
J. Symbolic Computation (1990) 9, 725-733

Collection from the Left

M. R. V A U G H A N - L E E

Christ Church, University of Oxford, Oxford, UK

Dedicated to Tim Wall on the occasion of his 65th birthday

(Received 7 April 1988)

The heart of the nilpotent quotient algorithm for computing in finite p-groups is a collection
algorithm for collecting semigroup words on the generators of the group into normal form. In
applications of the nilpotent quotient algorithm almost all the computing time is spent doing
collections, and so very sophisticated collection algorithms have been developed. A number of
researchers recently have started investigating a variant of the algorithm known as collection
from the left. A version of collection from the left is described in this article. It is designed as an
alternative to the Havas-Nicholson algorithm for collection from the right which is
incorporated in the Canberra version of the nilpotent quotient algorithm. Indications are that
for many applications it runs faster than the Havas-Nicholson algorithm.

1. Introduction

The design of efficient mult ipl icat ion algori thms is of central impor tance in c o m p u t a t i o n a l
g roup theory. Given two elements of a group G, how do we compute their p roduc t? A
mult ipl icat ion a lgor i thm is defined for G if:

(a) a normal form is defined for the elements of G; and
(b) there is an a lgor i thm which, given two elements in no rma l form, compu te s the

normal form of their product .

I f a group G is given as a group of permuta t ions or as a g roup of matr ices then a
multiplication a lgor i thm is clearly available. I f G is a finitely presented g roup which is
known to be finite then, provided its order is not too large, the T o d d - C o x e t e r a lgo r i thm
can be used to construct its coset table over the trivial subgroup (or over any core free
subgroup). This coset table can be used as the basis of a mult ipl icat ion a lgor i thm. Finitely
presented groups of much larger order can be handled with the n i lpotent quo t ien t
a lgori thm, provided they are known to be finite p-groups. In this case the n i lpo ten t
quot ient algori thm can be used to produce a p o w e r - c o m m u t a t o r presenta t ion (PCP) for
G. A P C P consists of a set of generators x~, x2, . . . , x, and a set of relat ions of the fo rm

xP=w~ (1 ~<i~< n),

[xj, xl] = wi~ (1 ~< i < j ~< n),
where

Wi vct(i,l+l)~a(i,l+2) yrt(i,n)
"~i+ 1 "~'i+ 2 n

for some c~(i,j) with 0 ~< c~(i,j) < p, and where

Wi t ~ .,.ct(i,j,j+ 1) ~ (l , j , j + 2) yct(i,j,n)
"a ' j+ 1 ~ j + 2 n

0747-7171/90/050725 + 17 $03.00/0 �9 1990 Academic Press Limited

726 M.R.. Vaughan-Lee

for some a(i,j, k) with 0 ~< c~(i,j, k) < p. If G has a presentation of this form then G has
order dividing p" and every element of G can be expressed in normal form

xl ~'x~' . .. x~" (0 ~< cq < p).

The presentation is consistent if the order of G is precisely p", and in this case every
element of G has a unique expression in normal form. Every finite p-group G has a
consistent PCP. If w is a semigroup word on the generators of G (such as the product of
two normal words) then a collection process can be used to reduce w to normal form. If w
is not already in normal form then it must contain a minimal non-normal subword x~' or
xjx~ w i t h j > i. In the first case we replace xf in w by wi, and in the second case we replace
xjx~ in w by x~xjw u. We continue iterating this procedure until a normal word is obtained.
(The process does terminate!) Usually w contains more than one minimal non-normal
subword, and the efficiency of any particular collection algorithm depends vitally on which
one is selected. In P. Hall's collection process described in M. Hall [1959, section 11], the
leftmost minimal non-normal subword involving xl is selected, and, if there are none of
these (so that all the xi have been collected), then the minimal non-normal subword
involving Xa which is closest to the left is selected, and so on. It is easy to see that this
process terminates, but it leads to a hopelessly inefficient algorithm, both in terms of the
number of iterations required, and in terms of the amount of storage required. A major
breakthrough in collection algorithms was achieved when it was realised that selection of
the r ightmost minimal non-normal subword (collection from the right) leads to much
faster collection times and much smaller storage requirements than the Hall process. A
number of authors have implemented variations of collection from the right. The current
version of the programming language Cayley embodies those of Felsch (1976) and
Havas & Nicholson (1976). [See Cannon (1984) for a description of Cayley.] Recently, a
number of researchers have started to investigate collection from the left (selection of the
leftmost minimal non-normal subword). Collection from the left requires more storage
than collection from the right, but indications are that far quicker collection times can be
achieved. The nilpotent quotient algorithm used by Cayley is the Canberra version
developed by Newman (1976), and incorporates the Havas-Nicholson algorithm for
collection from the right. The algorithm outlined below for collection from the left was
substituted for the Havas-Nicholson algorithm in Cayley, and a number of time tests were
performed. The largest finite quotients of the six groups given in the table below were
computed, both with collection from the left, and with collection from the right.
Considerable time savings were achieved.

