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On the Bi-embeddability of Certain Steiner Triple Systems of Order 15

G. K. BENNETT, M. J. GRANNELL† AND T. S. GRIGGS

There are 80 non-isomorphic Steiner triple systems of order 15. A standard listing of these is
given in Mathonet al. (1983, Ars Combin.,15, 3–110). We prove that systems #1 and #2 have no
bi-embedding together in an orientable surface. This is the first known example of a pair of Steiner
triple systems of ordern, satisfying the admissibility conditionn ≡ 3 or 7(mod 12), which admits
no orientable bi-embedding. We also show that the same pair has five non-isomorphic bi-embeddings
in a non-orientable surface.

c© 2002 Published by Elsevier Science Ltd.

1. INTRODUCTION

The background to this paper lies in the result of Ringel and Youngs [9, 11] that, for alln ≡

0, 3,4 or 7(mod 12), there exists a triangulation of the complete graphKn in an orientable
surface of appropriate genus. Here we give a brief summary of those aspects required for the
purpose of the present paper; further details may be found in [1, 3, 5, 6] as well as in Ringel’s
book [9].

For n ≡ 3 or 7(mod 12)results of Ringel and Youngs establish the existence of a triangu-
lation of Kn, in an orientable surface, and having the additional property that the faces may
be properly 2-coloured. The triangular faces in each of the two colour classes of such a trian-
gulation necessarily form a Steiner triple system of ordern (STS(n)); that is a set of triples
from a point set of cardinalityn such that every pair of points (corresponding to the edges of
Kn) lies in a unique triple (the face, in the relevant colour class, which contains that edge). In
such a triangulation we will say that the two STS(n)s, are embedded together in the surface.

Given a pair of STS(n)s, sayA andB, one may ask whether there exists an embedding of
A together withB. The answer to this question will sometimes be no, for example ifA andB
have a triple in common. However, the question may be refined to ask ifA and an isomorphic
copy of B can be embedded together. With this question in mind, we defined abi-embedding
of A andB to be an embedding ofA with an isomorphic copy ofB.

It is not known whether every STS(n) with n ≡ 3 or 7(mod 12)has a bi-embedding with
some other STS(n) in an orientable surface. An affirmative answer would entail the existence
of nO(n2) non-isomorphic face 2-colourable triangulations ofKn in an orientable surface,
since there arenn2/6−o(n2) non-isomorphic STS(n)s [10]. However, the best existing lower
bounds forthe numbers of such triangulations all have the form 2O(n2) [3, 7]. The lowest
non-trivial specific value ofn for which one might investigate the question isn = 15.

There are 80 non-isomorphic STS(15)s and it is known that at least three of these have
bi-embeddings in an orientable surface. In each of these three cases the bi-embedding is of
a system with an isomorphic copy of itself. Using the standard listing of the STS(15)s given
in [8], the three systems involved are #1 (which is the point-line design of the projective geom-
etry PG(3,2)),#76 and #80. The bi-embedding of system #80 was given by Ringel [9], that
of #1 was given in [1], and that of #76 together with current graphs which generate all three
bi-embeddings was given in [2]. It seems to be a difficult problem to determine whether or
not all the remaining 77 STS(15)s admit a bi-embedding in an orientable surface. However, a
more tractable question is whether particular pairs of STS(15)s may be bi-embedded together.
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The rich structure of PG(3, 2) facilitated computer analysis which resulted in the construc-
tion of the unique (up to isomorphism) bi-embedding of system #1 with itself in an orientable
surface. None of the other STS(15)s possesses a comparable degree of symmetry. However,
system #2 may be obtained from #1 by means of a Pasch-switch. APasch configurationalso
known as aquadrilateral in a Steiner triple system is a set of four triples whose union has
cardinality six. Such a configuration is isomorphic to{{a, b, c}, (a, y, z}, {x, b, z}, {x, y, c}}.
A Pasch-switchis the operation of replacing this set of four triples by{{x, y, z}}, {x, b, c},
{a, y, c}, {a, b, z}} which covers the same pairs. System #1 has 105 Pasch configurations and
it was shown in [4] that switching any one of these results in a copy of system #2. Using this
fact,we show (Theorem 3.1) that there is no bi-embedding of system #1 with system #2 in an
orientable surface. This is the first example of a pair of STS(n)s (with n ≡ 3 or 7(mod 12))
which cannot be bi-embedded in an orientable surface.

