Collection from the Left

M. R. VAUGHAN-LEE
Christ Church, University of Oxford, Oxford, UK
Dedicated to Tim Wall on the occasion of his 65th birthday

(Received 7 April 1988)

Abstract

The heart of the nilpotent quotient algorithm for computing in finite p-groups is a collection algorithm for collecting semigroup words on the generators of the group into normal form. In applications of the nilpotent quotient algorithm almost all the computing time is spent doing collections, and so very sophisticated collection algorithms have been developed. A number of researchers recently have started investigating a variant of the algorithm known as collection from the left. A version of collection from the left is described in this article. It is designed as an alternative to the Havas-Nicholson algorithm for collection from the right which is incorporated in the Canberra version of the nilpotent quotient algorithm. Indications are that for many applications it runs faster than the Havas-Nicholson algorithm.

1. Introduction

The design of efficient multiplication algorithms is of central importance in computational group theory. Given two elements of a group G, how do we compute their product? A multiplication algorithm is defined for G if:
(a) a normal form is defined for the elements of G; and
(b) there is an algorithm which, given two elements in normal form, computes the normal form of their product.

If a group G is given as a group of permutations or as a group of matrices then a multiplication algorithm is clearly available. If G is a finitely presented group which is known to be finite then, provided its order is not too large, the Todd-Coxeter algorithm can be used to construct its coset table over the trivial subgroup (or over any core free subgroup). This coset table can be used as the basis of a multiplication algorithm. Finitely presented groups of much larger order can be handled with the nilpotent quotient algorithm, provided they are known to be finite p-groups. In this case the nilpotent quotient algorithm can be used to produce a power-commutator presentation (PCP) for G. A PCP consists of a set of generators $x_{1}, x_{2}, \ldots, x_{n}$ and a set of relations of the form
where

$$
\begin{gathered}
x_{i}^{p}=w_{i} \quad(1 \leqslant i \leqslant n), \\
{\left[x_{j}, x_{i}\right]=w_{i j} \quad(1 \leqslant i<j \leqslant n),} \\
w_{i}=x_{i+1}^{\alpha(i, i+1)} x_{i+2}^{\alpha(i, i+2)} \ldots x_{n}^{\alpha(i, n)}
\end{gathered}
$$

for some $\alpha(i, j)$ with $0 \leqslant \alpha(i, j)<p$, and where

$$
w_{i j}=x_{j+1}^{\alpha(i, j, j+1)} x_{j+2}^{\alpha(i, j, j+2)} \ldots x_{n}^{\alpha(l, L, n)}
$$

for some $\alpha(i, j, k)$ with $0 \leqslant \alpha(i, j, k)<p$. If G has a presentation of this form then G has order dividing p^{n} and every element of G can be expressed in normal form

$$
x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{n}^{\alpha_{n}} \quad\left(0 \leqslant \alpha_{i}<p\right)
$$

The presentation is consistent if the order of G is precisely p^{n}, and in this case every element of G has a unique expression in normal form. Every finite p-group G has a consistent PCP. If w is a semigroup word on the generators of G (such as the product of two normal words) then a collection process can be used to reduce w to normal form. If w is not already in normal form then it must contain a minimal non-normal subword x_{i}^{p} or $x_{j} x_{i}$ with $j>i$. In the first case we replace x_{i}^{p} in w by w_{i}, and in the second case we replace $x_{j} x_{i}$ in w by $x_{i} x_{j} w_{i j}$. We continue iterating this procedure until a normal word is obtained. (The process does terminate!) Usually w contains more than one minimal non-normal subword, and the efficiency of any particular collection algorithm depends vitally on which one is selected. In P. Hall's collection process described in M. Hall [1959, section 11], the leftmost minimal non-normal subword involving x_{1} is selected, and, if there are none of these (so that all the x_{1} have been collected), then the minimal non-normal subword involving x_{2} which is closest to the left is selected, and so on. It is easy to see that this process terminates, but it leads to a hopelessly inefficient algorithm, both in terms of the number of iterations required, and in terms of the amount of storage required. A major breakthrough in collection algorithms was achieved when it was realised that selection of the rightmost minimal non-normal subword (collection from the right) leads to much faster collection times and much smaller storage requirements than the Hall process. A number of authors have implemented variations of collection from the right. The current version of the programming language Cayley embodies those of Felsch (1976) and Havas \& Nicholson (1976). [See Cannon (1984) for a description of Cayley.] Recently, a number of researchers have started to investigate collection from the left (selection of the leftmost minimal non-normal subword). Collection from the left requires more storage than collection from the right, but indications are that far quicker collection times can be achieved. The nilpotent quotient algorithm used by Cayley is the Canberra version developed by Newman (1976), and incorporates the Havas-Nicholson algorithm for collection from the right. The algorithm outlined below for collection from the left was substituted for the Havas-Nicholson algorithm in Cayley, and a number of time tests were performed. The largest finite quotients of the six groups given in the table below were computed, both with collection from the left, and with collection from the right. Considerable time savings were achieved.