Here B(r, n) is the r generator Burnside group of exponent n, and B(r, n; c) is the class c
quotient of B(r, n). The group G is the largest finite two-generator group of exponent 8
where one generator has order 2 and the other generator has order 4. The group H is the

Time in seconds to compute the group

Group Order Class from the left from the right

B(3, 4) 269 7 26 41
B(2, 5) 534 12 99 567
B(2, 7; I2) 74~ 12 5 040 73 309
B(3, 5; 9) 5916 9 13 621 49 644
G 2205 26 28 151 237 887
H 2 ss 50 347 1414

Collection from the Left 727

class 50 quotient of the space group described by Felsch & Neubfiser (1976), which turned
ou t to be a counter-example to the class breadth conjecture. Note that we are not claiming
tha t B(2, 5) has order 53., only that its largest finite quotient has order 5 a*.

The Algorithm

We consider a PCP on a set of generators xl, x2 x,, with relations x~ = wl (1 ~< i ~< n)
a nd [xj, x~]=w~j (I ~i<j<~n) , as described above. In the Canberra version of the
nilpotent quotient algorithm a normal word on the generators can be stored in one of
two ways: either as an exponent vector (al, a2 a,,) with 0 <<.as<p, or as a string
of generator-exponent pairs (i, a), (j, b) (k,c) with l < ~ i < j < . . . < k ~ < n and
0 < a, b ,c < p. The exponent vector (al, as a,,) represents the normal word
x"~'x"d.., x,"", and the entries al, a2,. . . , a, are stored in n successive locations of computer
memory. The string of generator-exponent pairs (i, a), (j, b) (k, c) represents the normal
word " b c xt x~ . . . xk, and if there are s pairs in this string then these pairs are stored in s
successive locations of computer memory as the integers a. 216 + i, b. 216 + j , c. 216 + k.
T h e normal words w~, wtj are stored as strings of generator-exponent pairs (when they are
non-trivial).

The input to the algorithm is an exponent vector representing a normal word u, and a
string of generator-exponent pairs representing a normal word v. The algorithm returns an
exponent vector representing the product uv. During the collection process the original
exponent vector representing u is modified, and pointers to a number of strings of
generator-exponent pairs are stored on a stack. The stack is "three wide". Each point of
the stack stores a triple of integers (str, len, exp). If str < 0 then -- str is the base address of
a string of generator-exponent pairs of length len. If this string represents the normal word
v then (str, len, exp) represents v "xp. If str > 0 then str must lie in the range 1 ~< str ~< n, and

exp (In this case len is irrelevant.) The depth of the stack is (str, len, exp) represents Xs~r �9
represented by a stack pointer (sp). Thus, at any given point during the collection process
the exponent vector represents a normal word w, and the stack represents sp powers of
normal words v~, v~ v~p. Together, they represent the product wv~p.., v2vl.b, Initially,
the single input string is stored on the stack (and sp = 1). The collection process is
complete when the stack is empty (sp = 0). We denote the gth entry of the exponent vector
by expvec(g).

First we describe the most basic form of collection from the left, without any of the frills
which are incorporated in the algorithm. The step numbers given in this description
correspond to step numbers in the full algorithm. Before we define the algorithm itself we
define a procedure for placing pointers to two types of words on the stack.

Procedure push(w")
If w is a generator x~ then

Let str = i, len = 0, exp = a.
Let sp = sp + 1.
Let stack(sp) -- (str, Ien, exp).