Ringel and Youngs’ work also dealt with triangulations ofKn in non-orientable surfaces
and one may ask questions, similar to those given above, for bi-embeddings of STS(n)s in
non-orientable surfaces. Here the necessary conditions aren ≡ 1 or 3(mod 6). In the course
of the investigation we prove that there are precisely five non-isomorphic bi-embeddings of
system #1 with system #2 in a non-orientable surface.

2. METHOD

In a bi-embedding of two STS(15)s there will be 15 vertices, 105 edges and 70 triangular
faces. The genus of the surface may be determined from Euler’s formula. In the orientable
case the surface isS11, the sphere with 11 handles, and in the non-orientable case it isS̄22, the
sphere with 22 crosscaps. We will refer to the colour classes for the faces as black and white.

A triangulation ofKn may be described by means of arotation scheme. This comprises a set
of circularly ordered lists, one for each vertex ofKn. The list corresponding to the vertexx, the
rotation at x, gives the remainingn − 1 vertices in the order in which they appear aroundx in
the given embedding. If the embedding is in an orientable surface then a consistent orientation,
say clockwise, may be selected for the entire rotation scheme. As an example, Table 1 gives
a rotation scheme for an embedding ofK7 in a torus. In fact this embedding is unique up to
isomorphism. The vertices ofK7 are taken to be the points ofZ7.

Given a triangular embedding ofKn, by considering each pair of adjacent triangular faces,
〈i, j, k〉 and〈i, k, l 〉, it is easy to see that the rotation scheme must satisfy the following:

Rule R. If the rotation ati contains. . . jkl . . . then the rotation atk contains either. . . li j . . .

or . . . j i l . . ..
The converse is also true (see for example [9], p. 76), namely a rotation scheme onn points

(with therotation at each pointx containing all then − 1 points apart fromx) which satisfies

TABLE 1.
Rotation scheme for embeddingK7.

0: 1 3 2 6 4 5
1: 2 4 3 0 5 6
2: 3 5 4 1 6 0
3: 4 6 5 2 0 1
4: 5 0 6 3 1 2
5: 6 1 0 4 2 3
6: 0 2 1 5 3 4
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Rule R represents a triangular embedding ofKn in somesurface. The surface may or may
not be orientable. It will be orientable if it is possible to orient the rotations at the vertices
consistently, i.e. to satisfy the following:

Rule R*. If the rotation ati contains. . . jkl . . . then the rotation atk contains. . . li j . . ..
The necessity of RuleR∗ may be seen in a similar fashion to that of Rule R. A proof of its

sufficiency is given in [9].
Wetake the vertices ofK15 to be the elements ofZ15. Without loss of generality, the rotation

at 0 can be taken as:
0 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

Since a face 2-colourable embedding is sought, it can be assumed that, fori = 1,2, . . . ,7, the
triangles〈0,2i − 1,2i 〉 are coloured black and the triangles〈0,2i, 2i + 1〉 (with ‘15’ replaced
by ‘1’) are coloured white. We look for bi-embeddings where the white and black systems are
isomorphic to systems #1 and #2, respectively.

It was shown in [1] that there are precisely 480 differently labelled copies of system #1 on
the pointsetZ15 and containing the seven white triples{0,2i, 2i + 1}; it was also explained
there how these 480 copies may be obtained. In that paper we sought bi-embeddings of system
#1 with itself. There are also 480 differently labelled copies of system #1 on the point setZ15
and containing the seven black triples{0,2i − 1,2i }, and these may be obtained from the 480
white systems by applying the permutation(0)(14 13 12. . . 1). In the case being considered in
the current paper, we seek bi-embeddings of system #1 with system #2. The strategy employed
is to take the 480 black systems just identified and to apply permutations and Pasch-switches
which yield all the differently labelled copies of system #2 on the point setZ15 and which
contain the seven black triples{0,2i − 1,2i }.

