Modelling concurrency with comtraces and generalized comtraces

Ryszard Janicki ${ }^{\text {a,* }}$, Dai Tri Man Lê ${ }^{\text {b }}$
a Department of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1 Canada
${ }^{\mathrm{b}}$ Department of Computer Science, University of Toronto, Toronto, ON, M5S 3G4 Canada

ARTICLE INFO

Article history:

Received 24 August 2009
Revised 4 May 2011
Available online 17 August 2011

Keywords:

Generalized trace theory
Trace monoid
Step sequence
Stratified partial order
Stratified order structure
Canonical representation

Abstract

Comtraces (combined traces) are extensions of Mazurkiewicz traces that can model the "not later than" relationship. In this paper, we first introduce the novel notion of generalized comtraces, extensions of comtraces that can additionally model the "non-simultaneously" relationship. Then we study some basic algebraic properties and canonical representations of comtraces and generalized comtraces. Finally we analyze the relationship between generalized comtraces and generalized stratified order structures. The major technical contribution of this paper is a proof showing that generalized comtraces can be represented by generalized stratified order structures.

(C) 2011 Elsevier Inc. All rights reserved.

1. Introduction

Mazurkiewicz traces, or just traces, ${ }^{1}$ are quotient monoids over sequences (or words) [2,23,4]. The theory of traces has been utilized to tackle problems from diverse areas including combinatorics, graph theory, algebra, logic and especially concurrency theory [4].

As a language representation of finite partial orders, traces can sufficiently model "true concurrency" in various aspects of concurrency theory. However, some aspects of concurrency cannot be adequately modelled by partial orders (cf. [8,10]), and thus cannot be modelled by traces. For example, neither traces nor partial orders can model the "not later than" relationship [10]. If an event a is performed "not later than" an event b, then this "not later than" relationship can be modelled by the following set of two step sequences $\mathbf{x}=\{\{a\}\{b\},\{a, b\}\}$; where step $\{a, b\}$ denotes the simultaneous execution of a and b and the step sequence $\{a\}\{b\}$ denotes the execution of a followed by b. But the set \mathbf{x} cannot be represented by any trace (or equivalently any partial order), even if the generators, i.e. elements of the trace alphabet, are sets and the underlying monoid is the monoid of step sequences (as in [29]).

To overcome these limitations, Janicki and Koutny proposed the comtrace (combined trace) notion [11]. First the set of all possible steps that generates step sequences is identified by a relation sim, which is called simultaneity. Second a congruence relation is determined by a relation ser, which is called serializability and is in general not symmetric. Then a comtrace is defined as a finite set of congruent step sequences. Comtraces were invented to provide a formal linguistic counterpart of stratified order structures (so-structures), analogously to how traces relate to partial orders.

A so-structure $[5,9,11,12]$ is a triple (X, \prec, \sqsubset), where \prec and \sqsubset are binary relations on the set X. So-structures were invented to model both the "earlier than" (the relation \prec) and the "not later than" (the relation \sqsubset) relationships, under the

[^0]assumption that all system runs are modelled by stratified partial orders, i.e., step sequences. They have been successfully applied to model inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for example [11,26,1720]).

The paper [11] contains a major result showing that every comtrace uniquely determines a labeled so-structure, and then use comtraces to provide a semantics of Petri nets with inhibitor arcs. However, so far comtraces are used less often than so-structures, even though in many cases they appear to be more natural than so-structures. Perhaps this is due to the lack of a sufficiently developed quotient monoid theory for comtraces similar to that of traces.

However, neither comtraces nor so-structures are enough to model the "non-simultaneously" relationship, which could be defined by the set of step sequences $\{\{a\}\{b\},\{b\}\{a\}\}$ with the additional assumption that the step $\{a, b\}$ is not allowed. In fact, both comtraces and so-structures can adequately model concurrent histories only when paradigm π_{3} of $[10,12]$ is satisfied. Intuitively, paradigm π_{3} formalizes the class of concurrent histories satisfying the condition that if both $\{a\}\{b\}$ and $\{b\}\{a\}$ belong to the concurrent history, then so does $\{a, b\}$ (i.e., these three step sequences $\{a\}\{b\},\{b\}\{a\}$ and $\{a, b\}$ are all equivalent observations).

To model the general case that includes the "non-simultaneously" relationship, we need the concept of generalized stratified order structures (gso-structures), which were introduced and analyzed by Guo and Janicki in [6,8]. A gsostructure is a triple (X, \diamond, \sqsubset), where $>$ and \sqsubset are binary relations on X modelling the "non-simultaneously" and "not later than" relationships respectively, under the assumption that all system runs are modelled by stratified partial orders.

To provide the reader with a high level view of the main motivation and intuition behind the use of so-structures as well as the need of gso-structures, we will consider a motivating example (adapted from [8]).

1.1. A motivating example

We will illustrate our basic concepts and constructions by analyzing four simple concurrent programs. Three of these programs will involve the concepts of simultaneous executions, which is essential to our model. We would like to point out that the theory presented in this paper is especially for models where simultaneity is well justified, for example for the models with a discrete time.

All four programs in this example are written using a mixture of cobegin, coend and a version of concurrent guarded commands.

Example 1.

```
P1: begin int x,y;
                    a: begin x:=0; y:=0 end;
                    cobegin b: x:=x+1, c: y:=y+1 coend
                end P1.
P2: begin int x,y;
            a: begin x:=0; y:=0 end;
            cobegin b: x=0 -> y:=y+1, c: x:=x+1 coend
            end P2.
P3: begin int x,y;
            a: begin x:=0; y:=0 end;
            cobegin b: y=0 -> x:=x+1, c: x=0 -> y:=y+1 coend
            end P3.
P4: begin int x;
    a: x:=0;
    cobegin b: x:=x+1, c: x:=x+2 coend
    end P4.
```

Each program is a different composition of three events (actions) called a, b, and $c\left(a_{i}, b_{i}, c_{i}, i=1, \ldots, 4\right.$, to be exact, but a restriction to a, b, c does not change the validity of the analysis below, while simplifying the notation). Transition systems modelling these programs are shown in Fig. 1.

Let $o b s\left(P_{i}\right)$ denote the set of all program runs involving the actions a, b, c that can be observed. Assume that simultaneous executions can be observed. In this simple case all runs (or observations) can be modelled by step sequences. Let us denote $o_{1}=\{a\}\{b\}\{c\}, o_{2}=\{a\}\{c\}\{b\}, o_{3}=\{a\}\{b, c\}$. Each o_{i} can be equivalently seen as a stratified partial order $o_{i}=\left(\{a, b, c\}, \xrightarrow{o_{i}}\right)$ where:

A_{1}

$$
\begin{aligned}
& \prec_{1}=\{(a, b),(a, c)\} \\
& \complement_{1}=\{(a, b),(a, c)\} \\
& \left.\diamond_{1}=\complement_{1} \cup \sqsubset_{1}\right) \\
& o b s\left(P_{1}\right)=o b s\left(A_{1}\right) \\
& \asymp\left\{\alpha_{1}\right\} \asymp\left\{\prec_{1}, ᄃ_{1}\right\} \\
& \asymp\left\{\diamond_{1}, \sqsubset_{1}\right\}
\end{aligned}
$$

A_{2}

$$
\begin{gathered}
\prec_{2}=\{(a, b),(a, c)\} \\
ᄃ_{2}=\{(a, b)(, a, c),(b, c)\} \\
\diamond_{2}=\prec_{2} \cup \prec_{2}^{-1} \\
o b s\left(P_{2}\right) \asymp o b s\left(A_{2}\right) \\
\asymp\left\{\prec_{2}, \sqsubset_{2}\right\} \\
\\
\asymp\left\{\diamond_{2}, \sqsubset_{2}\right\}
\end{gathered}
$$

A_{3}

$$
\begin{aligned}
& \simeq\left\{\diamond_{3}, \sqsubset_{3}\right\}
\end{aligned}
$$

A_{4}

$$
\begin{gathered}
\prec_{4}=\{(a, b),(a, c)\} \\
\sqsubset_{4}=\{(a, b),(a, c)\} \\
\diamond_{4}=\{(a, b),(b, a), \\
(a, c),(c, a),(b, c),(c, b)\} \\
o b s\left(P_{4}\right) \asymp o b s\left(A_{4}\right) \\
\\
\simeq\left\{\bigotimes_{4}, \sqsubset_{4}\right\}
\end{gathered}
$$

Fig. 1. Examples of causality, weak causality, and commutativity. Each program P_{i} can be modelled by a labeled transition system (automaton) A_{i}. The step $\{a, b\}$ denotes the simultaneous execution of a and b.

