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The heart of the nilpotent quotient algorithm for computing in finite p-groups is a collection 
algorithm for collecting semigroup words on the generators of the group into normal form. In 
applications of the nilpotent quotient algorithm almost all the computing time is spent doing 
collections, and so very sophisticated collection algorithms have been developed. A number of 
researchers recently have started investigating a variant of the algorithm known as collection 
from the left. A version of collection from the left is described in this article. It is designed as an 
alternative to the Havas-Nicholson algorithm for collection from the right which is 
incorporated in the Canberra version of the nilpotent quotient algorithm. Indications are that 
for many applications it runs faster than the Havas-Nicholson algorithm. 

1. Introduction 

The  design of efficient mult ipl icat ion algori thms is of central impor tance  in c o m p u t a t i o n a l  
g roup  theory. Given  two elements of a group G, how do we compute  their  p roduc t?  A 
mult ipl icat ion a lgor i thm is defined for G if: 

(a) a normal  form is defined for the elements of G; and 
(b) there is an a lgor i thm which, given two elements in no rma l  form, compu te s  the  

normal  form of their product .  

I f  a group G is given as a group  of permuta t ions  or  as a g roup  of matr ices  then a 
multiplication a lgor i thm is clearly available. I f  G is a finitely presented g roup  which is 
known to be finite then, provided its order is not  too large, the T o d d - C o x e t e r  a lgo r i thm 
can be used to construct  its coset table over the trivial subgroup  (or over  any core  free 
subgroup).  This coset table can be used as the basis of a mult ipl icat ion a lgor i thm.  Finitely 
presented groups of much larger order can be handled with  the n i lpotent  quo t ien t  
a lgori thm, provided they are known to be finite p-groups. In  this case the n i lpo ten t  
quot ient  algori thm can  be used to produce a p o w e r - c o m m u t a t o r  presenta t ion  (PCP)  for 
G. A P C P  consists of a set of generators  x~, x2, . . . ,  x, and a set of relat ions of the fo rm 

xP=w~ (1 ~<i~< n), 

[xj, xl] = wi~ (1 ~< i < j  ~< n), 
where 

Wi vct(i,l+l)~a(i,l+2) yrt(i,n) 
"~i+ 1 "~'i+ 2 . . . . .  n 

for some c~(i,j) with 0 ~< c~(i,j) < p, and where 

Wi t ~ .,.ct(i,j,j+ 1 ) ~ ( l , j , j + 2 )  yct(i,j,n) 
"a ' j+ 1 ~ j + 2  . . . . .  n 
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for some a(i,j, k) with 0 ~< c~(i,j, k) < p. If G has a presentation of this form then G has 
order dividing p" and every element of G can be expressed in normal form 

xl ~'x~' . .. x~" (0 ~< cq < p). 

The presentation is consistent if the order of G is precisely p", and in this case every 
element of G has a unique expression in normal form. Every finite p-group G has a 
consistent PCP. If w is a semigroup word on the generators of G (such as the product of 
two normal  words) then a collection process can be used to reduce w to normal form. If w 
is not already in normal form then it must contain a minimal non-normal subword x~' or 
xjx~ w i t h j  > i. In the first case we replace xf in w by wi, and in the second case we replace 
xjx~ in w by x~xjw u. We continue iterating this procedure until a normal word is obtained. 
(The process does terminate!) Usually w contains more than one minimal non-normal 
subword, and the efficiency of any particular collection algorithm depends vitally on which 
one is selected. In P. Hall's collection process described in M. Hall [1959, section 11], the 
leftmost minimal non-normal  subword involving xl is selected, and, if there are none of 
these (so that all the xi  have been collected), then the minimal non-normal subword 
involving Xa which is closest to the left is selected, and so on. It is easy to see that this 
process terminates, but it leads to a hopelessly inefficient algorithm, both in terms of the 
number of iterations required, and in terms of the amount of storage required. A major 
breakthrough in collection algorithms was achieved when it was realised that selection of 
the r ightmost minimal non-normal subword (collection from the right) leads to much 
faster collection times and much smaller storage requirements than the Hall process. A 
number of authors have implemented variations of collection from the right. The current 
version of the programming language Cayley embodies those of Felsch (1976) and 
Havas & Nicholson (1976). [See Cannon (1984) for a description of Cayley.] Recently, a 
number of researchers have started to investigate collection from the left (selection of the 
leftmost minimal non-normal subword). Collection from the left requires more storage 
than collection from the right, but indications are that far quicker collection times can be 
achieved. The nilpotent quotient algorithm used by Cayley is the Canberra version 
developed by Newman (1976), and incorporates the Havas-Nicholson algorithm for 
collection from the right. The algorithm outlined below for collection from the left was 
substituted for the Havas-Nicholson algorithm in Cayley, and a number of time tests were 
performed. The largest finite quotients of the six groups given in the table below were 
computed, both with collection from the left, and with collection from the right. 
Considerable time savings were achieved. 

