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Abstract

The problem of generating a matrix A with specified eigenpairs, where A is a tridiagonal symmetric matrix, is presented. A
general expression of such a matrix is provided, and the set of such matrices is denoted by SE . Moreover, the corresponding
least-squares problem under spectral constraint is considered when the set SE is empty, and the corresponding solution set
is denoted by SL . The best approximation problem associated with SE (SL ) is discussed, that is: to find the nearest matrix
Â in SE (SL ) to a given matrix. The existence and uniqueness of the best approximation are proved and the expression of
this nearest matrix is provided. At the same time, we also discuss similar problems when A is a tridiagonal bisymmetric
matrix.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The notation used in this paper can be summarized as follows: denote the set of all m × n real matrices by Rm×n ,
and the set of all n × n real symmetric matrices by S Rn×n . For A ∈ Rm×n , AT and A+ denote the transpose and
the Moore–Penrose generalized inverse of A, respectively. The identity matrix of order n is denoted by In , and let
Sn = (en, en−1, . . . , e1), where ei is the i th column of In . It is easy to see that ST

n = S−1
n = Sn , that is to say, the

matrix Sn is a symmetric orthogonal matrix. We define the inner product: 〈A, B〉 = tr(BT A) for all A, B ∈ Rm×n
;

then Rm×n is a Hilbert inner product space and the norm of a matrix generated by this inner product is the Frobenius
norm ‖ · ‖. ‖x‖2 represents the 2-norm of a vector x . For A = (ai j ) ∈ Rm×n, B = (bi j ) ∈ R p×q , the symbol
A ⊗ B = (ai j B) ∈ Rmp×nq stands for the Kronecker product of A and B.
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Definition 1. An n × n matrix A is called a tridiagonal matrix if

A =


a1 c1
b1 a2 c2

. . .
. . .

. . .

bn−2 an−1 cn−1
bn−1 an

 . (1)

If bi = ci (i = 1, 2, . . . , n − 1), A is a tridiagonal symmetric matrix. Denote by Rn×n
3 and S Rn×n

3 the set of all n × n
tridiagonal matrices and tridiagonal symmetric matrices, respectively. If bi = ci > 0, then the tridiagonal symmetric
matrix A is a Jacobi matrix.

Definition 2. A ∈ Rn×n
3 is called a tridiagonal bisymmetric matrix if AT

= A and (Sn A)T
= Sn A. Denote by

BS Rn×n
3 the set of all n × n tridiagonal bisymmetric matrices.

Definition 3. A ∈ Rn×n is called a skew-symmetric matrix if (Sn A)T
= Sn A, and B ∈ Rn×n is called a skew-anti-

symmetric matrix if (Sn B)T
= −Sn B. Thus,

(A, B) = tr(BT A) = tr[(Sn B)T(Sn A)] = (Sn A, Sn B) = 0,

that is, skew-symmetric and skew-anti-symmetric matrices are mutually orthogonal.

The inverse problem of constructing the tridiagonal symmetric matrix and Jacobi matrix from spectral data has been
investigated by Hochstadt [1], De Boor and Golub [2]. However, we should point out that the eigenvectors provide
also very useful data in control theory [3,4], vibration theory [5,6], and structure design [7]. This kind of problem is
called the inverse eigenvalue problem under spectral restriction [8], and can be described as follows:

Problem 1. Given a set L ⊆ Rn×n , and the eigenpairs X = (x1, x2, . . . , xm) ∈ Rn×m,Λ = diag(λ1, λ2, . . . , λm) ∈

Rm×m(1 ≤ m < n), find A ∈ L such that

AX = XΛ.