Here $\mathrm{B}(r, n)$ is the r generator Burnside group of exponent n, and $\mathrm{B}(r, n ; c)$ is the class c quotient of $\mathrm{B}(r, n)$. The group G is the largest finite two-generator group of exponent 8 where one generator has order 2 and the other generator has order 4 . The group H is the

		Time in seconds to compute the group	
Group	Order	Class	from the left

class 50 quotient of the space group described by Felsch \& Neubüser (1976), which turned out to be a counter-example to the class breadth conjecture. Note that we are not claiming that $\mathrm{B}(2,5)$ has order 5^{34}, only that its largest finite quotient has order 5^{34}.

The Algorithm

We consider a PCP on a set of generators $x_{1}, x_{2}, \ldots, x_{n}$ with relations $x_{i}^{p}=w_{i}(1 \leqslant i \leqslant n)$ and $\left[x_{j}, x_{i}\right]=w_{i j}(1 \leqslant i<j \leqslant n)$, as described above. In the Canberra version of the nilpotent quotient algorithm a normal word on the generators can be stored in one of two ways: either as an exponent vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $0 \leqslant a_{i}<p$, or as a string of generator-exponent pairs $(i, a),(j, b), \ldots,(k, c)$ with $1 \leqslant i<j<\ldots<k \leqslant n$ and $0<a, b, \ldots, c<p$. The exponent vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ represents the normal word $x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$, and the entries $a_{1}, a_{2}, \ldots, a_{n}$ are stored in n successive locations of computer memory. The string of generator-exponent pairs $(i, a),(j, b), \ldots,(k, c)$ represents the normal word $x_{i}^{a} x_{j}^{b} \ldots x_{k}^{c}$, and if there are s pairs in this string then these pairs are stored in s successive locations of computer memory as the integers $a .2^{16}+i, b .2^{16}+j, \ldots, c .2^{16}+k$. The normal words $w_{i}, w_{i j}$ are stored as strings of generator-exponent pairs (when they are non-trivial).

The input to the algorithm is an exponent vector representing a normal word u, and a string of generator-exponent pairs representing a normal word v. The algorithm returns an exponent vector representing the product $u v$. During the collection process the original exponent vector representing u is modified, and pointers to a number of strings of generator-exponent pairs are stored on a stack. The stack is "three wide". Each point of the stack stores a triple of integers (str, len, exp). If str <0 then - str is the base address of a string of generator-exponent pairs of length len. If this string represents the normal word v then (str, len, exp) represents $v^{\text {exp }}$. If str >0 then str must lie in the range $1 \leqslant s t r \leqslant n$, and (str, len, exp) represents $x_{\mathrm{sir}}^{\text {exp. }}$. (In this case len is irrelevant.) The depth of the stack is represented by a stack pointer (sp). Thus, at any given point during the collection process the exponent vector represents a normal word w, and the stack represents $s p$ powers of normal words $v_{1}^{a}, v_{2}^{b}, \ldots, v_{\mathrm{sp}}^{c}$. Together, they represent the product $w v_{\mathrm{sp}}^{c} \ldots v_{2}^{b} v_{1}^{a}$. Initially, the single input string is stored on the stack (and $\mathrm{sp}=1$). The collection process is complete when the stack is empty $(\mathrm{sp}=0)$. We denote the g th entry of the exponent vector by expvec (g).