We can now write obs $\left(P_{1}\right)=\left\{o_{1}, o_{2}, o_{3}\right\}$, obs $\left(P_{2}\right)=\left\{o_{1}, o_{3}\right\}$, obs $\left(P_{3}\right)=\left\{o_{3}\right\}$, obs $\left(P_{4}\right)=\left\{o_{1}, o_{2}\right\}$. Note that for every $i=$ $1, \ldots, 4$, all runs from the set obs $\left(P_{i}\right)$ yield exactly the same outcome. Hence, each obs $\left(P_{i}\right)$ is called the concurrent history of P_{i}.

An abstract model of such an outcome is called a concurrent behavior, and now we will discuss how causality, weak causality and commutativity relations are used to construct concurrent behavior.

1.1.1. Program P_{1}

In the set obs $\left(P_{1}\right)$, for each run, a always precedes both b and c, and there is no causal relationship between b and c. This causality relation, \prec, is the partial order defined as $\prec=\{(a, b),(a, c)\}$. In general \prec is defined by: $x \prec y$ iff for each run o we have $x \xrightarrow{o} y$. Hence for P_{1}, \prec is the intersection of o_{1}, o_{2} and o_{3}, and $\left\{o_{1}, o_{2}, o_{3}\right\}$ is the set of all stratified extensions of the relation \prec.

Thus, in this case, the causality relation \prec models the concurrent behavior corresponding to the set of (equivalent) runs $\operatorname{obs}\left(P_{1}\right)$. We will say that obs $\left(P_{1}\right)$ and \prec are tantamount ${ }^{2}$ and write $o b s\left(P_{1}\right) \asymp\{\prec\}$ or $o b s\left(P_{1}\right) \asymp(\{a, b, c\}, \prec)$. Having obs $\left(P_{1}\right)$ one may construct \prec (as an intersection of all orders from $\operatorname{obs}\left(P_{1}\right)$), and then reconstruct $o b s\left(P_{1}\right)$ (as the set of all stratified extensions of \prec). This is a classical case of the "true" concurrency approach, where concurrent behavior is modelled by a causality relation.

Before considering the remaining cases, note that the causality relation \prec is exactly the same in all four cases, i.e., $\prec_{i}=\{(a, b),(a, c)\}$, for $i=1, \ldots, 4$, so we may omit the index i.

1.1.2. Programs P_{2} and P_{3}

To deal with obs $\left(P_{2}\right)$ and $\operatorname{obs}\left(P_{3}\right), \prec$ is insufficient because $o_{2} \notin o b s\left(P_{2}\right)$ and $o_{1}, o_{2} \notin o b s\left(P_{2}\right)$. Thus, we need a weak causality relation \sqsubset defined in this context as $x \sqsubset y$ iff for each run o we have $\neg(y \xrightarrow{0} x)$ (x is never executed after y). For our four cases we have $\sqsubset_{2}=\{(a, b),(a, c),(b, c)\}, \sqsubset_{1}=\sqsubset_{4}=\prec$, and $\sqsubset_{3}=\{(a, b),(a, c),(b, c),(c, b)\}$. Notice again that for $i=2,3$, the pair of relations $\left\{<, \sqsubset_{i}\right\}$ and the set $o b s\left(P_{i}\right)$ are tantamount as each is definable from the other. (The set

[^1]obs $\left(P_{i}\right)$ can be defined as the greatest set $P O$ of partial orders built from a, b and c satisfying $x \prec y \Rightarrow \forall o \in P O . x \xrightarrow{o} y$ and $x \sqsubset_{i} y \Rightarrow \forall o \in P O . \neg(y \xrightarrow{o} x)$.

Hence again in these cases $(i=2,3)$ obs $\left(P_{i}\right)$ and $\left\{\prec, \sqsubset_{i}\right\}$ are tantamount, obs $\left(P_{i}\right) \asymp\left\{\prec, \sqsubset_{i}\right\}$, and so the pair $\left\{\prec, \sqsubset_{i}\right\}$, $i=2,3$, models the concurrent behavior described by $\operatorname{obs}\left(P_{i}\right)$. Note that \sqsubset_{i} alone is not sufficient, since (for instance) $o b s\left(P_{2}\right)$ and $o b s\left(P_{2}\right) \cup\{\{a, b, c\}\}$ define the same relation \sqsubset.

1.1.3. Program P_{4}

The causality relation \prec does not model the concurrent behavior of P_{4} correctly ${ }^{3}$ since o_{3} does not belong to obs $\left(P_{4}\right)$. The commutativity relation Δ is defined in this context as $x \diamond y$ iff for each run o either $x \xrightarrow{0} y$ or $y \xrightarrow{0} x$. For the set obs $\left(P_{4}\right)$, the relation $>_{4}$ looks like $>_{4}=\{(a, b),(b, a),(a, c),(c, a),(b, c),(c, b)\}$. The pair of relations $\left\{>_{4}, \prec\right\}$ and the set obs $\left(P_{4}\right)$ are tantamount as each is definable from the other. (The set $o b s\left(P_{4}\right)$ is the greatest set $P O$ of partial orders built from a, b and c satisfying $x \diamond_{4} y \Rightarrow \forall 0 \in P O . x \xrightarrow{o} y \vee y \xrightarrow{o} x$ and $x \prec y \Rightarrow \forall 0 \in P O . x \xrightarrow{o} y$.) In other words, obs $\left(P_{4}\right)$ and $\left\{>_{4}, \prec\right\}$ are tantamount, so we may say that in this case the relations $\left\{\diamond_{4}, \prec\right\}$ model the concurrent behavior described by obs $\left(P_{4}\right)$.

Note that $\diamond_{1}=\prec \cup \prec^{-1}$ and the pair $\left\{\diamond_{1}, \prec\right\}$ also model the concurrent behavior described by $\operatorname{obs}\left(P_{1}\right)$.

1.1.4. Summary of analysis of P_{1}, P_{2}, P_{3} and P_{4}

For each P_{i} the state transition model A_{i} and their respective concurrent histories and concurrent behaviors are summarized in Fig. 1. Thus, we can make the following observations:

1. obs $\left(P_{1}\right)$ can be modelled by the relation \prec alone, and $o b s\left(P_{1}\right) \asymp\{<\}$.
2. obs $\left(P_{i}\right)$, for $i=1,2,3$ can also be modelled by the appropriate pairs of relations $\left\{\prec, \sqsubset_{i}\right\}$, and $\operatorname{obs}\left(P_{i}\right) \asymp\left\{\prec, \sqsubset_{i}\right\}$.
3. All sets of observations obs $\left(P_{i}\right)$, for $i=1,2,3,4$ are modelled by the appropriate pairs of relations $\left\{\diamond_{i}, \sqsubset_{i}\right\}$, and $o b s\left(P_{i}\right) \asymp\left\{\diamond_{i}, \sqsubset_{i}\right\}$.

Note that the relation \prec is not independent from the relations \diamond, \sqsubset, since it can be proven (see [10]) that $\prec=\diamond \cap \sqsubset$. Intuitively, since $>$ and \sqsubset are the abstraction of the "earlier than or later than" and "not later than" relations, it follows that their intersection is the abstraction of the "earlier than" relation.

1.1.5. Intuition for comtraces and generalized comtraces

We may also try to model the concurrent behaviors of the programs P_{1}, P_{2}, P_{3} and P_{4} only in terms of algebra of step sequences. To do this we need to introduce an equivalence relation on step sequences such that the sets obs $\left(P_{i}\right)$, for $i=1, \ldots, 4$, interpreted as sets of step sequences and not partial orders, are appropriate equivalence classes. A particular instance of this equivalence relation should depend on the structure of a particular program, or its labeled transition system representation.

It turns out that in such an approach the program P_{4} needs to be treated differently than P_{1}, P_{2} and P_{3}. In order to avoid ambiguity, we will write $o b s_{\text {step }}\left(P_{i}\right)$ to denote the same set of system runs as obs $\left(P_{i}\right)$, but with runs now modelled by step sequences instead of partial orders.

For all four cases we need two relations sim_{i} and $\operatorname{ser}_{i}, i=1, \ldots, 4$, on the set $\{a, b, c\}$. The relations sim_{i}, called simultaneity, are symmetric and indicate which actions can be executed simultaneously, i.e. in one step. It is easy to see that $\operatorname{sim}_{1}=\operatorname{sim}_{2}=\operatorname{sim}_{3}=\{(b, c),(c, b)\}$, but $\operatorname{sim}_{4}=\emptyset$. The relations ser ${ }_{i}$, called serializability, may not be symmetric, must satisfy $\operatorname{ser}_{i} \subseteq \operatorname{sim}_{i}$, and indicate how steps can equivalently be executed in some sequence. In principle if $(\alpha, \beta) \in \operatorname{ser}$ then the step $\{\alpha, \beta\}$ is equivalent to the sequence $\{\alpha\}\{\beta\}$. For our four cases we have $\operatorname{ser}_{1}=\operatorname{sim}_{1}=\{(b, c),(c, b)\}, \operatorname{ser}_{2}=\{(b, c)\}$, $\operatorname{ser}_{3}=\operatorname{ser}_{4}=\emptyset$.