The prototype of this problem initially arose in the design of Hopfield neural networks [9], and many important
results on the discussions of the inverse eigenvalue problem associated with several kinds of different sets L have been
obtained in [10–18] by using the SVD (Singular Value Decomposition) and Moore–Penrose generalized inverse. They
provided some solvability conditions for the problem and derived an expression for the general solution. However, the
eigenvalues and eigenvectors data is frequently derived from scientific experiments, and the solution set of Problem 1
may be empty. Hence, we need to study the corresponding least-squares problem, which can be described as follows:

Problem 2. Given a set L ⊆ Rn×n , and the eigenpairs X = (x1, x2, . . . , xm) ∈ Rn×m,Λ = diag(λ1, λ2, . . . , λm) ∈

Rm×m(1 ≤ m < n), find A ∈ L such that

‖AX − XΛ‖ = min
B∈L

‖B X − XΛ‖.

The least-squares problem under spectral restriction associated with several kinds of different sets L, for instance,
symmetric matrices, positive semi-definite matrices, bisymmetric nonnegative definite matrices and so on (see [19–
21]), has been considered.

The best approximation problem occurs frequently in experimental design, see for instance [22]. A preliminary
estimation A∗ of the unknown matrix A can be obtained from experiments, but it may not satisfy the structural
requirement (for example, tridiagonal symmetric matrices) and/or spectral requirement. The best estimation of A is
the matrix Â in L that satisfies both requirements of A and is the best approximation of A∗ [8,23,24]. So the best
approximation problem associated with Problems 1 and 2 is described as follows:
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Problem 3. Given A∗
∈ Rn×n , find Â ∈ SE (SL) such that

‖ Â − A∗
‖ = min

A∈SE (SL )
‖A − A∗

‖,

where SE and SL denote the solution sets of Problems 1 and 2, respectively.

In this paper, we will solve the three problems for two sets L defined in Definitions 1 and 2, i.e., L = S Rn×n
3 and

L = BS Rn×n
3 . The inverse eigenvalue problem of tridiagonal symmetric matrices is also called the best approximation

problem of tridiagonal symmetric matrices under spectral restriction [11]. To facilitate discussion, we still denote by
SE and SL the solution sets of Problem 1 and Problem 2 in Problem 3 when L = S Rn×n

3 , and denote by S′

E and S′

L
the solution sets of Problems 1 and 2 in Problem 3 when L = BS Rn×n

3 . Without loss of generality, we may assume
the given matrix A∗

∈ S Rn×n
3 when L = S Rn×n

3 and A∗
∈ BS Rn×n

3 when L = BS Rn×n
3 in Problem 3, respectively.

In fact, for any A∗
= (a∗

i j ) ∈ Rn×n , let

A∗

1 =


a∗

11 a∗

12
a∗

21 a∗

22 a∗

23
. . .

. . .
. . .

a∗

(n−1)(n−2) a∗

(n−1)(n−1) a∗

(n−1)n
a∗

n(n−1) a∗
nn

 ∈ Rn×n
3 , A∗

2 = A∗
− A∗

1.

Then A∗

1 is the tridiagonal part of A∗. Thus, for any A ∈ S Rn×n
3 , we have

‖A − A∗
‖

2
= ‖A − A∗

1 − A∗

2‖
2

= ‖A − A∗

1‖
2
+ ‖A∗

2‖
2.

Due to the mutual orthogonality of symmetric matrices and anti-symmetric matrices in Rn×n , we have

‖A − A∗

1‖
2

= ‖A − B∗
− C∗

‖
2

= ‖A − B∗
‖

2
+ ‖C∗

‖
2,

where the matrices B∗ and C∗ denote the symmetric part and the anti-symmetric part of the tridiagonal matrix A∗

1,
respectively. Combining the above two equations, we have

‖A − A∗
‖ = min ⇔ ‖A − A∗

1‖ = min ⇔ ‖A − B∗
‖ = min .

Furthermore, since BS Rn×n
3 ⊆ S Rn×n

3 , ∀D ∈ BS Rn×n
3 , we still have

‖D − A∗
‖

2
= ‖D − A∗

1 − A∗

2‖
2

= ‖D − A∗

1‖
2
+ ‖A∗

2‖
2,

‖D − A∗

1‖
2

= ‖D − B∗
− C∗

‖
2

= ‖D − B∗
‖

2
+ ‖C∗

‖
2.