Endif
If w is represented by a non-empty string of generator-exponent pairs then

Let k be the base address of the string of generator-exponent pairs representing w and
let s be its length.
Let str = - k, len = s, exp = a.

728 M.R. Vaughan-Lee

Let sp = sp + 1.
Let stack(sp) = (str, len, exp).

Endif
End procedure push.

Now we define the collection algorithm.

Step (0). (Initialise collector.)
Let k be the base address and let s be the length of the initial input string of generator-
exponent pairs.
Let str = --k, len = s, exp = 1.
Let sp = 1, stack(sp) = (str, len, exp).

Step (1). (Process next triple on the stack.)
If sp = 0 return.
Let (str, len, exp) = stack(sp), sp = sp-- 1.
If str > 0 then

(The triple (str, len, exp) represents --s,r"e~P',
If exp > 1 then push(x[~'~- t).
Let i = str.

Else
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len. In
this basic form of the algorithm exp must equal 1.)
Let (i, a) be the first generator-exponent pair of the string.
(Place remainder of the string on the stack.)
If len > 1 let sp = sp + 1, stack(sp) = (s t r - 1, l e n - 1, exp).
If a > 1 push(x}'- 1).

Endif

Step (3). (Collect generator x~, scanning exponent vector from the right-hand end towards
the left.)
F o r g - - n d o w n t o i + l do

Let b = expvec(g).
If b r 0 then

Let expvec(g) = 0.
If wig is trivial then

push(x~).
Else

F o r j from 1 to b do
push(xg).
push(wlg).

End
Endif

Endif
End

Step (4). (Add 1 to ith entry of exponent vector, reduce it mod p, and add x,e to the
exponent vector if necessary.)

Collection from the Left 729

Let expvec(i) = expvec(i)+ 1.
If expvec(i) = p then

Let expvec(i) = 0,
If w~ is non-trivial then

For each (j, b) in the string of generator-exponent
expvec(j) = b.

Endif
Endif
Go to Step (1).

pairs representing wt let

The maximum stack depth required for this algorithm is (p - 1)n(c+ 1), where c is the
class of the group. This compares with a maximum stack depth of c for the
Havas-Nicholson algorithm for collection from the right. It would be possible to reduce
the maximum stack depth from (p - l)n (c+l) to nc by modifying Step (3) above. At
Step (3), (xtw,o) b is stored on 2b levels of the stack (with b at most p - 1), even though it
would be perfectly possible to store it on a single level of the stack either by widening the
stack or by encoding more information in (str, len, exp). However, the gain in doing this
does not appear to be very significant for two reasons. Firstly, no matter how (x~w~u) b is
stored on the stack, it will still need to be processed in 2b separate steps corresponding to
the 2b levels of the stack used in the algorithm described above. Secondly, even though
(p - 1)n(c + 1) grows quadratically with n (taking n as an upper bound for c), the amount of
space required to store the PCP grows with n 3, so that as n increases the amount of space
required to store the stack becomes small relative to the amount of space required to store
the PCP. For example, the Canberra nilpotent quotient algorithm uses 1280 words to
store the PCP of the largest finite quotient of B(2, 5) and (p - 1)n(c+ 1) = 1768 for this
group. But the Canberra nilpotent quotient algorithm uses 132663 words to store the
P C P of B(3, 5; 9), and for this group (p - 1)n(c+ 1) = 36 640. It is known that the largest
finite quotient of B(3, 5) has order at most 5 z282 and class at most 17, so that (p - 1)n(c + 1)
is at most 164 304 in this case. But detailed estimates indicate that 5 600 000 words would
be needed to store the PCP of this group.

Weighted Presentations

The Canberra nilpotent quotient algorithm produces weighted power-commutator
presentations. That is, each generator x~ is assigned a weight wt(i), with the following
properties.

(a) 1 = wt(1) ~<wt(2)~<... ~<wt(n)= c.
(b) The word wt representing x~' only involves generators x k such that wt(k)> wt(i).

(That is ~(i, k) r 0 implies wt(k) > wt(i).)
(c) The word w~j representing [xj, xJ only involves generators xk such that

wt(k) I> wt(i) + wt(j).