Given a realization of system #2 there are precisely 15× (14× 12× 10× · · · × 2) ways
of mapping the blocks through a single point onto the seven black triples{0,2i − 1,2i }.
However, system #2 has an automorphism group of order 192 [8]. Consequently the number
of differently labelled copies of system #2 on the point setZ15 and containing the seven
specified triples is 15.27.7!/192 = 105× 480. All such systems may be obtained in one of
two ways from the 480 copies of system #1 containing the same black triples.

The first of these is by switching any Pasch configuration which does not involve the seven
specified triples. There are 7×6 = 42 Pasch configurations in system #1 which involve triples
through a specified point, and consequently there are 105− 42 = 63 which do not. Thus we
obtain 63× 480 copies of system #2 containing the seven specified triples. We show later that
these are distinct, and we refer to them as Type I copies.

The second possibility is that a copy of system #2 containing the seven specified triples
results from a Pasch switch on a copy of system #1 which does not contain all the specified
triples. The Pasch configuration involved in such a switch which lies in system #2 must contain
two of the specified triples, say{0,2i − 1,2i } and{0,2 j − 1,2 j } (i 6= j ) together with a
pair of other triples which may either be{{x, 2i − 1,2 j − 1},{x, 2i, 2 j }} or {{x, 2i − 1,2 j },
{x, 2i, 2 j −1}}. The corresponding copy of system #1 will contain five of the specified triples
together with either{{0,2i −1,2 j −1},{0,2i, 2 j }, {x, 2i −1,2i }, {x, 2 j −1,2 j }} or {{0,2i −
1,2 j }, {0,2i, 2 j −1},{x, 2i −1,2i }, {x, 2 j −1,2 j }}. If we apply the permutation(2i −1 2j )
(alternatively(2i 2 j − 1)) to the former case or(2i − 1 2j − 1) (alternatively(2i 2 j )) to the
latter case we obtain a copy of system #1 containing all seven of the specified triples. The
process is reversible; we may start with any of the 480 copies of system #1 containing all
seven of the specified triples, apply an appropriate permutation, carry out the corresponding
Pasch-switch, and obtain a copy of system #2 containing the seven specified triples. There
are 2× 7 × 6 = 84 transformations to consider, leading to 84× 480 copies of system #2
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containing the seven specified triples. We will refer to these as Type II copies. We show later
that theseare distinct from the Type I copies and that there are precisely 42× 480 distinct
Type II copies, each copy being generated precisely twice by the procedure described earlier.
Thus we are able to construct all(63+ 42)× 480= 105× 480 distinct copies of system #2
containing the seven specified black triples.

LEMMA 2.1. (a) The63× 480TypeI copiesare all distinct.
(b) The TypeI copies are all distinct from the TypeII copies.
(c) The TypeII copies form42× 480distinctpairs of identical systems.

PROOF. Parts (a) and (b) follow immediately from the fact that in a copy of system #2, there
is precisely one Pasch configuration which may be switched to give a copy of system #1 [4].
To establish part (c), note firstly that a copy of system #1 containing five of the specified triples
together with{0,2i − 1,2 j − 1} and{0,2i, 2 j } may be obtained from a copy containing all
seven of the specified triples by means of either the permutation(2i −1 2j ) or the permutation
(2i 2 j − 1). A similar duplication occurs in respect of a copy of system #1 containing five of
the specified triples together with{0,2i − 1,2 j } and{0,2i, 2 j − 1}. Thus there are at most
42× 480 distinct Type II systems. If two Type II systems are identical then they arise from
identical copies of system #1 as described and only two transpositions of the forms described
are capable of producing such a copy of system #1 from a copy containing all seven of the
specified triples. 2

Putting together a white system #1 and a black system #2, the assumed rotation at 0 together
with the lists of black and white triples determines a potential rotation scheme. As a conse-
quence, there are 480× (105× 480)potential bi-embeddings of system #1 with system #2.
Each of these was examined to check firstly that the potential rotation at each vertex indeed
comprises a single 14-cycle and, in such cases, secondly that the whole scheme satisfies Rule
R, The rotation schemes so identified were then further tested against Rule R* to determine
those which are orientable.