Let

B∗

1 =
1
2
(B∗

+ Sn B∗Sn), B∗

2 =
1
2
(B∗

− Sn B∗Sn).

Obviously, B∗

1 ∈ BS Rn×n
3 , (Sn B∗

2 )T
= −Sn B∗

2 . Due to the mutual orthogonality of skew-symmetric and skew-anti-
symmetric matrices, we have

‖D − B∗
‖

2
= ‖D − B∗

1 − B∗

2 ‖
2

= ‖D − B∗

1 ‖
2
+ ‖B∗

2 ‖
2.

So we have

‖D − A∗
‖ = min ⇔ ‖D − A∗

1‖ = min ⇔ ‖D − B∗
‖ = min ⇔ ‖D − B∗

1 ‖ = min .

The paper is organized as follows: in Sections 2 and 3, we discuss the structure of the basis matrices [25] for S Rn×n
3

and BS Rn×n
3 , and provide the general expressions of these solutions of Problems 1–3 by using the Moore–Penrose

generalized inverse, respectively; in Section 4, we propose two direct algorithms to compute the solutions of Problem 3
and report our experimental results.
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2. The solutions of Problems 1–3 for the case L = SRn×n
3

First, we discuss the structure of the basis matrix for S Rn×n
3 . For A = (ai j )m×n , denote by vec(A) the following

vector containing all the entries of matrix A:

vec(A) =


a1
a2
...

an

 ∈ Rmn,

where a j = (a1 j , a2 j , . . . , amj )
T( j = 1, 2, . . . , n) denotes the j th column of matrix A. For A ∈ Rn×n

3 having the
form (1), let

A1 = (a1,
√

2b1), A2 = (a2,
√

2b2), . . . , An−1 = (an−1,
√

2bn−1), An = an,

and denote by vecS3(A) the following vector:

vecS3(A) = (A1, A2, . . . , An−1, An)T
∈ R2n−1. (2)

Definition 4 ([25]). Denote by R p the real vector space of finite dimension p > 0, and by Γ a given subspace of R p

with dimension s ≤ p. Let d1, d2, . . . , ds be a set of basis vectors for Γ , then the p × s matrix

K = (d1, d2, . . . , ds)

is called a basis matrix for Γ . Obviously, the basis matrix is not unique. To facilitate discussion, we may assume that
the basis matrix K is standard column orthogonal, i.e., K T K = Is .

Lemma 1. Suppose A ∈ Rn×n
3 . Then A ∈ S Rn×n

3 if and only if

vec(A) = KS3 vecS3(A), (3)

where vecS3(A) is defined by (2), and the basis matrix KS3 of S Rn×n
3 is of the following form:

KS3 =



e1
1

√
2

e2 0 0 · · · 0 0 0

0
1

√
2

e1 e2
1

√
2

e3 · · · 0 0 0

0 0 0
1

√
2

e2 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · en−1
1

√
2

en 0

0 0 0 0 · · · 0
1

√
2

en−1 en



∈ Rn2
×(2n−1). (4)

Proof. The matrix A ∈ S Rn×n
3 can be expressed as

A =


a1 b1
b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1
bn−1 an


= a1(e1, 0, . . . , 0, 0) +

√
2b1

(
1

√
2

e2,
1

√
2

e1, . . . , 0, 0
)

+ a2(0, e2, . . . , 0, 0) +
√

2b2

(
0,

1
√

2
e3, . . . , 0, 0

)
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+ · · · + an−1(0, 0, . . . , en−1, 0) +
√

2bn−1

(
0, 0, . . . ,

1
√

2
en,

1
√

2
en−1

)
+ an(0, 0, . . . , 0, en).