Let A, B, C be steps such that $A=B \cup C$ and $B \cap C=\emptyset$. For example $A=\{b, c\}, B=\{b\}$ and $C=\{c\}$. We will say that the step A and the step sequence $B C$ are equivalent, $A \approx_{i} B C$, if $B \times C \subseteq \operatorname{sim}_{i}$. For example we have $\{b, c\} \approx_{i}\{b\}\{c\}$ for $i=1,2$ and $\{b, c\} \approx_{i}\{c\}\{b\}$ for $i=1$. The relations \approx_{3} and \approx_{4} are empty.

Let \equiv_{i} be the smallest equivalence relation on the whole set of events containing \approx_{i}, and for each step sequence $A_{1} \ldots A_{k}$, let $\left[A_{1} \ldots A_{k}\right]_{\equiv_{i}}$ denote the equivalence class of \equiv_{i} containing the step sequence $A_{1} \ldots A_{k}$.

For our four cases, we have:

1. $[\{a\}\{b\}\{c\}]_{\equiv_{1}}=\{\{a\}\{b\}\{c\},\{a\}\{c\}\{b\},\{a\}\{b, c\}\}=o b s_{\text {step }}\left(P_{1}\right) \asymp o b s\left(P_{1}\right)$.
2. $[\{a\}\{b\}\{c\}]_{\equiv_{2}}=\{\{a\}\{b\}\{c\},\{a\}\{b, c\}\}=o b s_{\text {step }}\left(P_{2}\right) \asymp o b s\left(P_{2}\right)$.
3. $[\{a\}\{b\}\{c\}]_{\equiv_{3}}=\{\{a\}\{b, c\}\}=o b s_{\text {step }}\left(P_{3}\right) \asymp o b s\left(P_{3}\right)$.
4. $[\{a\}\{b\}\{c\}]_{\equiv_{4}}=\{\{a\}\{b\}\{c\}\} \neq o b s_{\text {step }}\left(P_{4}\right)$.

Strictly speaking the statement $o b s_{\text {step }}\left(P_{i}\right)=o b s\left(P_{i}\right)$ is false, but obviously obs $s_{\text {step }}\left(P_{i}\right) \asymp o b s\left(P_{i}\right)$, for $i=1, \ldots, 4$.

[^2]For $i=1, \ldots, 3$, equivalence classes of each relation \equiv_{i} are generated by relations sim_{i} and ser_{i}. These equivalence classes are called comtraces (introduced in [11] as a generalization of Mazurkiewicz traces) and can be used to model concurrent histories of the systems or programs like P_{1}, P_{2} and P_{3}.

In order to model the concurrent history of P_{4} with equivalent step sequences, we need a third relation inl ${ }_{4}$ on the set of events $\{a, b, c\}$ that is symmetric and satisfies $\operatorname{inl}_{4} \cap \operatorname{sim}_{4}=\emptyset$. The relation inl_{4} is called interleaving, and if $(x, y) \in \operatorname{inl}$ then events x and y cannot be executed simultaneously, but the execution of x followed by y and the execution of y followed by x are equivalent. For program P_{4} we have inl $_{4}=\{(b, c),(c, b)\}$.

We can now define a relation \approx_{4}^{\prime} on step sequences of length two, as $B C \approx_{4}^{\prime} C B$ if $B \times C \subseteq i n l$, which for this simple case gives $\approx_{4}^{\prime}=\{(\{b\}\{c\},\{c\}\{b\}),(\{c\}\{b\},\{b\}\{c\})\}$. Let \equiv_{4} be the smallest equivalence relation on the whole set of events containing \approx_{4} and \approx_{4}^{\prime}. Then we have

$$
[\{a\}\{b\}\{c\}]_{\equiv_{4}}=\{\{a\}\{b\}\{c\},\{a\}\{c\}\{b\}\}=o b s_{\text {step }}\left(P_{4}\right) \asymp o b s\left(P_{4}\right) .
$$

Equivalence classes of relations like \equiv_{4}, generated by the relations like sim_{4}, ser $_{4}$ and inl ${ }_{4}$ are called generalized comtraces (g-comtraces, introduced in [15]) and they can be used to model concurrent histories of the systems or programs like P_{4}.

1.2. Summary of contributions

This paper is an expansion and revision of our results from [15,21]. We propose a formal-language counterpart of gsostructures, called generalized comtraces (g-comtraces). We will revisit and expand the algebraic theory of comtraces, especially various types of canonical forms and the formal relationship between traces and comtraces. We analyze in detail the properties of g-comtraces, their canonical representations, and most importantly the formal relationship between g-comtraces and gso-structures.

1.3. Organization

The content of the paper is organized as follows. In the next section, we review some basic concepts of order theory and monoid theory. Section 3 recalls the concept of Mazurkiewicz traces and discusses its relationship to finite partial orders. Section 4 surveys some basic background on the relational structures model of concurrency [5,9,11,12,6,8].

Comtraces are defined and their relationship to traces is discussed in Section 5, and g-comtraces are introduced in Section 6.

Various basic algebraic properties of both comtrace and g-comtrace congruences are discussed in Section 7. Section 8 is devoted to canonical representations of traces, comtraces and g-comtraces. In Section 9 we recall some results on the so-structures defined by comtraces. The gso-structures generated by g-comtraces are defined and analyzed in Section 10. Concluding remarks are made in Section 11. We also include two appendices containing some long and technical proofs of results from Section 10.

2. Orders, monoids, sequences and step sequences

In this section, we recall some standard notations, definitions and results which are used extensively in this paper.

2.1. Relations, orders and equivalences

The powerset of a set X will be denoted by $\wp(X)$. The set of all non-empty subsets of X will be denoted by $\wp \backslash\{\varnothing\}(X)$. In other words, $\wp \backslash\{\emptyset\}(X) \triangleq \wp(X) \backslash\{\emptyset\}$.

Let $f: A \rightarrow B$ be a function, then for every set $C \subseteq A$, we write $f[C]$ to denote the image of the set C under f, i.e., $f[C] \triangleq\{f(x) \mid x \in C\}$.

We let $i d_{X}$ denote the identity relation on a set X. We write $R \circ S$ to denote the composition of relations R and S. We also write R^{+}and R^{*} to denote the (irreflexive) transitive closure and reflexive transitive closure of R respectively.

A binary relation $R \subseteq X \times X$ is an equivalence relation on X iff it is reflexive, symmetric and transitive. If R is an equivalence relation, we write $[x]_{R}$ to denote the equivalence class of x with respect to R, and the set of all equivalence classes in X is denoted as X / R and called the quotient set of X by R. We drop the subscript and write [x] to denote the equivalence class of x when R is clear from the context.

A binary relation $\prec \subseteq X \times X$ is a partial order iff R is irreflexive and transitive. The pair (X, \prec) in this case is called a partially ordered set (poset). The pair (X, \prec) is called a finite poset if X is finite. For convenience, we define:

$$
\begin{array}{ll}
\simeq_{\prec} \triangleq\{(a, b) \in X \times X \mid a \nprec b \wedge b \nprec a\} & \text { (incomparable), } \\
\frown_{\prec} \triangleq\left\{(a, b) \in X \times X \mid a \simeq_{\prec} b \wedge a \neq b\right\} & \text { (distinctly incomparable), } \\
\prec \triangleq\left\{(a, b) \in X \times X \mid a \prec b \vee a \frown_{\prec} b\right\} & \text { (not greater). }
\end{array}
$$

A poset (X, \prec) is total iff \frown_{\prec} is empty; and stratified iff \simeq_{\prec} is an equivalence relation. Evidently every total order is stratified.

Let \prec_{1} and \prec_{2} be partial orders on a set X. Then \prec_{2} is an extension of \prec_{1} if $\prec_{1} \subseteq \prec_{2}$. The relation \prec_{2} is a total extension (stratified extension) of \prec_{1} if \prec_{2} is total (stratified) and $\prec_{1} \subseteq \prec_{2}$.

For a poset (X, \prec), we define
$\operatorname{Total}_{X}(\prec) \triangleq\{\triangleleft \subseteq X \times X \mid \triangleleft$ is a total extension of $\prec\}$.

Theorem 1. (See Szpilrajn [28].) For every poset $(X, \prec), \prec=\bigcap_{\triangleleft \in \operatorname{Total}_{X}(\prec)} \triangleleft$.
Szpilrajn's theorem states that every partial order can be uniquely reconstructed by taking the intersection of all of its total extensions.