The procedure just described leads to the conclusion that there is no bi-embedding of sys-
tem #1 with system #2 in an orientable surface. However non-orientable bi-embeddings were
obtained. Isomorphisms between these bi-embeddings may be determined in the manner given
later. The same approach can also be used to determine the automorphism groups. Since
the black and the white systems are themselves non-isomorphic, mappings which reverse
the colours cannot form isomorphisms between (or automorphism of) the bi-embeddings
obtained.

Consider two rotation schemes,R1 andR2, defined on the points ofZ15 and representing bi-
embeddings of system #1 (white) and system #2 (black). To determine those mappings (if any)
φ : Z15 → Z15 which takeR1 to R2 we only need consider 15× 14 = 210 possibilities.
Suppose two pointsx andy are fixed inR1, then once their imagesφ(x) andφ(y) are chosen
in R2, the circularly ordered rotations atx in R1 and atφ(x) in R2 must correspond. Since
y corresponds toφ(y), the images of the remaining points are determined up to a reversal of
one of these rotations. However, only one of the two orientations is possible because colour
reversals are not allowed. Thus there are 210 possible mappings which might provide an
isomorphism and, similarly, there are 210 possible mappings of an embedding which might
provide an automorphism.

3. RESULTS

From the 480× (105× 480) possibilities described above, 1050 bi-embeddings of sys-
tem #1 with system #2 were identified and these fall into just five isomorphism classes.
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TABLE 2.
Isomorphism class representatives.

Class #1 Representative

0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 7 10 11 6 13 9 12 8 4
2: 0 1 4 14 5 8 6 7 9 11 12 10 13 3
3: 4 0 2 13 11 8 7 12 10 6 9 5 1 14
4: 0 3 14 2 1 8 11 7 13 12 6 9 10 5
5: 6 0 4 10 8 2 14 12 7 1 3 9 11 13
6: 0 5 13 1 11 14 10 3 9 4 12 8 2 7
7: 8 0 6 2 9 14 11 4 13 10 1 5 12 3
8: 0 7 3 11 4 1 12 6 2 5 10 14 13 9
9: 10 0 8 13 1 12 14 7 2 11 5 3 6 4

10: 0 9 4 5 8 14 6 3 12 2 13 7 1 11
11: 12 0 10 1 6 14 7 4 8 3 13 5 9 2
12: 0 11 2 10 3 7 5 14 9 1 8 6 4 13
13: 14 0 12 4 7 10 2 3 11 5 6 1 9 8
14: 0 13 8 10 6 11 7 9 12 5 2 4 3 1

Class #2 Representative

0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 8 12 10 7 6 11 9 13 4
2: 0 1 4 9 6 8 7 5 14 12 10 11 13 3
3: 4 0 2 13 10 6 8 11 12 7 9 5 1 14
4: 0 3 14 6 13 1 2 9 11 7 12 8 10 5
5: 6 0 4 10 9 3 1 8 11 14 2 7 13 12
6: 0 5 12 9 2 8 3 10 14 4 13 11 1 7
7: 8 0 6 1 10 14 11 4 12 3 9 13 5 2
8: 0 7 2 6 3 11 5 1 12 4 10 13 14 9
9: 10 0 8 14 12 6 2 4 11 1 13 7 3 5

10: 0 9 5 4 8 13 3 6 14 7 1 12 2 11
11: 12 0 10 2 13 6 1 9 4 7 14 5 8 3
12: 0 11 3 7 4 8 1 10 2 14 9 6 5 13
13: 14 0 12 5 7 9 1 4 6 11 2 3 10 8
14: 0 13 8 9 12 2 5 11 7 10 6 4 3 1