It then follows that

vec(A) =



e1
1

√
2

e2 0 0 · · · 0 0 0

0
1

√
2

e1 e2
1

√
2

e3 · · · 0 0 0

0 0 0
1

√
2

e2 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 0 · · · en−1
1

√
2

en 0

0 0 0 0 · · · o
1

√
2

en−1 en





a1√
2b1
a2√
2b2
...

√
2bn−1
an



= KS3 vecS3(A).

Conversely, if the matrix A ∈ Rn×n
3 satisfies (3), then it is easy to see that A ∈ S Rn×n

3 . The proof is completed. �

From Lemma 1, we immediately have the following conclusion.

Corollary 1. For the diagonal matrix Λ = diag(λ1, λ2, . . . , λm) ∈ Rm×m, one gets

vec(Λ) = K0vecS3(Λ),

where

K0 =


e1

e2
. . .

em

 ∈ Rm2
×m and vecS3(Λ) =


λ1
λ2
...

λm

 ∈ Rm . (5)

The following Lemmas 2–4 are well known results, see, for instance, Ben-Israel and Greville [26].

Lemma 2. Given A ∈ Rm×n and b ∈ Rn , then the system of equations Ax = b has a solution x ∈ Rn if and only if
AA+b = b. In that case it has the general solution

x = A+b + (I − A+ A)y, (6)

where y ∈ Rn is an arbitrary vector.

Lemma 3. The least-squares solutions of the system of equations Ax = b, with A ∈ Rm×n and b ∈ Rn , are of the
form (6).

Lemma 4. For any matrices A, B and C with suitable size, one gets

vec(ABC) = (CT
⊗ A)vec(B).

Based on the above discussions, we now study Problems 1–3 for the case L = S Rn×n
3 .

Theorem 1. Suppose the matrices X and Λ are given in Problem 1, KS3 and K0 are the basis matrices in Lemma 1
and Corollary 1. The vectors vecS3(A) and vecS3(Λ) are defined by (2) and (5), respectively. Let P1 = (XT

⊗ I )KS3

and P2 = (I ⊗ X)K0. Then the solution set SE of Problem 1 is nonempty if and only if

P1 P+

1 P2vecS3(Λ) = P2vecS3(Λ). (7)
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When condition (7) is satisfied, SE can be expressed as

SE = {A|vec(A) = KS3 P+

1 P2vecS3(Λ) + KS3(I − P+

1 P1)z}, (8)

where the vector z ∈ R(2n−1) is arbitrary.

Proof. If the solution set SE is nonempty, then Problem 1 has a solution A ∈ S Rn×n
3 . From Lemma 4, we have

(XT
⊗ I )vec(A) = (I ⊗ X)vec(Λ), (9)

which is, in view of (2), Lemma 1 and Corollary 1, equivalent to

(XT
⊗ I )KS3 vecS3(A) = (I ⊗ X)K0vecS3(Λ). (10)

It then follows from Lemma 2 that (7) holds, and the set SE can be expressed by (8).
Conversely, if (7) holds, we have from Lemma 2 that Eq. (10) has a solution which possesses the explicit expression

vecS3(A) = P+

1 P2vecS3(Λ) + (I − P+

1 P1)z, ∀z ∈ R2n−1, (11)

which implies that vec(A) = KS3 vecS3(A) is the solution of Eq. (9). From Lemma 1, we know that A ∈ S Rn×n
3 and

the solution set SE is nonempty. The proof is completed. �

Moreover, if rank(P1) = 2n − 1, then the solution of Problem 1 is unique and the solution has the following form

vec(A) = KS3 P+

1 P2vecS3(Λ).

Theorem 2. If the notation and conditions are the same as in Theorem 1, then the solution set SL of Problem 2 can
be expressed as

SL = {A|vec(A) = KS3 P+

1 P2vecS3(Λ) + KS3(I − P+

1 P1)z}, (12)

where the vector z ∈ R(2n−1) is arbitrary.