We exploit these weights in a similar way to the way in which the Havas-Nicholson
algori thm exploits them.

The generator x~ commutes with all generators with weight greater than c-wt(i) .
Furthermore, all powers and commutators arising in collecting x~ also commute with these
generators. So when collecting x, we can by-pass all entries in the exponent vector
corresponding to generators with weight greater than c-wt(i) , and there is no need to

730 M.R. Vaughan-Lee

stack generator-exponent pairs corresponding to these entries [see Step (2) and Step (6)
below].

If wt(i)> c/2 then collecting xi cannot generate any commutators and so x~ can be
collected by adding a to the ith entry of the exponent vector [see Step (4) below].

If , b V = X~Xj . . . X~ is a word in normal form, and if wt(i) > c/2, then for any integer e,
v e = x~"exjbe .. . x~ ~ and v e can be collected by adding ae, be,. . ., de to the ith, jth, . . . , kth
entries of the exponent vector [see Step (5) and Step (6) below].

If wt (i)> c/3 then any commutator arising in collecting xi will commute with all
generators xj such t h a t j > i. Furthermore, if j > i then [x~, x~] = [xj, x J "b and [xj, xi] "~ can
be collected as in the paragraph above. So x7 can be collected without stacking entries in
the exponent vector, and without stacking commutators. Care is needed, however, if
adding a to the fth entry of the exponent vector increases this entry to a value greater than
or equal to p [see Step (6) below].

If 2wt(j) + wt(i) > c then <~
[x~, x~'] = [xj, x J ~~ [xj, x,, x,] [xj, x, , x~] a.

[See Step (2) below.]
We now define the full algorithm. The procedure push(w") is as defined above.

Step (0). (Initialise collector.)
Let k be the base address and let s be the length of the initial input string of generator-
exponent pairs.
Let str = - k, fen = s, exp = 1.
Let sp = 1, stack(sp) = (str, len, exp).

Step (1). (Process next triple on the stack.)
If sp = 0 return.
Let (str, len, exp) = stack(sp), sp = S P - 1.
If s t r > 0 then

exp (The triple (str, len, exp) represents x~t~ .j
Let i =s t r , a = exp.
If 2wt(i) > c then go to Step (4).

Else
(The triple (str, len, exp) represents a string of generator-exponent pairs of length len
raised to the power exp.)
Let (i, a) be the first generator-exponent pair of the string.
If 2wt(i)> c then go to Step (5).
(Place remainder of the string on the stack. In this case exp = 1.)
If len > 1 let sp = sp + 1, stack(sp) = (s t r - 1, l e n - 1, exp).

Endif
If 3wt(i) > c go to Step (6).

Step (2). (Combinatorial collection of x~.)
Let k be minimal subject to 2wt(k)+wt(i)>c,
wt(j)+wt(i) ~< c. (Note that k ~<j.)

and let j be maximal subject to

Collection from the Left 731

For r from 1 to a do
For g from j down to k do

Let b = expvec(g).
If b # 0 then

Let expvec(g) = O.
push(x0b).
If w~0 is non-trivial then

For each (t, d) in the string of generator-exponent pairs representing w~o let
expvec(t) = expvec(t) + b d (a - r + 1)/r.

Endif
Endif

End
End
For g from j down to k do

(Stack up relevant stretch of exponent vector.)
Let b = expvec(g).
If b # 0 then

Let expvec(g) = 0.
push(x~).

Endif
End
F o r g f r o m j + l t o n d o

(Tidy up powers in unstacked stretch of exponent vector.)
Let b = expvec(g).
If b >~ p then

Let u, v be integers with 0 ~< v < p and b = up + v.
Let expvec(g) = v.
If wg is non-trivial then

For each (t ,d) in the string of generator-exponent pairs representing w o let
expvec(t) = expvec(t) + du.

Endif
Endif

End

Step (3). (Ordinary collection of x~. Scan exponent vector from the k - 1 position towards
the left.)
F o r g = k - I down t o i + l d o

Let b --- expvec(g).
If b ~ 0 then

Let expvec(g) = 0.
If wio is trivial then

push(x~).
Else

If a > 1 then
push(x~- 1).
Let a = 1.