2.2. Monoids and equational monoids

A triple $(X, *, \mathbb{1})$, where X is a set, $*$ is a total binary operation on X, and $\mathbb{1} \in X$, is called a monoid, if $(a * b) * c=a *(b * c)$ and $a * \mathbb{1}=\mathbb{1} * a=a$, for all $a, b, c \in X$.

An equivalence relation $\sim \subseteq X \times X$ is a congruence in the monoid $(X, *, \mathbb{1})$ if for all elements $a_{1}, a_{2}, b_{1}, b_{2}$ of $X, a_{1} \sim$ $b_{1} \wedge a_{2} \sim b_{2} \Rightarrow\left(a_{1} * a_{2}\right) \sim\left(b_{1} * b_{2}\right)$.

The triple $(X / \sim, \circledast,[\mathbb{1}])$, where $[a] \circledast[b]=[a * b]$, is called the quotient monoid of $(X, *, 1)$ under the congruence \sim. The mapping $\phi: X \rightarrow X / \sim$ defined as $\phi(a)=[a]$ is called the natural homomorphism generated by the congruence \sim. We usually omit the symbols $*$ and \circledast.

Definition 1 (Equation monoid). Given a monoid $M=(X, *, \mathbb{1})$ and a finite set of equations $E Q=\left\{x_{i}=y_{i} \mid i=1, \ldots, n\right\}$, define $\equiv_{E Q}$ to be the least congruence on M satisfying

$$
x_{i}=y_{i} \quad \Longrightarrow \quad x_{i} \equiv_{E Q} y_{i}
$$

for every equation $x_{i}=y_{i} \in E Q$. We call the relation $\equiv_{E Q}$ the congruence defined by the set of equation $E Q$, or $E Q-$ congruence. The quotient monoid $M_{\equiv_{E Q}}=\left(X / \equiv_{E Q}, \circledast,[\mathbb{1}]\right)$, where $[x] \circledast[y]=[x * y]$, is called an equational monoid.

The following folklore result shows that the relation $\equiv_{E Q}$ can also be uniquely defined in an explicit way.
Proposition 1. (Cf. [21].) Given a monoid $M=(X, *, \mathbb{1})$ and a set of equations $E Q$, define the relation $\approx \subseteq X \times X$ as:

$$
x \approx y \quad \Longleftrightarrow \quad \exists x_{1}, x_{2} \in X . \exists(u=w) \in E Q . x=x_{1} * u * x_{2} \wedge y=x_{1} * w * x_{2}
$$

then the $E Q$-congruence $\equiv i s\left(\approx \cup \approx^{-1}\right)^{*}$, the symmetric irreflexive transitive closure of \approx.
We will see later in this paper that monoids of traces, comtraces and generalized comtraces are all special cases of equational monoids.

2.3. Sequences, step sequences and partial orders

By an alphabet we shall understand any finite set. For an alphabet Σ, let Σ^{*} denote the set of all finite sequences of elements (words) of Σ, λ denotes the empty sequence, and any subset of Σ^{*} is called a language. In the scope of this paper, we only deal with finite sequences. Let the operator.$_{\text {_ }}$ denote the sequence concatenation (usually omitted). Since the sequence concatenation operator is associative and λ is neutral, the triple ($\Sigma^{*}, \cdot, \lambda$) is a monoid (of sequences).

Consider an alphabet $\mathbb{S} \subseteq \wp^{\{\emptyset\}}(X)$ for some alphabet Σ. The elements of \mathbb{S} are called steps and the elements of \mathbb{S}^{*} are called step sequences. For example if $\mathbb{S}=\{\{a, b, c\},\{a, b\},\{a\},\{c\}\}$ then $\{a, b\}\{c\}\{a, b, c\} \in \mathbb{S}$ * is a step sequence. The triple ($\mathbb{S}^{*}, \cdot, \lambda$), is a monoid (of step sequences), since the step sequence concatenation is associative and λ is neutral.

We will now show the formal relationship between step sequences and stratified orders. Let $t=A_{1} \ldots A_{k}$ be a step sequence in \mathbb{S}^{*}. We define $|t|_{a}$, the number of occurrences of an event a in t, as $|t|_{a} \triangleq\left|\left\{A_{i} \mid 1 \leqslant i \leqslant k \wedge a \in A_{i}\right\}\right|$, where $|X|$ denotes the cardinality of the set X.

- We can uniquely construct its enumerated step sequence \bar{t} as

$$
\bar{t} \triangleq \overline{A_{1}} \ldots \overline{A_{k}}, \quad \text { where } \overline{A_{i}} \triangleq\left\{e^{\left(\left|A_{1} \ldots A_{i-1}\right|_{e}+1\right)} \mid e \in A_{i}\right\}
$$

We call such $\alpha=e^{(i)} \in \overline{A_{i}}$ an event occurrence of e. E.g., if $t=\{a, b\}\{b, c\}\{c, a\}\{a\}$, then $\bar{t}=\left\{a^{(1)}, b^{(1)}\right\}\left\{b^{(2)}, c^{(1)}\right\}\left\{a^{(2)}\right.$, $\left.c^{(2)}\right\}\left\{a^{(3)}\right\}$ is its enumerated step sequence.

- Let $\Sigma_{t}=\bigcup_{i=1}^{k} \overline{A_{i}}$ denote the set of all event occurrences in all steps of t. For example, when $t=\{a, b\}\{b, c\}\{c, a\}\{a\}$, we have $\Sigma_{t}=\left\{a^{(1)}, a^{(2)}, a^{(3)}, b^{(1)}, b^{(2)}, c^{(1)}, c^{(2)}\right\}$.
- Define $l: \Sigma_{t} \rightarrow \Sigma$ to be the function that returns the label of an event occurrence. In other words, for each event occurrence $\alpha=e^{(i)}, l(\alpha)$ returns the label e of α. From an enumerated step sequence $\bar{t}=\overline{A_{1}} \ldots \overline{A_{k}}$, we can uniquely recover its step sequence as $t=l\left[\overline{A_{1}}\right] \ldots l\left[\overline{A_{k}}\right]$.
- For each $\alpha \in \Sigma_{t}$, let $\operatorname{pos}_{t}(\alpha)$ denote the index number of the step where α occurs, i.e., if $\alpha \in \overline{A_{j}}$ then pos $(\alpha)=j$. For our example, $\operatorname{pos}_{t}\left(a^{(2)}\right)=3, \operatorname{pos}_{t}\left(b^{(2)}\right)=2$, etc.

Given a step sequence u, we define two relations $\triangleleft_{u}, \simeq_{u} \subseteq \Sigma_{u} \times \Sigma_{u}$ as:

$$
\alpha \triangleleft_{u} \beta \quad \stackrel{d f}{\Longleftrightarrow} \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta) \quad \text { and } \quad \alpha \simeq_{u} \beta \quad \stackrel{d f}{\Longleftrightarrow} \operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\beta) .
$$

Since \triangleleft_{u} is the union of \triangleleft_{u} and \frown_{u}, we have

$$
\alpha \triangleleft_{u}^{\frown} \beta \quad \Longleftrightarrow \quad\left(\alpha \neq \beta \wedge \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)\right)
$$

The two propositions below are folklore results (see [21] for detailed proofs), which are fundamental for understanding why stratified partial orders and step sequences are two interchangeable concepts. The first proposition shows that \triangleleft_{u} is indeed a stratified order.

Proposition 2. Given a step sequence u, the relation \simeq_{u} is an equivalence relation and \triangleleft_{u} is a stratified order.

We will call \triangleleft_{u} the stratified order generated by the step sequence u. Conversely, let \triangleleft be a stratified order on a set Σ. Then the second proposition says:

Proposition 3. If \triangleleft is a stratified order on a set Σ and A, B are two distinct equivalence classes of \simeq_{\triangleleft}, then either $A \times B \subseteq \triangleleft$ or $B \times A \subseteq \triangleleft$.

In other words, Proposition 3 implies that if we define a binary relation $\widehat{\triangleleft}$ on the quotient set $\Sigma / \simeq_{\triangleleft}$ as

$$
A \widehat{\triangleleft} B \quad \stackrel{d f}{\Longleftrightarrow} \quad A \times B \subseteq \triangleleft,
$$

then $\widehat{\triangleleft}$ totally orders $\Sigma / \simeq \triangleleft$ into a sequence of equivalence classes $\Omega_{\triangleleft}=B_{1} \ldots B_{k}(k \geqslant 0)$. We will call the sequence Ω_{\triangleleft} as the step sequence representing \triangleleft.

Since sequences are a special case of step sequences and total orders are a special case of stratified orders, the above results can be applied to sequences and finite total orders as well. Hence, for each sequence $x \in \Sigma^{*}$, we let \triangleleft_{x} denote the total order generated by x, and for every total order \triangleleft, we let Ω_{\triangleleft} denote the sequence generating \triangleleft. Furthermore, Σ_{χ} will denote the alphabet of the sequence x.