Proof. By Lemmas 1 and 4,

‖AX − XΛ‖ = ‖vec(AX) − vec(XΛ)‖2

= ‖(XT
⊗ I )KS3 vecS3(A) − (I ⊗ X)K0vecS3(Λ)‖2

= ‖P1vecS3(A) − P2vecS3(Λ)‖2.

From Lemmas 1 and 3, it follows that (12) holds, and this proves the theorem. �

Next we investigate Problem 3 and assume that the solution set of Problem 1 is nonempty. It is easy to verify that
SE (SL) is a closed convex set. Therefore there exists a unique solution of Problem 3. Then we have the following
theorems for the solution to Problem 3 over SE (SL).

Theorem 3. If the notation and conditions are the same as in Theorem 1, and A∗
= (a∗

i j ) ∈ S Rn×n
3 , then the unique

solution Â ∈ SE for Problem 3 can be expressed as

vec( Â) = KS3 vecS3(A∗) + KS3 P+

1 (P2vecS3(Λ) − P1vecS3(A∗)). (13)

Proof. Since the basis matrix KS3 defined in (4) is standard column orthogonal, in view of the orthogonal invariance
of the 2-norm, we have

min
A∈SE

‖A − A∗
‖ = min

A∈SE
‖vec(A) − vec(A∗)‖2

= min
A∈SE

‖KS3 vecS3(A) − KS3 vecS3(A∗)‖2

= min
A∈SE

‖vecS3(A) − vecS3(A∗)‖2.
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By substituting (11) into the above equation, we know that Problem 3 is equivalent to the following least-squares
problem:

min
z∈R2n−1

‖(I − P+

1 P1)z − (vecS3(A∗) − P+

1 P2vecS3(Λ))‖2. (14)

From Lemma 3, we know that the solution of the least-squares problem (14) can be expressed as

ẑ = (I − P+

1 P1)
+(vecS3(A∗) − P+

1 P2vecS3(Λ)) + (I − (I − P+

1 P1)
+(I − P+

1 P1))y, (15)

where the vector y ∈ R2n−1 is arbitrary. Since I − P+

1 P1 is a projection matrix, i.e., (I − P+

1 P1)(I − P+

1 P1) =

(I − P+

1 P1), it is easy to verify that

(I − P+

1 P1)(I − P+

1 P1)
+

= (I − P+

1 P1)
+

= I − P+

1 P1.

Hence, the unique solution Â ∈ SE for Problem 3 is given by

vec( Â) = KS3 vecS3( Â)

= KS3(I − P+

1 P1)̂z + KS3 P+

1 P2vecS3(Λ)

= KS3 vecS3(A∗) + KS3 P+

1 (P2vecS3(Λ) − P1vecS3(A∗)),

and this proves the assertion. �

Similar to the proof of Theorem 3, we have the following conclusion.

Theorem 4. If the notation and conditions are the same as in Theorem 1, and A∗
= (a∗

i j ) ∈ S Rn×n
3 , then the unique

solution Â ∈ SL for Problem 3 can be expressed as

vec( Â) = KS3 vecS3(A∗) + KS3 P+

1 (P2vecS3(Λ) − P1vecS3(A∗)). (16)

In Theorems 3 and 4, if rank(I − P+

1 P1) = 2n − 1, then P1 = 0, and we can get Â = A∗. If rank(P1) = 2n − 1,
then SE (SL) = {A|vec(A) = KS3 P+

1 P2vecS3(Λ)}, and we can get vec( Â) = KS3 P+

1 P2vecS3(Λ).

3. The solutions of Problems 1–3 for the case L = BSRn×n
3

At first, we discuss the structure of BS Rn×n
3 . From Definition 2, it is easy to see that

Lemma 5. (1) When n = 2k, A is called an n × n tridiagonal bisymmetric matrix if

A =



a1 b1
b1 a2 b2

. . .
. . .

. . .

bk−1 ak bk
bk ak bk−1

bk−1 ak−1 bk−2
. . .