First we describe the most basic form of collection from the left, without any of the frills which are incorporated in the algorithm. The step numbers given in this description correspond to step numbers in the full algorithm. Before we define the algorithm itself we define a procedure for placing pointers to two types of words on the stack.

Procedure push $\left(w^{a}\right)$
If w is a generator x_{i} then
Let $\mathrm{str}=i$, len $=0, \exp =a$.
Let $\mathrm{sp}=\mathrm{sp}+1$.
Let $\operatorname{stack}(\mathrm{sp})=(\mathrm{str}$, len, $\exp)$.
Endif
If w is represented by a non-empty string of generator-exponent pairs then
Let k be the base address of the string of generator-exponent pairs representing w and let s be its length.
Let $\mathrm{str}=-k$, len $=s, \exp =a$.

Let $\mathrm{sp}=\mathrm{sp}+1$.
Let $\operatorname{stack}(\mathrm{sp})=(\mathrm{str}$, len, exp $)$.
Endif
End procedure push.
Now we define the collection algorithm.
Step (0). (Initialise collector.)
Let k be the base address and let s be the length of the initial input string of generatorexponent pairs.
Let $\operatorname{str}=-k$, len $=s, \exp =1$.
Let $\mathrm{sp}=1, \operatorname{stack}(\mathrm{sp})=(\mathrm{str}$, len, $\exp)$.
Step (1). (Process next triple on the stack.)
If $\mathrm{sp}=0$ return.
Let $(\mathrm{str}$, len, $\exp)=\operatorname{stack}(\mathrm{sp}), \mathrm{sp}=\mathrm{sp}-1$.
If str >0 then
(The triple (str, len, exp) represents $x_{\mathrm{str}}^{\exp }$.)
If $\exp >1$ then push $\left(x_{\operatorname{str}}^{\exp -1}\right)$.
Let $i=\mathrm{str}$.
Else
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len. In this basic form of the algorithm exp must equal 1.)
Let (i, a) be the first generator-exponent pair of the string.
(Place remainder of the string on the stack.)
If len >1 let $\mathrm{sp}=\mathrm{sp}+1$, $\operatorname{stack}(\mathrm{sp})=(\mathrm{str}-1$, len -1 , exp $)$.
If $a>1 \operatorname{push}\left(x_{i}^{a-1}\right)$.
Endif

Step (3). (Collect generator x_{i}, scanning exponent vector from the right-hand end towards the left.)
For $g=n$ down to $i+1$ do
Let $b=\operatorname{expvec}(g)$.
If $b \neq 0$ then
Let $\operatorname{expvec}(g)=0$.
If $w_{i_{g}}$ is trivial then
push $\left(x_{g}^{b}\right)$.
Else
For j from 1 to b do
push $\left(x_{\theta}\right)$.
push $\left(w_{i g}\right)$.

End

Endif

Endif

End
Step (4). (Add 1 to i th entry of exponent vector, reduce it $\bmod p$, and add x_{i}^{p} to the exponent vector if necessary.)

Let $\operatorname{expvec}(i)=\operatorname{expvec}(i)+1$.
If expvec $(i)=p$ then
Let expvec $(i)=0$.
If w_{i} is non-trivial then
For each (j, b) in the string of generator-exponent pairs representing w_{i} let $\operatorname{expvec}(j)=b$.
Endif
Endif
Go to Step (1).
The maximum stack depth required for this algorithm is $(p-1) n(c+1)$, where c is the class of the group. This compares with a maximum stack depth of c for the Havas-Nicholson algorithm for collection from the right. It would be possible to reduce the maximum stack depth from $(p-1) n(c+1)$ to $n c$ by modifying Step (3) above. At Step (3), $\left(x_{i} w_{i g}\right)^{b}$ is stored on $2 b$ levels of the stack (with b at most $p-1$), even though it would be perfectly possible to store it on a single level of the stack either by widening the stack or by encoding more information in (str, len, exp). However, the gain in doing this does not appear to be very significant for two reasons. Firstly, no matter how $\left(x_{i} w_{i g}\right)^{b}$ is stored on the stack, it will still need to be processed in $2 b$ separate steps corresponding to the $2 b$ levels of the stack used in the algorithm described above. Secondly, even though $(p-1) n(c+1)$ grows quadratically with n (taking n as an upper bound for c), the amount of space required to store the PCP grows with n^{3}, so that as n increases the amount of space required to store the stack becomes small relative to the amount of space required to store the PCP. For example, the Canberra nilpotent quotient algorithm uses 1280 words to store the PCP of the largest finite quotient of $\mathrm{B}(2,5)$ and $(p-1) n(c+1)=1768$ for this group. But the Canberra nilpotent quotient algorithm uses 132663 words to store the PCP of $\mathbf{B}(3,5 ; 9)$, and for this group $(p-1) n(c+1)=36640$. It is known that the largest finite quotient of $B(3,5)$ has order at most 5^{2282} and class at most 17 , so that $(p-1) n(c+1)$ is at most 164304 in this case. But detailed estimates indicate that 5600000 words would be needed to store the PCP of this group.

