}{\left(1+\frac{1}{p}+\cdots+\frac{1}{p^{e}}\right)} \prod_{\substack{p^{p} \| m \\ p \leqslant p_{r-1} \\ e>k}}\left(\frac{1+(1 / p)+\cdots+\left(1 / p_{k}\right)}{1+(1 / p)+\cdots+\left(1 / p^{e}\right)}\right)$,
then $\sigma(m) \leqslant n$. Now suppose that for $n>1$ we have $\left(p_{1} p_{2} \cdots p_{r}\right)^{k+1} \leqslant$ $n<\left(p_{1} p_{2} \cdots p_{r}\right)^{k+2}$. If for some integer $m, \sigma_{r-1, k}(m) \leqslant n T_{m, r-1, k}$ then $m$ has fewer than $r(k+2)$ distinct prime divisors and so

$$
1 \geqslant T_{m, r-1, k} \geqslant S_{r-1} k
$$

where

$$
\begin{aligned}
S_{r-1, k}= & \prod_{p \leqslant p_{r-1}}\left(1+(1 / p)+\cdots+\left(1 / p^{k}\right)\right) /\left(1+(1 / p)+\left(1 / p^{2}\right)+\cdots\right) \\
& \times \prod_{i=r}^{r(k+2)-1}\left(1 /\left(1+\left(1 / p_{i}\right)+\left(1 / p_{i}^{2}\right)+\cdots\right)\right)
\end{aligned}
$$

Thus, $\#(\sigma, n) \geqslant \#\left(\sigma_{r-1, k}, n S_{r-1, k}\right)$.
Now for $r$ and $k$ large with $\log r / \log k$ also large (e.g.,

$$
\left.r=\left[(\log n)(\log \log n)^{-2}\right] \quad \text { and } \quad k+1=\left[\log n /\left(\log p_{1}+\cdots+\log p_{r}\right)\right]\right)
$$

we have

$$
\prod_{i=r}^{r(k+2)-1}\left(1 /\left(1+\left(1 / p_{i}\right)+\left(1 / p_{i}^{2}\right)+\cdots\right)\right)=\prod_{i=r}^{r(k+2)-1}\left(\left(p_{i}-1\right) / p_{i}\right)
$$

which is close to 1 by Mertens' Theorem and Tchebychef's Theorem [5; pp. 351, 9]. Also

$$
\begin{aligned}
1 & \geqslant \prod_{p \leqslant p_{r-1}}\left(\left(1+(1 / p)+\cdots+\left(1 / p_{k}\right)\right) /\left(1+(1 / p)+\left(1 / p^{2}\right)+\cdots\right)\right) \\
& =\prod_{p \leqslant p_{r-1}}\left(p^{k+1}-1\right) / p^{k+1} \geqslant 1 / \zeta(k+1)
\end{aligned}
$$

which is close to 1 . Thus for $r$ and $k$ large with $\log r / \log k$ also large we have that $S_{r-1, k}$ is close to 1 .

Now from (*), where we replace $r$ by $r-1$ and $n$ by $n S_{r-1, k}$, we have that $\#\left(\sigma_{r-1, k}, n S_{r-1, k}\right)=n S_{r-1, k} \Delta\left(\sigma_{r-1} k\right)+\theta^{\prime} p_{1}^{k+1} \cdots \cdots p_{r-1}^{k+1}$, where $\left|\theta^{\prime}\right| \leqslant 1$. Since $n \geqslant\left(p_{1} \cdot \cdots \cdot p_{r}\right)^{k+1}$, we see that

$$
\#(\sigma, n) / n \geqslant \#\left(\sigma_{r-1, k}, n S_{r-1, k}\right) / n \geqslant S_{r-1, k} \Delta\left(\sigma_{r-1, k}\right)-\left(1 / p_{r}^{k+1}\right)
$$

Thus, by letting $n \rightarrow \infty$ and by choosing $r$ 's and $k$ 's as above we see that $\left.\lim _{n \rightarrow \infty} \inf (\#(\sigma, n) / n) \geqslant \lim _{r, k \rightarrow \infty} \Delta\left(\sigma_{r, k}\right)\right)$. We have now shown that

$$
\begin{aligned}
\Delta(\sigma)= & \lim _{n \rightarrow \infty}(\#(\sigma, n) / n)=\lim _{r . k \rightarrow \infty} \Delta\left(\sigma_{r, k}\right) \\
= & \prod_{p}\left\{( 1 - 1 / p ) \left(1+(1 / p+1)+\left(1 / p^{2}+p+1\right)\right.\right. \\
& \left.+\left(1 /\left(p^{3}+p^{2}+p+1\right)+\cdots\right)\right\} .
\end{aligned}
$$

But this last product is greater than
$\prod_{p}\left\{(1-1 / p)\left(1+(1 / p+1)+\left(1 /(p+1)^{2}+\cdots\right)\right\}=\prod_{p}\left(1-\left(1 / p^{2}\right)\right)>3 / 5\right.$
and so $\Delta(\sigma)$ is positive (in fact, greater than $3 / 5$ ) and we are done.
Finally, it is worth observing that the theorem we prove contains only the weakest error term. Bateman [1], using analytic techniques, has considerably strengthened the error term for both the $\varphi$-function and the $\sigma$-function.

## Acknowledgment

I am grateful to Professor Paul Bateman for his help in improving the exposition of this paper.

## References

1. P. T. Bateman, The distribution of values of the Euler function, Acta Arith., to appear.
2. H. Davenport, "Über numeri abundantes," Preuss. Akad. Wiss. Sitzungsber, no. 2629 (1933), 147-151.
3. R. E. Dressler, A density which counts multiplicity, Pacific J. Math. 34 (1970), 371-378.
4. P. Erdös, Some remarks on Euler's $\varphi$-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540-544.
5. G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers," Oxford University Press, Oxford, fourth edition (1960).
6. M. KAC, "Statistical Independence in Probability, Analysis, and Number Theory," Carus Monograph, No. 12, The Mathematical Association of America (1959).