Here B(r, n) is the r generator Burnside group of exponent n, and B(r, n; c) is the class c 
quotient of B(r, n). The group G is the largest finite two-generator group of exponent 8 
where one generator has order 2 and the other generator has order 4. The group H is the 

Time in seconds to compute the group 

Group Order Class from the left from the right 

B(3, 4) 269 7 26 41 
B(2, 5) 534 12 99 567 
B(2, 7; I2) 74~ 12 5 040 73 309 
B(3, 5; 9) 5916 9 13 621 49 644 
G 2205 26 28 151 237 887 
H 2 ss 50 347 1414 
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class 50 quotient of the space group described by Felsch & Neubfiser (1976), which turned 
ou t  to be a counter-example to the class breadth conjecture. Note that we are not claiming 
tha t  B(2, 5) has order 53., only that its largest finite quotient has order 5 a*. 

The Algorithm 

We consider a PCP on a set of generators xl, x2 . . . . .  x,, with relations x~ = wl (1 ~< i ~< n) 
a nd  [xj, x~]=w~j (I ~i<j<~n) ,  as described above. In the Canberra version of the 
nilpotent quotient algorithm a normal word on the generators can be stored in one of 
two ways: either as an exponent vector (al, a2 . . . . .  a,,) with 0 <<.as<p, or as a string 
of  generator-exponent pairs (i, a), (j, b) . . . . .  (k,c) with l < ~ i < j < . . . < k ~ < n  and 
0 < a, b . . . .  ,c < p. The exponent vector (al, as . . . . .  a,,) represents the normal word 
x"~'x"d.., x,"", and the entries al, a2,. . . ,  a, are stored in n successive locations of computer 
memory.  The string of generator-exponent pairs (i, a), (j, b) . . . . .  (k, c) represents the normal 
word  " b c xt x~ . . .  xk, and if there are s pairs in this string then these pairs are stored in s 
successive locations of computer memory as the integers a. 216 + i, b. 216 + j  . . . .  , c. 216 + k. 
T h e  normal words w~, wtj are stored as strings of generator-exponent pairs (when they are 
non-trivial). 

The input to the algorithm is an exponent vector representing a normal word u, and a 
string of generator-exponent pairs representing a normal word v. The algorithm returns an 
exponent  vector representing the product uv. During the collection process the original 
exponent  vector representing u is modified, and pointers to a number of strings of 
generator-exponent pairs are stored on a stack. The stack is "three wide". Each point of 
the stack stores a triple of integers (str, len, exp). If str < 0 then -- str is the base address of 
a string of generator-exponent pairs of length len. If this string represents the normal word 
v then (str, len, exp) represents v "xp. If str > 0 then str must lie in the range 1 ~< str ~< n, and 

exp (In this case len is irrelevant.) The depth of the stack is (str, len, exp) represents Xs~r �9 
represented by a stack pointer (sp). Thus, at any given point during the collection process 
the exponent vector represents a normal word w, and the stack represents sp powers of 
normal  words v~, v~ . . . . .  v~p. Together, they represent the product wv~p.., v2vl.b, Initially, 
the single input string is stored on the stack (and sp = 1). The collection process is 
complete when the stack is empty (sp = 0). We denote the gth entry of the exponent vector 
by  expvec(g). 

First we describe the most basic form of collection from the left, without any of the frills 
which are incorporated in the algorithm. The step numbers given in this description 
correspond to step numbers in the full algorithm. Before we define the algorithm itself we 
define a procedure for placing pointers to two types of words on the stack. 

Procedure push(w") 
If  w is a generator x~ then 

Let str = i, len = 0, exp = a. 
Let sp = sp + 1. 
Let stack(sp) -- (str, Ien, exp). 