Endif
F o r j from 1 to b do

732 M.R. Vaughan-Lee

push(x~).
push(w~g)

End
Endif

Endif
End

S t e p (4). (Add a t o ith entry of exponent vector, reduce it mod p, and stack a power of xf if
necessary.)
Let b = expvec(i).
Let u, v be integers with 0 ,<.< v < p and a + b = up + v.
Let expvec(i) = v.
If u > 0 and wi is non-trivial push(w~').
Go to Step (1).

S t e p (5). (Add the word represented by (str, len, exp) to the exponent vector.)
F o r each (i, a) in the string of generator-exponent pairs with base address - s t r and length
len do

Let b = expvec(i).
Let u, v be integers with 0 ~< v < p and up + v = b + a . exp.
Let expvec(i) = v.
If u > 0 and w~ is non-trivial push(w~).

End
Go to Step (i).

S t e p (6). (Collect x7 without stacking entries in exponent vector.)
Let k be maximal subject to wt(i)+ wt(k)~< c.
F o r g f r o m i + l t o k d o

Let b = expvec(g).
If b r 0 and w~o is non-trivial then

For each (t, d) in the string of generator-exponent pairs representing w~g do
Let e = expvec(t).
Let u, v be integers with 0 ~< v < p and pu + v = e + abd.

Let expvec(t) = v.
If u > 0 and wt is non-trivial push(w~').

End
Endif

End
Let b = expvec(i).
Let u, v be integers with 0 ~ v < p and pu + v = a + b.

Let expvec(i) = v.
If u > 0 and w~ is non-trivial then

(Stack up entries in the exponent vector.)
For g from k down to i + l do

Let b = expvec(g).
If b r 0 then

Let expvec(g) = 0.
push(x~).

Collection from the Left 733

Endif
End
push(w~').

Endif
G o to Step (1).

There are a n u m b e r of var ia t ions on this a lgori thm which present themselves. F o r
example, rather than apply ing combinator ia l collection to x7 at Step (2) we could place
x~-1 on the stack at Step (1) and then only apply combina tor ia l collection to xi. This
would simplify the p r o g r a m m i n g and could be done with only two passes: one to add in
commuta to r s (without stacking any entries), and one to stack up entries in the exponen t
vector. The advantage of applying combinator ia l collection to xf rather than to xt only
accrues if no commuta to r s are generated in Step (3). For if commuta to r s are generated in
Step (3) then we have to place x~-1 on the stack in Step (3) and then later on we have to
apply combinator ia l collection to xf -1 all over again.

Steps (5) and (6) could also be altered. Instead of reducing the entries in the exponen t
vector modulo p and placing pth powers on the stack as we go along, we could tidy up the
powers at the end of the step, in the same way as the powers are tidied up at the end of
Step (2).

My thanks to Leonard Soieher at Queen Mary College, London, whose investigations into
collection from the left prompted me to write this algorithm, to Tim Nicholson at the University of
Sydney who made a number of helpful suggestions, and especially to John Cannon who offered
advice and vast amounts of CPU-time. My thanks also to the Mathematics Department at the
University of Sydney for hospitality and financial support while I was researching this article.

References

Cannon, J. J. (1984). An Introduction to the Group Theory Language, Cayley. Computational Group Theory
(Atkinson, M. D., ed.) London: Academic Press, pp. 145-183.

Felsch, V, (1976). A machine independent implementation of a collection algorithm for the multiplication of
group elements. In: Proc. 1976 ACM Symp. oll Symbolic and Algebraic Computation. New York: Assoc.
Comput. Mach., pp. 159-166.

Felsch, V., Neubfiser, J. (1976). An algorithm for the computation of conjugaey classes and centralizers in
p-groups. Lecture Notes in Computer Science 72. Berlin: Springer, pp. 452-465.

Hall, M. (1959). The Theory of Groups. New York: Macmillan.
Havas, G., Nicholson, T. (1976). Collection. In: Proc. 1976 ACM Syrup. on Symbolic and Algebraic Computation.

New York: Assoc. Comput. Mach., pp. 9-14.
Newman, M. F. (1976). Calculating presentations for certain kinds of quotient groups. In: Proe. 1976 ACM

Symp. on Symbolic and Algebraic Computation. New York: Assoc. Comput. Math., pp. 2-8.