3. Traces vs. partial orders

Traces or partially commutative monoids $[2,4,23,24]$ are equational monoids over sequences. In the previous section we have shown how sequences correspond to finite total orders and how step sequences correspond to finite stratified orders. In this section we discuss the relationship between traces and finite partial orders.

The theory of traces has been utilized to tackle problems from diverse areas including combinatorics, graph theory, algebra, logic and, especially (due to the relationship to partial orders) concurrency theory $[4,23,24]$.

Since traces constitute a sequence representation of partial orders, they can effectively model "true concurrency" in various aspects of concurrency theory using simple and intuitive means. We will now recall the definition of a trace monoid.

Definition 2. (See [4,24].) Let $M=\left(E^{*}, *, \lambda\right)$ be a monoid generated by finite E, and let the relation ind $\subseteq E \times E$ be an irreflexive and symmetric relation (called independency or commutation), and $E Q \triangleq\{a b=b a \mid(a, b) \in$ ind $\}$. Let $\equiv_{\text {ind }}$, called trace congruence, be the congruence defined by $E Q$. Then the equational monoid $M_{\equiv_{\text {ind }}}=\left(E^{*} / \equiv_{i n d}, \circledast,[\lambda]\right)$ is a monoid of traces (or a free partially commutative monoid). The pair (E, ind) is called a trace alphabet.

We will omit the subscript ind from trace congruence and write \equiv if it causes no ambiguity.
Example 2. Let $E=\{a, b, c\}$, ind $=\{(b, c),(c, b)\}$, i.e., $E Q=\{b c=c b\}$. 4 For example, $a b c b c a \equiv a c c b b a$ (since $a b c b c a \approx a c b b c a \approx$ $a c b c b a \approx a c c b b a)$. Also we have $\mathbf{t}_{1}=[a b c b c a]=\{a b c b c a, a b c c b a, a c b b c a, a c b c b a, a b b c c a, a c c b b a\}, \mathbf{t}_{2}=[a b c]=\{a b c, a c b\}$ and $\mathbf{t}_{3}=[b c a]=\{b c a, c b a\}$ are traces. Note that $\mathbf{t}_{1}=\mathbf{t}_{2} \circledast \mathbf{t}_{3}$ since $[a b c b c a]=[a b c] \circledast[b c a]$.

[^3]

Fig. 2. Partial order generated by the trace [abcbca].

Each trace can be interpreted as a finite partial order. Let $\mathbf{t}=\left\{x_{1}, \ldots, x_{k}\right\}$ be a trace, and let $\triangleleft_{x_{i}}$ denote the total order induced by the sequence $x_{i}, i=1, \ldots, k$. Note that $\Sigma_{x_{i}}=\Sigma_{x_{j}}$ for all $i, j=1, \ldots, n$, so we can define $\Sigma_{t}=\Sigma_{x_{i}}, i=1, \ldots, n$. For example, the set of event occurrences of the trace \mathbf{t}_{1} from Example 2 is $\Sigma_{\mathbf{t}_{1}}=\left\{a^{(1)}, b^{(1)}, c^{(1)}, a^{(2)}, b^{(2)}, c^{(2)}\right\}$. Each \triangleleft_{i} is a total order on $\Sigma_{\mathbf{t}}$. The partial order generated by \mathbf{t} can then be defined as $\prec_{\mathbf{t}}=\bigcap_{i=1}^{k} \triangleleft_{x_{i}}$. In fact, the set $\left\{\triangleleft_{x_{1}}, \ldots, \triangleleft_{x_{k}}\right\}$ consists of all total extensions of ${\zeta_{\mathbf{t}}}^{(s e e}[23,24]$). Thus, the trace $\mathbf{t}_{1}=[a b c b c a]$ from Example 2 can be interpreted as the partial order $\prec_{\mathbf{t}_{1}}$ depicted in Fig. 2 (arcs inferred from transitivity are omitted for simplicity).

Remark 1. Given a sequence s, to construct the partial order $\prec_{[s]}$ generated by [s], we do not need to build up to exponentially many elements of [s]. We can simply construct the direct acyclic graph ($\Sigma_{[s]}$, \prec_{s}), where $x^{(i)} \prec_{s} y^{(j)}$ iff $x^{(i)}$ occurs before $y^{(j)}$ on the sequence s and $(x, y) \notin$ ind. The relation \prec_{s} is usually not the same as the partial order $\prec_{[s] \text {. However, }}$ after applying the transitive closure operator, we have $<_{[s]}=\prec_{s}^{+}$(cf. [4]). We will later see how this idea is generalized to the construction of so-structures and gso-structures from their "trace" representations. Note that to do so, it is inevitable that we have to generalize the transitive closure operator to these order structures.

From the concurrency point of view, the trace quotient monoid representation has a fundamental advantage over its labeled poset representation when studying the formal linguistic aspects of concurrent behaviors, e.g., Ochmański's characterization of recognizable trace language [25] and Zielonka's theory of asynchronous automata [30]. For more details on traces and their various properties, the reader is referred to the monograph [4]. The reader is also referred to [1] for interesting discussions on the trade-offs: traces vs. labeled partial order models that allow auto-concurrency, e.g., pomsets.

4. Relational structures model of concurrency

Even though partial orders are one of the main tools for modelling "true concurrency", they have some limitations. While they can sufficiently model the "earlier than" relationship, they can model neither the "not later than" relationship nor the "non-simultaneously" relationship. It was shown in [10] that any reasonable concurrent behavior can be modelled by an appropriate pair of relations. This leads to the theory of relational structures models of concurrency [12,6,8] (see [8] for a detailed bibliography and history).

In this section, we review the theory of stratified order structures of [12] and generalized stratified order structures of [6, 8]. The former can model both the "earlier than" and the "not later than" relationships, but not the "non-simultaneously" relationship. The latter can model all three relationships.

While traces provide sequence representations of causal partial orders, their extensions, comtraces and generalized comtraces discussed in the following sections, are step sequence representations of stratified order structures and generalized stratified order structures respectively.

Since the theory of relational order structures is far less known than the theory of causal partial orders, we will not only give appropriate definitions but also introduce some intuition and motivation behind those definitions using simple examples.

We start with the concept of an observation:
An observation (also called a run or an instance of concurrent behavior) is an abstract model of the execution of a concurrent system.

It was argued in [10] that an observation must be a total, stratified or interval order (interval orders are not used in this paper). Totally ordered observations can be represented by sequences while stratified observations can be represented by step sequences.

The next concept is a concurrent behavior:
A concurrent behavior (concurrent history) is a set of equivalent observations.
When totally ordered observations are sufficient to define whole concurrent behaviors, then the concurrent behaviors can entirely be described by causal partial orders. However if concurrent behaviors consist of more sophisticated sets of stratified observations, e.g., to model the "not later than" relationship or the "non-simultaneously" relationship, then we need relational structures [10].

4.1. Stratified order structure

By a relational structure, we mean a triple $T=\left(X, R_{1}, R_{2}\right)$, where X is a set and R_{1}, R_{2} are binary relations on X. A relational structure $T^{\prime}=\left(X^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}\right)$ is an extension of T, denoted as $T \subseteq T^{\prime}$, iff $X=X^{\prime}, R_{1} \subseteq R_{1}^{\prime}$ and $R_{2} \subseteq R_{2}^{\prime}$.

Definition 3 (Stratified order structure). (See [12].) A stratified order structure (so-structure) is a relational structure $S=$ (X, \prec, \sqsubset), such that for all $a, b, c \in X$, the following hold:

$$
\begin{array}{ll}
\text { S1: } a \not \subset a, & \text { S3: } a \sqsubset b \sqsubset c \wedge a \neq c \Longrightarrow a \sqsubset c, \\
\text { S2: } a \prec b \Longrightarrow a \sqsubset b, & \text { S4: } a \sqsubset b \prec c \vee a \prec b \sqsubset c \Longrightarrow a \prec c .
\end{array}
$$

When X is finite, S is called a finite so-structure.
Note that the axioms S1-S4 imply that (X, \prec) is a poset and $a \prec b \Rightarrow b \not \subset a$. The relation \prec is called causality and represents the "earlier than" relationship, and the relation \sqsubset is called weak causality and represents the "not later than" relationship. The axioms S1-S4 model the mutual relationship between "earlier than" and "not later than" relations, provided that the system runs are modelled by stratified orders.

The concept of so-structures were independently introduced in [5] and [9] (the axioms are slightly different from S1-S4, although equivalent). Their comprehensive theory has been presented in [12]. They have been successfully applied to model inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for example [11,26,17,18,16,19,20]). The name follows from the following result.