Endif  
If  w is represented by a non-empty string of generator-exponent pairs then 

Let k be the base address of the string of generator-exponent pairs representing w and 
let s be its length. 
Let str = - k, len = s, exp = a. 
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Let sp = sp + 1. 
Let stack(sp) = (str, len, exp). 

Endif 
End procedure push. 

Now we define the collection algorithm. 

Step (0). (Initialise collector.) 
Let k be the base address and let s be the length of the initial input string of generator- 
exponent pairs. 
Let str = --k, len = s, exp = 1. 
Let sp = 1, stack(sp) = (str, len, exp). 

Step (1). (Process next triple on the stack.) 
If sp = 0 return. 
Let (str, len, exp) = stack(sp), sp = sp--  1. 
If  str > 0 then 

(The triple (str, len, exp) represents --s,r"e~P', 
If exp > 1 then push(x[~'~- t). 
Let i = str. 

Else 
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len. In 
this basic form of the algorithm exp must equal 1.) 
Let (i, a) be the first generator-exponent pair of the string. 
(Place remainder of the string on the stack.) 
If len > 1 let sp = sp + 1, stack(sp) = ( s t r -  1, l e n -  1, exp). 
If a > 1 push(x}'- 1). 

Endif 

Step (3). (Collect generator x~, scanning exponent vector from the right-hand end towards  
the left.) 
F o r g - - n d o w n t o i + l  do 

Let b = expvec(g). 
If b r 0 then 

Let expvec(g) = 0. 
If wig is trivial then 

push(x~). 
Else 

F o r j  from 1 to b do 
push(xg). 
push(wlg). 

End 
Endif 

Endif 
End 

Step (4). (Add 1 to ith entry of exponent vector, reduce it mod p, and add x,e to the 
exponent vector if necessary.) 
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Let expvec(i) = expvec(i)+ 1. 
If expvec(i) = p then 

Let expvec(i) = 0, 
If  w~ is non-trivial then 

For  each (j, b) in the string of generator-exponent 
expvec(j) = b. 

Endif  
Endif  
Go to Step (1). 

pairs representing wt let 

The maximum stack depth required for this algorithm is ( p -  1)n(c+ 1), where c is the 
class of the group. This compares with a maximum stack depth of c for the 
Havas-Nicholson  algorithm for collection from the right. It would be possible to reduce 
the maximum stack depth from (p - l )n (c+l )  to nc by modifying Step (3) above. At 
Step (3), (xtw,o) b is stored on 2b levels of the stack (with b at most p -  1), even though it 
would be  perfectly possible to store it on a single level of the stack either by widening the 
stack or by encoding more information in (str, len, exp). However, the gain in doing this 
does not  appear to be very significant for two reasons. Firstly, no matter how (x~w~u) b is 
stored on  the stack, it will still need to be processed in 2b separate steps corresponding to 
the 2b levels of the stack used in the algorithm described above. Secondly, even though 
( p -  1)n(c + 1) grows quadratically with n (taking n as an upper bound for c), the amount  of 
space required to store the PCP grows with n 3, so that as n increases the amount of space 
required to store the stack becomes small relative to the amount of space required to store 
the PCP.  For example, the Canberra nilpotent quotient algorithm uses 1280 words to 
store the PCP of the largest finite quotient of B(2, 5) and ( p -  1)n(c+ 1) = 1768 for this 
group. But the Canberra nilpotent quotient algorithm uses 132663 words to store the 
P C P  of B(3, 5; 9), and for this group ( p -  1)n(c+ 1) = 36 640. It is known that the largest 
finite quotient of B(3, 5) has order at most 5 z282 and class at most 17, so that ( p -  1)n(c + 1) 
is at most  164 304 in this case. But detailed estimates indicate that 5 600 000 words would 
be needed to store the PCP of this group. 

Weighted Presentations 

The Canberra nilpotent quotient algorithm produces weighted power-commutator 
presentations. That is, each generator x~ is assigned a weight wt(i), with the following 
properties. 

(a) 1 = wt(1) ~<wt(2)~<... ~<wt(n)= c. 
(b) The  word wt representing x~' only involves generators x k such that wt(k)> wt(i). 

(That is ~(i, k) r 0 implies wt(k) > wt(i).) 
(c) The  word w~j representing [xj, xJ only involves generators xk such that 

wt(k) I> wt(i) + wt(j). 

We exploit these weights in a similar way to the way in which the Havas-Nicholson 
algori thm exploits them. 