. . .
. . .

b2 a2 b1
b1 a1


. (17)
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(2) When n = 2k + 1, A is called an n × n tridiagonal bisymmetric matrix if

A =



a1 b1
b1 a2 b2

. . .
. . .

. . .

bk−1 ak bk
bk ak+1 bk

bk ak bk−1
. . .

. . .
. . .

b2 a2 b1
b1 a1


. (18)

For A ∈ BS Rn×n
3 having the form (17) or (18), let

A1 = (
√

2a1, 2b1), A2 = (
√

2a2, 2b2), . . . , Ak = (
√

2ak, 2bk), Ak+1 = ak+1,

and denote by vecB3(A) the following vectors:

vecB3(A) = (A1, A2, . . . , Ak−1, Ak)
T

∈ R2k, when n = 2k,

vecB3(A) = (A1, A2, . . . , Ak, Ak+1)
T

∈ R2k+1, when n = 2k + 1.
(19)

Lemma 6. Suppose A ∈ Rn×n
3 . Then A ∈ BS Rn×n

3 if and only if

vec(A) = K B3 vecB3(A), (20)

where vecB3(A) is defined by (19), and the basis matrix K B3 ∈ Rn2
×n is of the following form:

(1) when n = 2k,

K B3 =



1
√

2
e1

1
2

e2 0 0 · · · 0 0 0 0

0
1
2

e1
1

√
2

e2
1
2

e3 · · · 0 0 0 0

0 0 0
1
2

e2 · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · ·
1

√
2

ek−1
1
2

ek 0 0

0 0 0 0 · · · 0
1
2

ek−1
1

√
2

ek
1

√
2

ek+1

0 0 0 0 · · · 0
1
2

ek+2
1

√
2

ek+1
1

√
2

ek

0 0 0 0 · · ·
1

√
2

ek+2
1
2

ek+1 0 0

...
...

...
...

...
...

...
...

0 0 0
1
2

e2k−1 · · · 0 0 0 0

0
1
2

e2k
1

√
2

e2k−1
1
2

e2k−2 · · · 0 0 0 0

1
√

2
e2k

1
2

e2k−1 0 0 · · · 0 0 0 0



, (21)
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(2) when n = 2k + 1,

K B3 =


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

. (22)

Proof. We consider only the case when n = 2k + 1, with a similar argument applicable to the other case. For the
matrix A ∈ BS Rn×n

3 , from (18), we have

A = a1(e1, 0, . . . , 0, en) + b1(e2, e1, . . . , en, en−1) + · · · + ak(0, 0, . . . , ek, 0, ek+2, . . . , 0, 0)

+ bk(0, 0, . . . , ek+1, ek + ek+2, ek+1, . . . , 0) + ak+1(0, 0, . . . , 0, ek+1, 0, . . . , 0).

It then follows that vec(A) = K B3vecB3(A).

Conversely, if ∀A ∈ Rn×n
3 and vec(A) = K B3vecB3(A), it is easy to see that A ∈ BS Rn×n

3 . The proof is
completed. �

Similar to the proofs of Theorems 1–4, we have the following conclusions by Lemmas 5 and 6.

Theorem 5. Suppose the matrices X and Λ are given in Problem 1, K B3 and K0 are the basis matrices in Lemma 6
and Corollary 1. The vectors vecB3(A) and vecS3(Λ) are defined by (19) and (5), respectively. Let Q1 = (XT

⊗ I )K B3

and Q2 = (I ⊗ X)K0. Then the solution set S′

E of Problem 1 is nonempty if and only if

Q1 Q+

1 Q2vecS3(Λ) = Q2vecS3(Λ). (23)

When condition (23) is satisfied, S′

E can be expressed as

S′

E = {A|vec(A) = K B3 Q+

1 Q2vecS3(Λ) + K B3(I − Q+

1 Q1)z}, (24)

where the vector z ∈ Rn is arbitrary.

