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Let u(n) be the sum of the positive divisors of the positive integer n. We give 
an elementary proof of the following theorem due to P. Erdiis: If’g(x) is the 
number ofpositive integers m such that u(m) Q x, then there is apositive constant c 
such that g(x) = cx + o(x). 

In addition we derive 

c = nil-l/PN + (UP + 1) + (l/P2 +p + 1) + (l/P3 fP2 +p + 1) + *..)I. 
2, 

1. INTRODUCTION 

In an earlier paper an elementary proof of the following theorem of 
P. ErdGs is given: If F is the Euler function and f(x) is the number of 
positive integers m such that q(m) < x, then there is a positive constant 
c1 such that f(x) = clx + u(x). It is the purpose of this paper to give an 
elementary proof of a related theorem also due to P. Erdiis: If 0 is the 
sum of divisors function and g(x) is the number of positive integers m 
such that o(m) < x, then there is a positive constant c2 such that 
g(x) = czx + o(x). Erdos’ proofs use analytic results of I.J. Schoenberg, 
and the above results can also be obtained from the Wiener-Ikehara 
Theorem. Our proof given here for u is more difficult than our proof for 
q because the multiplicity of the prime divisors of an integer m must be 
taken into account-something that can be ignored in the case of v. 

2. NOTATION 

Let A = {ai}& be a sequence of positive real numbers 21. For a 
positive integerj, define #(A,j) to be the number of integers i such that 
ai < j (i.e., the number of elements of A counting multiplicity which are 
,( j). We denote the i-th prime by pi and p will always be a prime. 
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3. THE MAIN RESULT 

We begin by remarking that a well-known formula for u is 

g(n) = n l-I (1 + (l/p) + *** + (l/P”))* 
P? n 

We define 

CT,>&) = n j-J (1 + (l/p) + ‘a* + (l/pm’“‘@‘)). 
PC/l n 

PGP, 

We let #(G,~ , n) denote the number of positive integers m such that 
u,,k(m) < n and we define O(u7,J = lim,,, #(u,,~ , n)/n. As a first step 
we show d(q.J exists and calculate its value. 

Corresponding to each r-tuple (tI , tz ,..., t7) with 0 d tj < k + 1, 
let A = A(1, ,..., tJ be the set of those integers m such that p> 1 m 
0’ = 1, 2,..., r) but pjt’+l~ m if tj < k + 1 (j = I,2 ,..., r). For each 
mEA we have 

fh.kW = m fi (1 + (l/13) + (W) + . . . + (,~pi”j-l+sgn(k+l-tj))) 
i=l 

where as usual 

I 

-1 
sgn x = 0 

1 

An integer m E A satisfies a,,&) < n if and only if it satisfies 

m < n fi (1 + (l/P,) + . . . + (l/,jtj-l+sgn(k+l-tj)))-l, 
j=l 

An easy counting argument then shows that the number of m E A with 
%.k(m) < n 1s 

x n h (1 + (ypj) + . . . + (l/pitj-1+8B*(k+l-tj)))-l + Q,;” . . . . . p:cll 

j=l 

for some 0 satisfying 1 19 / < 1. 
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Now 

((Pj - l)/Pj) + ((Pi - l)/Pi2) + ... + ((Pj - 1 ,/Pi”“) + (PilPj”‘“) = 1 

and so, summing over all r-tuples (tI ,..., rJ gives 

#(aT.k , n) = n Ll(a,,,) + O’p:” . ... - pF+l (*I 

where 1 8’ / < 1 and 

kfl 

d(ar,k) = 1 fi (pj - sgn(k + 1 - fi))/p$+l 
t,,t*,....t,=o i=l 

x (1 + (l/p,) + . . . + (I/pit,-l+sgn(k+l-t5)))-l 

= fi y (1 - p;lsgn(k f 1 - ti))/(pj”’ + p?-’ + . . * + pf-sgn(k+1-t5))s 

j=l tl,tP'...,tr'"O 

We note that 

Ayrn har,k) = n{(l - l/P)(l f (l/b + l)) 
P 

+ (U/P” + p + 1)) + MP3 + P2 + P + 1)) + ***>I. 

Next notice that for any positive integer m, if we have rl 3 r and 
k, 2 k, then aTl,kl(m) 3 a,,,(m). Thus, for any positive integer x we 
have #(Or,k , x) 2 #(%L,kl , x). So, harl,kl) < 4ar,k7.k). In addition 

h.4 3 aTsk(m) for all positive integers r, k, and m and so 

Thus lim,,, supC#(a, 4/n) < li&.k+m h%,k)- 

We now prove that limn+, inf(#(U, EZ)/IZ) > lim7+a, d(ar,k). For any 
positive integers r, k, and m we have 

(1 + (l/P) + **- 4 WP”)) 

PCP, 
e>k 
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So if u,,&z) < y, we have 

P>P, 

1 + (l/P) + *.. + (l/P”) 
-.* + (l/P7 * 

P4P, 
e>k 

So if u,-&n) < nT,,,-,,, , where 

Tww-1.k = n 
1 

p’,,m (1 + f + . . . + 2-) 

P>P,-1 

1 + (l/p) + **’ + (l/p,) 

l + (l’p) + *-* + (“p”) ’ 

then u(m) < n. Now suppose that for n > 1 we have (p1p2 *.. ~,.)~+l < 
n < (m2 *..pJ k+2. If for some integer m, (TV-&n) < nT,,,-l,k then m 
has fewer than r(k + 2) distinct prime divisors and so 

dk+2)-1 

x %g Ml + U/Pi) + (l/Pi? + .*.)k 

Thus, #(a, n) 2 #(“4,k 3 6-l,k)* 

Now for r and k large with log r/log k also large (e.g., 

I = [(log n)(loglog n)-“1 and k + 1 = [log n/(logp, + .*a + logp,.)]) 

we have 

r(k+2)-1 dk+2) -1 

%g u/u + (l/Pi) + (l/Pi? + **.I> = iQ ((Pi - 1)/J%) 

which is close to 1 by Mertens’ Theorem and Tchebychef’s Theorem 
[5; pp. 351, 91. Also 

1 2 I-l ((1 + (l/P) + -** + WPkMl + (l/P) + U/P2) + **.)I 
Pa+1 

= L!-,( 
p”+l - l)/pk+l 2 l/&k + 1) 

which is close to 1. Thus for r and k large with log r/log k also large we 
have that S+.-l,k is close to 1. 
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Now from (*), where we replace r by r - I and n by ~zS+~,~ , we have 
that #(u,-~,~, nS,-& = nST-1,L d(a,-,,k) + @pp+l * ... . &A-‘: , where 
1 19’ 1 < 1. Since II >, (pl . ... . P~)~+I, we see that 

Thus, by letting n -+ co and by choosing r’s and k’s as above we see that 
ljz inf(#(o, 4/n) 3 71,+m im a(~,,,)). We have now shown that 

A(U) = !$ (#(a, n)/n> = Iliyw d(u,,k) 

= F ((1 - l/p)(l + U/P + 1) + O/P2 + P + 1) 

+ (l/(p3 + P2 + P + 1) + *..I>. 

But this last product is greater than 

rJ ((1 - l/p)(l + (UP + 1) + MP + o2 + . ..)I = I-I (1 - WP2)) > 315 
2, 

and so d(u) is positive (in fact, greater than 3/5) and we are done. 
Finally, it is worth observing that the theorem we prove contains only 

the weakest error term. Bateman [l], using analytic techniques, has 
considerably strengthened the error term for both the v-function and the 
u-function. 
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