Proposition 4. (See [10].) For every stratified order \triangleleft on X, the triple $S_{\triangleleft}=\left(X, \triangleleft, \triangleleft^{\wedge}\right)$ is a so-structure.
Definition 4 (Stratified extension of so-structure). (See [12].) A stratified order \triangleleft on X is a stratified extension of a so-structure $S=(X, \prec, \sqsubset)$ if for all $\alpha, \beta \in X$,

$$
\alpha \prec \beta \quad \Longrightarrow \quad \alpha \triangleleft \beta \quad \text { and } \quad \alpha \sqsubset \beta \quad \Longrightarrow \quad \alpha \triangleleft^{\circ} \beta \text {. }
$$

The set of all stratified extensions of S is denoted as $\operatorname{ext}(S)$.

According to Szpilrajn's theorem, every poset can be reconstructed by taking the intersection of all of its total extensions. A similar result holds for so-structures and stratified extensions.

Theorem 2. (See [12, Theorem 2.9].) Let $S=(X, \prec, \sqsubset)$ be a so-structure. Then

$$
S=\left(X, \bigcap_{\triangleleft \in \operatorname{ext}(S)} \triangleleft, \bigcap_{\triangleleft \in \operatorname{ext}(S)} \triangleleft^{\frown}\right)
$$

The set $\operatorname{ext}(S)$ also has the following internal property that will be useful in various proofs.
Theorem 3. (See [10].) Let $S=(X, \prec, \sqsubset)$ be a so-structure. Then for every $a, b \in X$,

$$
(\exists \triangleleft \in \operatorname{ext}(S) \cdot a \triangleleft b) \wedge(\exists \triangleleft \in \operatorname{ext}(S) \cdot b \triangleleft a) \quad \Longrightarrow \quad \exists \triangleleft \in \operatorname{ext}(S) \cdot a \frown \triangleleft b .
$$

The classification of concurrent behaviors provided in [10] says that a concurrent behavior conforms to the paradigm ${ }^{5}$ π_{3} if it has the same property as stated in Theorem 3 for $\operatorname{ext}(S)$. In other words, Theorem 3 states that the set $\operatorname{ext}(S)$ conforms to the paradigm π_{3}.

4.2. Generalized stratified order structure

The stratified order structures can adequately model concurrent histories only when the paradigm π_{3} is satisfied. For the general case, we need gso-structures introduced in [6] also under the assumption that the system runs are defined as stratified orders.

Definition 5 (Generalized stratified order structure). (See [6,8].) A generalized stratified order structure (gso-structure) is a relational structure $G=(X, \diamond, \sqsubset)$ such that \sqsubset is irreflexive, $>$ is symmetric and irreflexive, and the triple $S_{G}=\left(X, \prec_{G}, \sqsubset\right)$, where $\prec_{G}=\diamond \cap \sqsubset$, is a so-structure, called the so-structure induced by G. When X is finite, G is called a finite gso-structure.

[^4]The relation $>$ is called commutativity and represents the "non-simultaneously" relationship, while the relation \sqsubset is called weak causality and represents the "not later than" relationship.

For a binary relation R on X, we let $R^{\text {sym }} \triangleq R \cup R^{-1}$ denote the symmetric closure of R.

Definition 6 (Stratified extension of gso-structure). (See [6,8].) A stratified order \triangleleft on X is a stratified extension of a gsostructure $G=(X, \diamond, \sqsubset)$ if for all $\alpha, \beta \in X$,

$$
\alpha \diamond \beta \quad \Longrightarrow \quad \alpha \triangleleft^{\text {sym }} \beta \quad \text { and } \quad \alpha \sqsubset \beta \quad \Longrightarrow \quad \alpha \triangleleft^{\circ} \beta .
$$

The set of all stratified extensions of G is denoted as $\operatorname{ext}(G)$.
Every gso-structure can also be uniquely reconstructed from its stratified extensions. The generalization of Szpilrajn's theorem for gso-structures can be stated as the following.

Theorem 4. (See $[6,8]$.$) Let G=(X, \diamond, \sqsubset)$ be a gso-structure. Then

$$
G=\left(X, \bigcap_{\triangleleft \in \operatorname{ext}(G)} \triangleleft^{\mathrm{sym}}, \bigcap_{\triangleleft \in \operatorname{ext}(G)} \triangleleft^{-}\right) .
$$

The gso-structures do not have an equivalent of Theorem 3. As a counter-example consider $G=\left(\{a, b, c\},>_{4}, \sqsubset_{4}\right)$ where $>_{4}$ and \sqsubset_{4} are those from Fig. 1. Hence $\operatorname{ext}(G)=o b s\left(P_{4}\right)=\left\{o_{1}, o_{2}\right\}$, where $o_{1}=\{a\}\{b\}\{c\}$ and $o_{2}=\{a\}\{c\}\{b\}$. For this gsostructure we have $b \xrightarrow{o_{1}} c$ and $c \xrightarrow{o_{2}} b$, but neither o_{1} nor o_{2} contains the step $\{b, c\}$, so Theorem 3 does not hold. The lack of an equivalent of Theorem 3 makes proving properties about gso-structures more difficult, but they can model the most general concurrent behaviors provided that observations are modelled by stratified orders [8].

5. Comtraces

The standard definition of a free monoid $\left(E^{*}, *, \lambda\right)$ assumes that the elements of E have no internal structure (or their internal structure does not affect any monoidal properties), and they are often called 'letters', 'symbols', 'names', etc. When we assume the elements of E have some internal structure, for instance that they are sets, this internal structure may be used when defining the set of equations $E Q$. This idea is exploited in the concept of a comtrace.

Comtraces (combined traces), introduced in [11] as an extension of traces to distinguish between "earlier than" and "not later than" phenomena, are equational monoids of step sequence monoids. The equations $E Q$ are in this case defined implicitly via two relations: simultaneity and serializability.

Definition 7 (Comtrace alphabet). (See [11].) Let E be a finite set (of events) and let $\operatorname{ser} \subseteq \operatorname{sim} \subset E \times E$ be two relations called serializability and simultaneity respectively and the relation sim is irreflexive and symmetric. Then the triple (E, sim, ser) is called a comtrace alphabet.

Intuitively, if $(a, b) \in \operatorname{sim}$ then a and b can occur simultaneously (or be a part of a synchronous occurrence in the sense of [17]), while ($a, b) \in \operatorname{ser}$ means that a and b may occur simultaneously and also a may occur before b (i.e., both executions are equivalent). We define \mathbb{S}, the set of all (potential) steps, as the set of all cliques of the graph (E, sim), i.e.,

$$
\mathbb{S} \triangleq\{A \mid A \neq \emptyset \wedge \forall a, b \in A .(a=b \vee(a, b) \in \operatorname{sim})\} .
$$

Definition 8 (Comtrace congruence). (See [11].) Let $\theta=\left(E\right.$, sim, ser) be a comtrace alphabet and let $\equiv_{\text {ser }}$, called comtrace congruence, be the $E Q$-congruence defined by the set of equations

$$
E Q \triangleq\{A=B C \mid A=B \cup C \in \mathbb{S} \wedge B \times C \subseteq \operatorname{ser}\}
$$

Then the equational monoid $\left(\mathbb{S}^{*} / \equiv_{\operatorname{ser}}, \circledast,[\lambda]\right)$ is called a monoid of comtraces over θ.
Since ser is irreflexive, for each $(A=B C) \in E Q$ we have $B \cap C=\emptyset$. By Proposition 1, the comtrace congruence relation can also be defined explicitly in non-equational form as follows.

Proposition 5. Let $\theta=\left(E\right.$, sim, ser) be a comtrace alphabet and let \mathbb{S}^{*} be the set of all step sequences defined on θ. Let $\approx_{s e r} \subseteq \mathbb{S}^{*} \times \mathbb{S}^{*}$ be the relation comprising all pairs (t, u) of step sequences such that $t=w A z$ and $u=w B C z$, where $w, z \in \mathbb{S}^{*}$ and A, B, C are steps satisfying $B \cup C=A$ and $B \times C \subseteq$ ser. Then $\equiv_{\operatorname{ser}}=\left(\approx_{s e r} \cup \approx_{s e r}^{-1}\right)^{*}$.

We will omit the subscript ser from comtrace congruence and $\approx_{s e r}$, and only write \equiv and \approx if it causes no ambiguity.

Example 3. Let $E=\{a, b, c\}$ where a, b and c are three atomic operations, where

$$
a: \quad y:=x+y, \quad b: \quad x:=y+2, \quad c: \quad y:=y+1 .
$$

Assume simultaneous reading is allowed, but simultaneous writing is not allowed. Then the events b and c can be performed simultaneously, and the execution of the step $\{b, c\}$ gives the same outcome as executing b followed by c. The events a and b can also be performed simultaneously, but the outcome of executing the step $\{a, b\}$ is not the same as executing a followed by b, or b followed by a. Note that although executing the steps $\{a, b\}$ and $\{b, c\}$ is allowed, we cannot execute the step $\{a, c\}$ since that would require writing on the same variable y.