Moreover, if rank(Q1) = n, then the solution of Problem 1 is unique and the solution has the following form

vec(A) = K B3 Q+

1 Q2vecS3(Λ).
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Theorem 6. If the notation and conditions are the same as in Theorem 5, then the solution set S′

L of Problem 2 can
be expressed as

S′

L = {A|vec(A) = K B3 Q+

1 Q2vecS3(Λ) + K B3(I − Q+

1 Q1)z}, (25)

where the vector z ∈ Rn is arbitrary.

Assume that the solution set of Problem 1 is nonempty. It is easy to verify that S′

E (S′

L) is a closed convex set.
Therefore there exists a unique solution of Problem 3.

Theorem 7. If the notation and conditions are the same as in Theorem 5, and A∗
= (a∗

i j ) ∈ BS Rn×n
3 , then the unique

solution Â ∈ S′

E for Problem 3 can be expressed as

vec( Â) = K B3 vecB3(A∗) + K B3 Q+

1 (Q2vecS3(Λ) − Q1vecB3(A∗)). (26)

Theorem 8. If the notation and conditions are the same as in Theorem 5, and A∗
= (a∗

i j ) ∈ BS Rn×n
3 , then the unique

solution Â ∈ S′

L for Problem 3 can be expressed as

vec( Â) = K B3 vecB3(A∗) + K B3 Q+

1 (Q2vecS3(Λ) − Q1vecB3(A∗)). (27)

In Theorems 7 and 8, if rank(I − Q+

1 Q1) = n, then Q1 = 0, and we can get Â = A∗. If rank(Q1) = n, then
S′

E (S′

L) = {A|vec(A) = K B3 Q+

1 Q2vecS3(Λ)}, and we can get vec( Â) = K B3 Q+

1 Q2vecS3(Λ).

4. Numerical solution for Problem 3

Based on the discussions in Sections 2 and 3, we can get Â according to (13) or (16) when L = S Rn×n
3 and get Â

according to (26) or (27) when L = BS Rn×n
3 . It is easy to see that if (7) holds, then Â ∈ SE , otherwise Â ∈ SL . If

(23) holds, then Â ∈ S′

E , otherwise Â ∈ S′

L . Now we establish the following direct algorithms for finding the solution
Â of Problem 3.

When L = S Rn×n
3 , we have the following algorithm for solving Problem 3.

Algorithm 1. (1) Input matrices X,Λ and A∗(A∗
∈ S Rn×n

3 ).

(2) Compute KS3 and K0 according to (4) and (5), respectively.
(3) Compute P1 = (XT

⊗ I )KS3 , P2 = (I ⊗ X)K0 and P+

1 .

(4) If rank (I − P+

1 P1) = 2n − 1, we have Â = A∗, stop. Otherwise go to (5).
(5) Compute vec( Â) according to (16), and we can get Â.

When L = BS Rn×n
3 , we have the following algorithm for solving Problem 3.

Algorithm 2. (1) Input matrices X,Λ and A∗(A∗
∈ BS Rn×n

3 ).

(2) Compute K B3 and K0 according to (5), (21) and (22), respectively.
(3) Compute Q1 = (XT

⊗ I )K B3 , Q2 = (I ⊗ X)K0 and Q+

1 .

(4) If rank (I − Q+

1 Q1) = n, we have Â = A∗, stop. Otherwise go to (5).
(5) Compute vec( Â) according to (27), and we can get Â.

Example 1. Based on the discussions in Section 2 and Algorithm 1, if rank(P1) = 2n − 1 and (7) hold, then
Â can be computed by (13) or vec( Â) = KS3 P+

1 P2vecS3(Λ), which are denoted by Â1 or Â2, respectively. Let
G = hadamard(n), A = 1/2(G1 + GT

1 ), where G1 is the tridiagonal part of G. Denote n = n0 × 10t by
the scientific notation. Let c = 1:n, r = n:(2n − 1), G∗

= n0 × hankel(c, r), A∗ is the tridiagonal part of
G∗. It is easy to see that A, A∗