Class #3 Representative

0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 8 12 10 7 6 11 9 13 4
2: 0 1 4 14 5 7 8 6 9 12 10 11 13 3
3: 4 0 2 13 10 8 6 11 12 7 9 5 1 14
4: 0 3 14 2 1 13 6 9 11 7 12 8 10 5
5: 6 0 4 10 9 3 1 8 11 14 2 7 13 12
6: 0 5 12 14 10 13 4 9 2 8 3 11 1 7
7: 8 0 6 1 10 14 11 4 12 3 9 13 5 2
8: 0 7 2 6 3 10 4 12 1 5 11 13 14 9
9: 10 0 8 14 12 2 6 4 11 1 13 7 3 5

10: 0 9 5 4 8 3 13 6 14 7 1 12 2 11
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Continued:

11: 12 0 10 2 13 8 5 14 7 4 9 1 6 3
12: 0 11 3 7 4 8 1 10 2 9 14 6 5 13
13: 14 0 12 5 7 9 1 4 6 10 3 2 11 8
14: 0 13 8 9 12 6 10 7 11 5 2 4 3 1

Class #4 Representative

0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 4 13 3 8 6 10 11 7 5 12 9
2: 0 1 9 11 12 10 13 4 6 7 5 8 14 3
3: 4 0 2 14 9 8 1 13 11 5 6 12 10 7
4: 0 3 7 9 10 8 11 6 2 13 1 14 12 5
5: 6 0 4 12 1 7 2 8 10 14 13 9 11 3
6: 0 5 3 12 8 1 10 13 9 14 11 4 2 7
7: 8 0 6 2 5 1 11 14 10 3 4 9 12 13
8: 0 7 13 11 4 10 5 2 14 12 6 1 3 9
9: 10 0 8 3 14 6 13 5 11 2 1 12 7 4

10: 0 9 4 8 5 14 7 3 12 2 13 6 1 11
11: 12 0 10 1 7 14 6 4 8 13 3 5 9 2
12: 0 11 2 10 3 6 8 14 4 5 1 9 7 13
13: 14 0 12 7 8 11 3 1 4 2 10 6 9 5
14: 0 13 5 10 7 11 6 9 3 2 8 12 4 1

Class #5 Representative

0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 9 7 13 4 11 6 12 5 10 8
2: 0 1 8 9 14 4 7 10 12 6 5 11 13 3
3: 4 0 2 13 10 5 7 12 11 8 14 1 9 6
4: 0 3 6 10 14 2 7 11 1 13 8 12 9 5
5: 6 0 4 9 13 7 3 10 1 12 8 14 11 2
6: 0 5 2 12 1 11 9 3 4 10 8 13 14 7
7: 8 0 6 14 12 3 5 13 1 9 10 2 4 11
8: 0 7 11 3 14 5 12 4 13 6 10 1 2 9
9: 10 0 8 2 14 12 4 5 13 11 6 3 1 7

10: 0 9 7 2 12 13 3 5 1 8 6 4 14 11
11: 12 0 10 14 5 2 13 9 6 1 4 7 8 3
12: 0 11 3 7 14 9 4 8 5 1 6 2 10 13
13: 14 0 12 10 3 2 11 9 5 7 1 4 8 6
14: 0 13 6 7 12 9 2 4 10 11 5 8 3 1

A representative of each class is given in Table 2. None of these bi-embeddings can be ori-
ented tosatisfy Rule R* and so there is no orientable bi-embedding of these systems. Each
isomorphism class contains 210 bi-embeddings satisfying Rule R. Consequently all the bi-
embeddings have only the trivial automorphism. These computational results have been veri-
fied by two independently written computer programs. We summarize the results as follows.

THEOREM 3.1. Up to isomorphism, there are five non-orientable bi-embeddings of system
#1 withsystem #2. There is no orientable bi-embedding of these systems. 2
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