Let $E=\{a, b, c\}$ be the set of events. Then we can define the comtrace alphabet $\theta=(E, \operatorname{sim}, \operatorname{ser})$, where $\operatorname{sim}=$ $\{(a, b),(b, a),(b, c),(c, b)\}$ and $\operatorname{ser}=\{(b, c)\}$. Thus the set of all possible steps is

$$
\mathbb{S}_{\theta}=\{\{a\},\{b\},\{c\},\{a, b\},\{b, c\}\} .
$$

We observe that the set $\mathbf{t}=[\{a\}\{a, b\}\{b, c\}]=\{\{a\}\{a, b\}\{b, c\},\{a\}\{a, b\}\{b\}\{c\}\}$ is a comtrace. But the step sequence $\{a\}\{a, b\}\{c\}\{b\}$ is not an element of \mathbf{t} because $(c, b) \notin \operatorname{ser}$.

Even though traces are quotient monoids over sequences and comtraces are quotient monoids over step sequences (and the fact that steps are sets is used in the definition of quotient congruence), traces can be regarded as a special case of comtraces. In principle, each trace commutativity equation $a b=b a$ corresponds to two comtrace equations $\{a, b\}=\{a\}\{b\}$ and $\{a, b\}=\{b\}\{a\}$. This relationship can formally be formulated as follows.

Let (E, ind) and (E, sim, ser) be trace and comtrace alphabets respectively. For each sequence $x=a_{1} \ldots a_{n} \in E^{*}$, we define $x^{\{ \}}=\left\{a_{1}\right\} \ldots\left\{a_{n}\right\}$ to be its corresponding step sequence, which in this case consists of only singleton steps.

Lemma 1.

1. Assume ser $=$ sim. Then for each comtrace $\mathbf{t} \in \mathbb{S}^{*} / \equiv$ ser there exists a step sequence $x=\left\{a_{1}\right\} \ldots\left\{a_{k}\right\} \in \mathbb{S}^{*}$ such that $\mathbf{t}=[x]_{\equiv \text { ser }}$.
2. If ser $=\operatorname{sim}=$ ind, then for each $x, y \in E^{*}$, we have $x \equiv_{\text {ind }} y \Longleftrightarrow x^{\{ \}} \equiv_{\text {ser }} y^{\{ \}}$.

Proof. (1) follows from the fact that if $\operatorname{ser}=\operatorname{sim}$, then for each $A=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathbb{S}$, we have $A \equiv \operatorname{ser}\left\{a_{1}\right\} \ldots\left\{a_{k}\right\}$. (2) is a simple consequence of the definition of $x^{\{ \}}$.

Let \mathbf{t} be a trace over (E, ind) and let \mathbf{v} be a comtrace over (E, sim, ser). We say that \mathbf{t} and \mathbf{v} are tantamount if $\operatorname{sim}=$
 $\mathbf{t} \stackrel{\text { thm }}{\equiv} \mathbf{c} \mathbf{v}$. Note that Lemma 1 guarantees that this definition is valid.

Proposition 6. Let \mathbf{t}, \mathbf{r} be traces and \mathbf{v}, \mathbf{w} be comtraces. Then

1. $\mathbf{t} \stackrel{\text { then }}{\equiv} \mathbf{v} \wedge \mathbf{t} \stackrel{\text { thm }}{\equiv} \mathbf{c} \mathbf{w} \Longrightarrow \mathbf{v}=\mathbf{w}$.
2. $\mathbf{t} \stackrel{\text { thm }}{=} \mathbf{V} \wedge \mathbf{r} \stackrel{\text { tmoc }}{\equiv} \mathbf{c}=\mathbf{t}=\mathbf{r}$.
 such that $\mathbf{t}=[y]_{\equiv_{\text {ind }}}$ and $\mathbf{w}=\left[y^{\{ \}}\right]_{\equiv_{\text {ser }}}$. Since $\mathbf{t}=[x]_{\equiv_{\text {ind }}}=[y]_{\equiv_{\text {ind }}}$ then $x \equiv_{\text {ind }} y$ and by Lemma $1(2), x^{\{ \}} \equiv_{\text {ser }} y^{\{ \}}$, i.e. $\mathbf{v}=\mathbf{w}$.
3. Similarly as (1).

Equivalent traces and comtraces generate identical partial orders. However, we will postpone the discussion of this issue to Section 9. Hence traces can be regarded as a special case of comtraces.

Note that comtrace might be a useful notion to formalize the concept of synchrony (cf. [17]). In principle, events a_{1}, \ldots, a_{k} are synchronous if they can be executed in one step $\left\{a_{1}, \ldots, a_{k}\right\}$ but this execution cannot be modelled by any sequence of proper subsets of $\left\{a_{1}, \ldots, a_{k}\right\}$. Note that in general 'synchrony' is not necessarily 'simultaneity' as it does not include the concept of time [15]. It appears, however, that the mathematics to deal with synchrony are close to that to deal with simultaneity.

Definition 9 (Independency and synchrony). Let (E, sim, ser) be a given comtrace alphabet. We define the relations ind, syn and the set $\mathbb{S}_{\text {syn }}$ as follows:

- ind $\subseteq E \times E$, called independency, and defined as ind $=\operatorname{ser} \cap \operatorname{ser}^{-1}$,
- syn $\subseteq E \times E$, called synchrony, and defined as:

$$
(a, b) \in \operatorname{syn} \quad \stackrel{d f}{\Longleftrightarrow} \quad(a, b) \in \operatorname{sim} \backslash \operatorname{ser}^{\text {sym }},
$$

- $\mathbb{S}_{\text {syn }} \subseteq \mathbb{S}$, called synchronous steps, and defined as:

$$
A \in \mathbb{S}_{\text {syn }} \quad \stackrel{d f}{\Longleftrightarrow} \quad A \neq \emptyset \wedge(\forall a, b \in A .(a, b) \in \text { syn }) .
$$

If $(a, b) \in$ ind then a and b are independent, i.e., executing them either simultaneously, or a followed by b, or b followed by a, will yield exactly the same result. If $(a, b) \in \operatorname{syn}$ then a and b are synchronous, which means they might be executed in one step, either $\{a, b\}$ or as a part of bigger step, but such an execution of $\{a, b\}$ is not equivalent to either a followed by b, or b followed by a. In principle, the relation syn is a counterpart of 'synchrony' (cf. [17]). If $A \in \mathbb{S}_{\text {syn }}$, then the set of events A can be executed as one step, but it cannot be simulated by any sequence of its subsets.

Example 4. Assume we have $E=\{a, b, c, d, e\}, \operatorname{sim}=\{(a, b),(b, a),(a, c),(c, a),(a, d),(d, a)\}$, and $\operatorname{ser}=\{(a, b),(b, a),(a, c)\}$. Hence, $\mathbb{S}=\{\{a, b\},\{a, c\},\{a, d\},\{a\},\{b\},\{c\},\{e\}\}$, and

$$
\text { ind }=\{(a, b),(b, a)\}, \quad \text { syn }=\{(a, d),(d, a)\}, \quad \mathbb{S}_{\text {syn }}=\{\{a, d\}\}
$$

Since $\{a, d\} \in \mathbb{S}_{\text {syn }}$, the step $\{a, d\}$ cannot be split into smaller steps. For example the comtraces $\mathbf{x}_{1}=[\{a, b\}\{c\}\{a\}], \mathbf{x}_{2}=$ $[\{e\}\{a, d\}\{a, c\}]$, and $\mathbf{x}_{3}=[\{a, b\}\{c\}\{a\}\{e\}\{a, d\}\{a, c\}]$ are respectively the following sets of step sequences:

$$
\left.\begin{array}{rl}
\mathbf{x}_{1} & =\{\{a, b\}\{c\}\{a\},\{a\}\{b\}\{c\}\{a\},\{b\}\{a\}\{c\}\{a\},\{b\}\{a, c\}\{a\}\}, \\
\mathbf{x}_{2} & =\{\{e\}\{a, d\}\{a, c\},\{e\}\{a, d\}\{a\}\{c\}\}, \\
\mathbf{x}_{3} & =\left\{\begin{array}{c}
\{a, b\}\{c\}\{a\}\{e\}\{a, d\}\{a, c\},\{a\}\{b\}\{c\}\{a\}\{e\}\{a, d\}\{a, c\}, \\
\\
\{b\}\{a\}\{c\}\{a\}\{e\}\{a, d\}\{a, c\},\{b\}\{a, c\}\{a\}\{e\}\{a, d\}\{a, c\}, \\
\{a, b\}\{c\}\{a\}\{e\}\{a, d\}\{a\}\{c\},\{a\}\{b\}\{c\}\{a\}\{e\}\{a, d\}\{a\}\{c\}, \\
\{b\}\{a\}\{c\}\{a\}\{e\}\{a, d\}\{a\}\{c\},\{b\}\{a, c\}\{a\}\{e\}\{a, d\}\{a\}\{c\}
\end{array}\right.
\end{array}\right\} .
$$

We also have $\mathbf{x}_{3}=\mathbf{x}_{1} \circledast \mathbf{x}_{2}$. Note that since $(c, a) \notin \operatorname{ser},\{a, c\} \equiv \operatorname{ser}\{a\}\{c\} \not \equiv \operatorname{ser}\{c\}\{a\}$.
We can easily extend the concepts of comtraces to the level of languages, with potential applications similar to traces. For any step sequence language L, we define a comtrace language $[L]_{\Theta}$ (or just $[L]$) to be the set $\{[u] \mid u \in L\}$. The languages of comtraces provide a bridge between operational and structural semantics. In other words, if a step sequence language L describes an operational semantics of a given concurrent system, we only need to derive the comtrace alphabet (E, sim, ser) from the system, and the comtrace language [L] defines the structural semantics of the system.