∈ S Rn×n
3 . Assume that the eigenpair of A is λi , xi (i = 1, 2, . . . , n), we take

X = (x1, x2, . . . , xn),Λ = (λ1, λ2, . . . , λn), obviously, (7) holds. We have tested Algorithm 1 using the software
Matlab 6.5, and our numerical results are listed in Table 1.
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Table 1
Numerical results for Example 1

n rank(P1) ‖A‖ ‖A∗
‖ ‖ Â1 − A‖ ‖ Â2 − A‖ ‖ Â1 − A∗

‖ ‖ Â2 − A∗
‖

20 39 7.6158 174.4133 1.0668e−013 7.6420e−015 174.6253 174.6253
40 79 10.8625 999.2792 1.1329e−012 1.7904e−014 999.0185 999.0185
64 127 13.7840 3.2512e+003 8.5456e−012 3.4967e−014 3.2512e+003 3.2512e+003
128 255 19.5448 1.8464e+003 1.8713e−011 1.9132e−013 1.8465e+003 1.8465e+003
160 319 21.8632 3.2281e+003 6.1364e−012 6.3475e−014 3.2281e+003 3.2281e+003

Example 2. Let

X =



−0.7508 0 −0.1437 0 0.6037 0
0.6298 0 0.0653 0 0.6873 0
0.1166 0 −0.2760 0 0.3738 0

−0.1243 0 0.9481 0 0.1530 0
0 0 0 0 0 0
0 −0.1243 0 0.9481 0 0.1530
0 0.1166 0 −0.2760 0 0.3738
0 0.6298 0 0.0653 0 0.6873
0 −0.7578 0 −0.1437 0 0.6037


,

Λ =


3.7339 0 0 0 0 0

0 3.7339 0 0 0 0
0 0 3.8604 0 0 0
0 0 0 3.8604 0 0
0 0 0 0 4.3955 0
0 0 0 0 0 4.3955

 ,

A∗
=



0.5556 0.4340 0 0 0 0 0 0 0
0.4340 0.3125 0.2753 0 0 0 0 0 0

0 0.2753 0.2381 0 0 0 0 0 0
0 0 0 0.2383 0.2042 0 0 0 0
0 0 0 0.2042 5 0.2042 0 0 0
0 0 0 0 0.2042 0.2383 0 0 0
0 0 0 0 0 0 0.2383 0.2753 0
0 0 0 0 0 0 0.2753 0.3125 0.4340
0 0 0 0 0 0 0 0.4340 0.5556


,

where rank(X) = 6, rank(Q1) = 8, and (23) holds. By Algorithm 2, we have a unique Â ∈ S′

E as follows:

Â =



4.0131 0.3359 0 0 0 0 0 0 0
0.3359 4.1574 −0.1047 0 0 0 0 0 0

0 −0.1047 4.5079 0.1957 0 0 0 0 0
0 0 0.1957 3.9174 0 0 0 0 0
0 0 0 0 5 0 0 0 0
0 0 0 0 0 3.9174 0.1957 0 0
0 0 0 0 0 0.1957 4.5079 −0.1047 0
0 0 0 0 0 0 −0.1047 4.1574 0.3359
0 0 0 0 0 0 0 0.3359 4.0131


.

We can compute ‖ ÂX − XΛ‖ = 4.7748 × 10−5, ‖ Â − A∗
‖ = 10.8602.

From the above two examples, we can clearly see that Algorithms 1 and 2 are feasible for solving Problem 3.
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5. Comments

In this paper, we have applied the Kronecker product, Moore–Penrose generalized inverse, and the basis matrix for
L to investigate Problems 1–3 for L, when L = S Rn×n

3 or L = BS Rn×n
3 . Moreover, a direct method for computing

the best approximation has been established. The algorithms for finding Â ∈ SE (SL) or Â ∈ S′

E (S′

L) have been
described in detail, and two examples have been used to show their feasibility.
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