Weighted Presentations

The Canberra nilpotent quotient algorithm produces weighted power-commutator presentations. That is, each generator x_{i} is assigned a weight wt (i), with the following properties.
(a) $1=\mathrm{wt}(1) \leqslant \mathrm{wt}(2) \leqslant \ldots \leqslant \mathrm{wt}(n)=c$.
(b) The word w_{i} representing x_{i}^{p} only involves generators x_{k} such that $\mathrm{wt}(k)>\mathrm{wt}(i)$. (That is $\alpha(i, k) \neq 0$ implies $\mathrm{wt}(k)>\mathrm{wt}(i)$.)
(c) The word $w_{i j}$ representing $\left[x_{j}, x_{i}\right]$ only involves generators x_{k} such that $\mathrm{wt}(k) \geqslant \mathrm{wt}(i)+\mathrm{wt}(j)$.
We exploit these weights in a similar way to the way in which the Havas-Nicholson algorithm exploits them.

The generator x_{i} commutes with all generators with weight greater than $c-w t(i)$. Furthermore, all powers and commutators arising in collecting x_{i} also commute with these generators. So when collecting x_{i} we can by-pass all entries in the exponent vector corresponding to generators with weight greater than $c-w t(i)$, and there is no need to
stack generator-exponent pairs corresponding to these entries [see Step (2) and Step (6) below].

If $w t(i)>c / 2$ then collecting x_{i} cannot generate any commutators and so x_{i}^{a} can be collected by adding a to the i th entry of the exponent vector [see Step (4) below].

If $v=x_{i}^{a} x_{j}^{b} \ldots x_{k}^{d}$ is a word in normal form, and if $\mathrm{wt}(i)>c / 2$, then for any integer e, $v^{e}=x_{i}^{a e} x_{j}^{b e} \ldots x_{k}^{d e}$ and v^{e} can be collected by adding $a e, b e, \ldots, d e$ to the i th, j th, \ldots, k th entries of the exponent vector [see Step (5) and Step (6) below].

If $\mathrm{wt}(i)>c / 3$ then any commutator arising in collecting x_{i} will commute with all generators x_{j} such that $j>i$. Furthermore, if $j>i$ then $\left[x_{j}^{b}, x_{i}^{a}\right]=\left[x_{j}, x_{i}\right]^{a b}$ and $\left[x_{j}, x_{i}\right]^{a b}$ can be collected as in the paragraph above. So x_{i}^{a} can be collected without stacking entries in the exponent vector, and without stacking commutators. Care is needed, however, if adding a to the ith entry of the exponent vector increases this entry to a value greater than or equal to p [see Step (6) below].

If $2 \mathrm{wt}(j)+\mathrm{wt}(i)>c$ then

$$
\left[x_{j}^{b}, x_{i}^{a}\right]=\left[x_{j}, x_{i}\right]^{b a} \cdot\left[x_{j}, x_{i}, x_{i}\right]^{b}\left(\frac{a}{2}\right) \ldots .\left[x_{j}, x_{i}, \ldots, x_{i}\right]^{b\left(\frac{a}{a}\right)}
$$

[See Step (2) below.]
We now define the full algorithm. The procedure $\operatorname{push}\left(w^{a}\right)$ is as defined above.
Step (0). (Initialise collector.)
Let k be the base address and let s be the length of the initial input string of generatorexponent pairs.
Let $\operatorname{str}=-k$, len $=s, \exp =1$.
Let $\mathrm{sp}=1$, $\operatorname{stack}(\mathrm{sp})=(\mathrm{str}$, len, exp $)$.