The generator x~ commutes with all generators with weight greater than c-wt( i ) .  
Furthermore,  all powers and commutators arising in collecting x~ also commute with these 
generators. So when collecting x, we can by-pass all entries in the exponent vector 
corresponding to generators with weight greater than c-wt( i ) ,  and there is no need to 
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stack generator-exponent pairs corresponding to these entries [see Step (2) and Step (6) 
below]. 

If wt( i )>  c/2 then collecting xi cannot generate any commutators and so x~ can be 
collected by adding a to the ith entry of the exponent vector [see Step (4) below]. 

If , b V = X~Xj . . .  X~ is a word in normal form, and if wt(i) > c/2, then for any integer e, 
v e = x~"exjbe ..  . x~ ~ and v e can be collected by adding ae, be,. .  ., de to the ith, jth, . . . ,  kth 
entries of the exponent vector [see Step (5) and Step (6) below]. 

If wt ( i )>  c/3 then any commutator arising in collecting xi will commute with all 
generators xj such t h a t j  > i. Furthermore, if j  > i then [x~, x~] = [xj, x J  "b and [xj, xi] "~ can 
be collected as in the paragraph above. So x7 can be collected without stacking entries in 
the exponent vector, and without stacking commutators. Care is needed, however, if 
adding a to the fth entry of the exponent vector increases this entry to a value greater than 
or equal to p [see Step (6) below]. 

If 2wt(j) + wt(i) > c then <~ 
[x~, x~'] = [xj, x J  ~~ [xj, x,, x,] . . . . .  [xj, x, . . . .  , x~] a. 

[See Step (2) below.] 
We now define the full algorithm. The procedure push(w") is as defined above. 

Step (0). (Initialise collector.) 
Let k be the base address and let s be the length of the initial input string of generator- 
exponent pairs. 
Let str = - k, fen = s, exp = 1. 
Let sp = 1, stack(sp) = (str, len, exp). 

Step (1). (Process next triple on the stack.) 
If sp = 0 return. 
Let (str, len, exp) = stack(sp), sp = S P -  1. 
If s t r >  0 then 

exp (The triple (str, len, exp) represents x~t~ .j 
Let i =s t r ,  a = exp. 
If 2wt(i) > c then go to Step (4). 

Else 
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len 
raised to the power exp.) 
Let (i, a) be the first generator-exponent pair of the string. 
If 2wt(i)> c then go to Step (5). 
(Place remainder of the string on the stack. In this case exp = 1.) 
If len > 1 let sp = sp + 1, stack(sp) = ( s t r -  1, l e n -  1, exp). 

Endif 
If 3wt(i) > c go to Step (6). 

Step (2). (Combinatorial collection of x~.) 
Let k be minimal subject to 2wt(k)+wt( i )>c,  
wt(j)+wt(i)  ~< c. (Note that k ~<j.) 

and let j be maximal subject to 
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For  r from 1 to a do 
For  g from j down to k do 

Let b = expvec(g). 
If b # 0 then 

Let expvec(g) = O. 
push(x0b). 
If w~0 is non-trivial then 

For each (t, d) in the string of generator-exponent pairs representing w~o let 
expvec(t) = expvec(t) + b d ( a -  r + 1)/r. 

Endif 
Endif 

End 
End 
For  g from j down to k do 

(Stack up relevant stretch of exponent vector.) 
Let b = expvec(g). 
If b # 0 then 

Let expvec(g) = 0. 
push(x~). 

Endif 
End 
F o r g f r o m j + l t o  n d o  

(Tidy up powers in unstacked stretch of exponent vector.) 
Let b = expvec(g). 
If b >~ p then 

Let u, v be integers with 0 ~< v < p and b = up + v. 
Let expvec(g) = v. 
If wg is non-trivial then 

For each ( t ,d)  in the string of generator-exponent pairs representing w o let 
expvec(t) = expvec(t) + du. 

Endif 
Endif 

End 

Step (3). (Ordinary collection of x~. Scan exponent vector from the k -  1 position towards 
the left.) 
F o r g = k - I  down t o i + l d o  

Let b --- expvec(g). 
If b ~ 0 then 

Let expvec(g) = 0. 
If wio is trivial then 

push(x~). 
Else 

If a > 1 then 
push(x~- 1). 
Let a = 1. 