Step (1). (Process next triple on the stack.)
If $\mathrm{sp}=0$ return.
Let $(\mathrm{str}, \operatorname{len}, \exp)=\operatorname{stack}(\mathrm{sp}), \mathrm{sp}=\mathrm{sp}-1$.
If str >0 then
(The triple (str, len, exp) represents $x_{\mathrm{str}}^{\exp }$.)
Let $i=\operatorname{str}, a=\exp$.
If $2 \mathrm{wt}(i)>c$ then go to Step (4).

Else
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len raised to the power exp.)
Let (i, a) be the first generator-exponent pair of the string.
If $2 \mathrm{wt}(i)>c$ then go to Step (5).
(Place remainder of the string on the stack. In this case $\exp =1$.)
If len >1 let $s p=s p+1, \operatorname{stack}(s p)=(s t r-1, \operatorname{len}-1, \exp)$.
Endif
If $3 w t(i)>c$ go to Step (6).
Step (2). (Combinatorial collection of x_{i}^{a}.)
Let k be minimal subject to $2 \mathrm{wt}(k)+\mathrm{wt}(i)>c$, and let j be maximal subject to $\mathrm{wt}(j)+\mathrm{wt}(i) \leqslant c$. (Note that $k \leqslant j$.)

```
For r from 1 to a do
    For g
        Let b=expvec(g).
        If b}\not=0\mathrm{ then
            Let expvec}(g)=0
            push( ( 
            If }\mp@subsup{w}{ig}{}\mathrm{ is non-trivial then
                For each (t,d) in the string of generator-exponent pairs representing wig}\mp@subsup{w}{ig}{}\mathrm{ let
                    expvec}(t)=\operatorname{expvec}(t)+\textrm{bd}(a-r+1)/r
            Endif
        Endif
    End
End
For g}\mathrm{ from j down to }k\mathrm{ do
    (Stack up relevant stretch of exponent vector.)
    Let b= expvec(g).
    If b\not=0 then
        Let expvec}(g)=0
        push( ( 
    Endif
End
For g}\mathrm{ from j+1 to n do
    (Tidy up powers in unstacked stretch of exponent vector.)
    Let b=expvec(g).
    If b\geqslantp then
        Let u,v be integers with 0\leqslantv<p and b=up+v.
        Let expvec(g)=v.
        If \mp@subsup{w}{g}{}}\mathrm{ is non-trivial then
            For each (t,d) in the string of generator-exponent pairs representing w}\mp@subsup{w}{g}{}\mathrm{ let
            expvec}(t)=\operatorname{expvec}(t)+du
            Endif
        Endif
End
Step (3). (Ordinary collection of \mp@subsup{x}{i}{a}. Scan exponent vector from the k-1 position towards
the left.)
For g=k-1 down to i+1 do
    Let b=expvec(g).
    If b}\not=0\mathrm{ then
        Let expvec}(g)=0
        If wig}\mathrm{ is trivial then
            push( ( }\mp@subsup{|}{g}{b}\mathrm{ ).
            Else
                If }a>1\mathrm{ then
                    push(xi-1 ).
                    Let }a=1\mathrm{ .
                    Endif
                    For j from 1 to b do
```

```
            push(xg).
```

 \(\operatorname{push}\left(w_{i g}\right)\)
 End

Endif

Endif
End
Step (4). (Add a to i th entry of exponent vector, reduce it mod p, and stack a power of x_{i}^{p} if necessary.)
Let $b=\operatorname{expvec}(i)$.
Let u, v be integers with $0 \leqslant v<p$ and $a+b=u p+v$.
Let $\operatorname{expvec}(i)=v$.
If $u>0$ and w_{i} is non-trivial push $\left(w_{i}^{u}\right)$.
Go to Step (1).
Step (5). (Add the word represented by (str, len, exp) to the exponent vector.)
For each (i, a) in the string of generator-exponent pairs with base address - str and length len do

Let $b=\operatorname{expvec}(i)$.
Let u, v be integers with $0 \leqslant v<p$ and $u p+v=b+a$. exp.
Let $\operatorname{expvec}(i)=v$.
If $u>0$ and w_{i} is non-trivial $\operatorname{push}\left(w_{i}^{u}\right)$.
End
Go to Step (1).

Step (6). (Collect x_{i}^{a} without stacking entries in exponent vector.)
Let k be maximal subject to $\mathrm{wt}(i)+\mathrm{wt}(k) \leqslant c$.
For g from $i+1$ to k do
Let $b=\operatorname{expvec}(g)$.
If $b \neq 0$ and $w_{i g}$ is non-trivial then
For each (t, d) in the string of generator-exponent pairs representing $w_{i g}$ do
Let $e=\operatorname{expvec}(t)$.
Let u, v be integers with $0 \leqslant v<p$ and $p u+v=e+a b d$.
Let expvec $(t)=v$.
If $u>0$ and w_{t} is non-trivial push $\left(w_{i}^{u}\right)$.

End

Endif

End
Let $b=\operatorname{expvec}(i)$.
Let u, v be integers with $0 \leqslant v<p$ and $p u+v=a+b$.
Let expvec $(i)=v$.
If $u>0$ and w_{i} is non-trivial then
(Stack up entries in the exponent vector.)
For g from k down to $i+1$ do
Let $b=\operatorname{expvec}(g)$.
If $b \neq 0$ then
Let $\operatorname{expvec}(g)=0$.
$\operatorname{push}\left(x_{\theta}^{b}\right)$.
\quad Endif
End
push $\left(w_{i}^{u}\right)$.
Endif
Go to Step (1).
There are a number of variations on this algorithm which present themselves. For example, rather than applying combinatorial collection to x_{i}^{a} at Step (2) we could place x_{i}^{a-1} on the stack at Step (1) and then only apply combinatorial collection to x_{i}, This would simplify the programming and could be done with only two passes: one to add in commutators (without stacking any entries), and one to stack up entries in the exponent vector. The advantage of applying combinatorial collection to x_{i}^{a} rather than to x_{i} only accrues if no commutators are generated in Step (3). For if commutators are generated in Step (3) then we have to place x_{i}^{a-1} on the stack in Step (3) and then later on we have to apply combinatorial collection to x_{i}^{a-1} all over again.

Steps (5) and (6) could also be altered. Instead of reducing the entries in the exponent vector modulo p and placing p th powers on the stack as we go along, we could tidy up the powers at the end of the step, in the same way as the powers are tidied up at the end of Step (2).

My thanks to Leonard Soicher at Queen Mary College, London, whose investigations into collection from the left prompted me to write this algorithm, to Tim Nicholson at the University of Sydney who made a number of helpful suggestions, and especially to John Cannon who offered advice and vast amounts of CPU-time. My thanks also to the Mathematics Department at the University of Sydney for hospitality and financial support while I was researching this article.

References

Cannon, J. J. (1984). An Introduction to the Group Theory Language, Cayley. Computational Group Theory (Atkinson, M. D., ed.) London: Academic Press, pp. 145-183.
Felsch, V. (1976). A machine independent implementation of a collection algorithm for the multiplication of group elements. In: Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation. New York: Assoc. Comput. Mach., pp. 159-166.
Felsch, V., Neubüser, J. (1976). An algorithm for the computation of conjugacy classes and centralizers in p-groups. Lecture Notes in Computer Science 72. Berlin: Springer, pp. 452-465.
Hall, M. (1959). The Theory of Groups. New York: Macmillan.
Havas, G., Nicholson, T. (1976). Collection. In: Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation. New York: Assoc. Comput. Mach., pp. 9-14.
Newman, M. F. (1976). Calculating presentations for certain kinds of quotient groups. In: Proc. 1976 ACM Symp. on Symbolic and Algebraic Computation. New York: Assoc. Comput. Mach, pp. 2-8.