Endif 
F o r j  from 1 to b do 
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push(x~). 
push(w~g) 

End  
Endif  

Endif  
End 

S t e p  (4). (Add a t o  ith entry of exponent vector, reduce it mod p, and stack a power of xf if 
necessary.) 
Let  b = expvec(i). 
Let  u, v be integers with 0 ,<.< v < p and a + b = up + v. 
Let expvec(i) = v. 
If u > 0 and wi is non-trivial push(w~'). 
Go  to Step (1). 

S t e p  (5). (Add the word represented by (str, len, exp) to the exponent vector.) 
F o r  each (i, a) in the string of generator-exponent pairs with base address - s t r  and length 
len do 

Let b = expvec(i). 
Let u, v be integers with 0 ~< v < p and up + v = b + a .  exp. 
Let expvec(i) = v. 
If u > 0 and w~ is non-trivial push(w~). 

End 
Go to Step (i). 

S t e p  (6). (Collect x7 without  stacking entries in exponent vector.) 
Let k be maximal  subject to wt(i)+ wt(k)~< c. 
F o r g f r o m i + l  t o k d o  

Let b = expvec(g). 
If b r 0 and w~o is non-trivial then 

For  each (t, d) in the string of generator-exponent pairs representing w~g do 
Let  e = expvec(t). 
Let  u, v be integers with 0 ~< v < p and pu + v = e + abd. 

Let expvec(t) = v. 
If u > 0 and wt is non-trivial push(w~'). 

End 
Endif 

End 
Let b = expvec(i). 
Let u, v be integers with 0 ~ v < p and pu + v = a + b. 

Let expvec(i) = v. 
If u > 0 and w~ is non-trivial then 

(Stack up entries in the exponent vector.) 
For  g from k down to i + l  do 

Let b = expvec(g). 
If b r 0 then 

Let  expvec(g) = 0. 
push(x~). 
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Endif  
End  
push(w~'). 

Endif  
G o  to Step (1). 

There  are a n u m b e r  of var ia t ions  on this a lgori thm which present  themselves.  F o r  
example,  rather than apply ing  combinator ia l  collection to x7 at  Step (2) we could place 
x~-1 on the stack at Step (1) and then only apply  combina tor ia l  collection to xi. This  
would simplify the p r o g r a m m i n g  and could be done with only two passes: one to add in 
commuta to r s  (without stacking any  entries), and  one to stack up entries in the exponen t  
vector. The  advantage  of applying combinator ia l  collection to xf  rather than  to xt only  
accrues if no commuta to r s  are generated in Step (3). For  if commuta to r s  are generated in 
Step (3) then we have to place x~-1 on the stack in Step (3) and  then later on we have  to 
apply  combinator ia l  collection to xf  -1 all over again. 

Steps (5) and (6) could also be altered. Instead of reducing the entries in the exponen t  
vector  modulo  p and placing pth powers on the stack as we go along, we could tidy up the 
powers  at the end of the step, in the same way as the powers  are tidied up at the end of  
Step (2). 

My thanks to Leonard Soieher at Queen Mary College, London, whose investigations into 
collection from the left prompted me to write this algorithm, to Tim Nicholson at the University of 
Sydney who made a number of helpful suggestions, and especially to John Cannon who offered 
advice and vast amounts of CPU-time. My thanks also to the Mathematics Department at the 
University of Sydney for hospitality and financial support while I was researching this article. 

References 

Cannon, J. J. (1984). An Introduction to the Group Theory Language, Cayley. Computational Group Theory 
(Atkinson, M. D., ed.) London: Academic Press, pp. 145-183. 

Felsch, V, (1976). A machine independent implementation of a collection algorithm for the multiplication of 
group elements. In: Proc. 1976 ACM Symp. oll Symbolic and Algebraic Computation. New York: Assoc. 
Comput. Mach., pp. 159-166. 

Felsch, V., Neubfiser, J. (1976). An algorithm for the computation of conjugaey classes and centralizers in 
p-groups. Lecture Notes in Computer Science 72. Berlin: Springer, pp. 452-465. 

Hall, M. (1959). The Theory of Groups. New York: Macmillan. 
Havas, G., Nicholson, T. (1976). Collection. In: Proc. 1976 ACM Syrup. on Symbolic and Algebraic Computation. 

New York: Assoc. Comput. Mach., pp. 9-14. 
Newman, M. F. (1976). Calculating presentations for certain kinds of quotient groups. In: Proe. 1976 ACM 

Symp. on Symbolic and Algebraic Computation. New York: Assoc. Comput. Math., pp. 2-8. 