Example 5. Consider the following simple concurrent system Priority, which comprises two sequential subsystems such that

- the first subsystem can cyclically engage in event a followed by event b,
- the second subsystem can cyclically engage in event b or in event c,
- the two systems synchronize by means of handshake communication,
- there is a priority constraint stating that if it is possible to execute event b, then c must not be executed.

This example has often been analyzed in the literature (cf. [13]), usually under the interpretation that $a=$ 'Error Message', $b=$ 'Stop And Restart', and $c=$ 'Some Action'. It can be formally specified in various notations including Priority and Inhibitor Nets (cf. [9,12]). Its operational semantics (easily found in any model) can be defined by the following step sequence language

$$
L_{\text {Priority }} \triangleq \operatorname{Pref}\left(\left(\{c\}^{*} \cup\{a\}\{b\} \cup\{a, c\}\{b\}\right)^{*}\right)
$$

where $\operatorname{Pref}(L) \triangleq \bigcup_{w \in L}\{u \in L \mid \exists v . u v=w\}$ denotes the prefix closure of L.
The rules for deriving the comtrace alphabet (E, sim, ser) depend on the model, and for Priority, the set of possible steps is $\mathbb{S}=\{\{a\},\{b\},\{c\},\{a, c\}\}$, and $\operatorname{ser}=\{(c, a)\}$ and $\operatorname{sim}=\{(a, c),(c, a)\}$. Then, [$\left.L_{\text {Priority }}\right]$ defines the structural comtrace semantics of Priority. For instance, the comtrace $[\{a, c\}\{b\}]=\{\{c\}\{a\}\{b\},\{a, c\}\{b\}\}$ is in the language [$\left.L_{\text {Priority }}\right]$.

6. Generalized comtraces

There are reasonable concurrent behaviors that cannot be modelled by any comtrace. Let us analyze the following example.

Example 6. Let $E=\{a, b, c\}$ where a, b and c are three atomic operations defined as follows (we assume simultaneous reading is allowed):

$$
a: \quad x:=x+1, \quad b: x:=x+2, \quad c: y:=y+1 .
$$

It is reasonable to consider them all as 'concurrent' as any order of their executions yields exactly the same results (see $[10,12]$ for more motivation and formal considerations as well as the program P_{4} of Example 1). Assume that simultaneous reading is allowed, but simultaneous writing is not. Then while simultaneous executions of $\{a, c\}$ and $\{b, c\}$ are allowed, we cannot execute $\{a, b\}$, since simultaneous writing on the same variable x is not allowed.

The set of all equivalent executions (or runs) involving one occurrence of the operations a, b and c, and modelling the above case,

$$
\mathbf{x}=\left\{\begin{array}{c}
\{a\}\{b\}\{c\},\{a\}\{c\}\{b\},\{b\}\{a\}\{c\},\{b\}\{c\}\{a\},\{c\}\{a\}\{b\}, \\
\{c\}\{b\}\{a\},\{a, c\}\{b\},\{b, c\}\{a\},\{b\}\{a, c\},\{a\}\{b, c\}
\end{array}\right\},
$$

is a valid concurrent history $[10,12]$. However x is not a comtrace. The problem is that we have $\{a\}\{b\} \equiv\{b\}\{a\}$ but $\{a, b\}$ is not a valid step, so comtrace cannot represent this situation.

In this section, we will introduce the generalized comtrace notion (g-comtrace), an extension of comtrace, which is also defined over step sequences. The g-comtraces will be able to model "non-simultaneously" relationship similar to the one from Example 6.

Definition 10 (Generalized comtrace alphabet). Let E be a finite set (of events). Let ser, sim and inl be three relations on E called serializability, simultaneity and interleaving respectively satisfying the following conditions:

- sim and inl are irreflexive and symmetric,
- $\operatorname{ser} \subseteq \operatorname{sim}$, and
- $\operatorname{sim} \cap i n l=\emptyset$.

Then the triple (E, sim, ser, inl) is called a g-comtrace alphabet.
The interpretation of the relations sim and ser is as in Definition 7, and (a, b) $\in \operatorname{inl}$ means a and b cannot occur simultaneously, but their occurrence in any order is equivalent. As for comtraces, we define the set \mathbb{S} of all (potential) steps as the set of all cliques of the graph (E, sim).

Definition 11 (Generalized comtrace congruence). Let $\Theta=\left(E\right.$, sim, ser, inl) be a g-comtrace alphabet and let $\equiv_{\{s e r, \text { inl }\}}$, called g-comtrace congruence, be the $E Q$-congruence defined by the set of equations $E Q=E Q_{1} \cup E Q_{2}$, where

$$
\begin{aligned}
& E Q_{1} \triangleq\{A=B C \mid A=B \cup C \in \mathbb{S} \wedge B \times C \subseteq \text { ser }\} \\
& E Q_{2} \triangleq\{B A=A B \mid A \in \mathbb{S} \wedge B \in \mathbb{S} \wedge A \times B \subseteq \text { inl }\}
\end{aligned}
$$

The equational monoid $\left(\mathbb{S}^{*} / \equiv_{\{s e r, \text { inl }\}}, \circledast,[\lambda]\right)$ is called a monoid of g-comtraces over Θ.
Since ser and inl are irreflexive, $(A=B C) \in E Q_{1}$ implies $B \cap C=\emptyset$, and $(A B=B A) \in E Q_{2}$ implies $A \cap B=\emptyset$. Since inl $\cap \operatorname{sim}=\emptyset$, we also have that if $(A B=B A) \in E Q_{2}$, then $A \cup B \notin \mathbb{S}$.

By Proposition 1, the g-comtrace congruence relations can also be defined explicitly in non-equational form as follows.
Definition 12. Let $\Theta=\left(E\right.$, sim, ser, inl) be a g-comtrace alphabet and let \mathbb{S}^{*} be the set of all step sequences defined on Θ.

- Let $\approx_{1} \subseteq \mathbb{S}^{*} \times \mathbb{S}^{*}$ be the relation comprising all pairs (t, u) of step sequences such that $t=w A z$ and $u=w B C z$ where $w, z \in \mathbb{S}^{*}$ and A, B, C are steps satisfying $B \cup C=A$ and $B \times C \subseteq$ ser.
- Let $\approx_{2} \subseteq \mathbb{S}^{*} \times \mathbb{S}^{*}$ be the relation comprising all pairs (t, u) of step sequences such that $t=w A B z$ and $u=w B A z$ where $w, z \in \mathbb{S}^{*}$ and A, B are steps satisfying $A \times B \subseteq$ inl.

We define $\approx_{\{s e r, i n l\}}$ as $\approx_{\{s e r, i n l\}} \triangleq \approx_{1} \cup \approx_{2}$.
Proposition 7. For each g-comtrace alphabet $\Theta=$ (E, sim, ser, inl $)$

$$
\equiv \equiv_{\{\operatorname{ser}, i n l\}}=\left(\approx_{\{\operatorname{ser}, i n l\}} \cup \approx_{\{\operatorname{ser}, i n l\}}^{-1}\right)^{*}
$$

Proof. Follows from Proposition 1.
The name "generalized comtraces" comes from the fact that when inl $=\emptyset$, Definition 11 coincides with Definition 8 of a comtrace monoid. We will omit the subscript $\{s e r$, inl $\}$ from $\equiv_{\{s e r, i n l\}}$ and $\approx_{\{s e r, i n l\}}$, and write \equiv and \approx when causing no ambiguity.

Example 7. The set \mathbf{x} from Example 6 is a g-comtrace, where we have $E=\{a, b, c\}, \operatorname{ser}=\operatorname{sim}=\{(a, c),(c, a),(b, c),(c, b)\}$, inl $=\{(a, b),(b, a)\}$, and $\mathbb{S}=\{\{a, c\},\{b, c\},\{a\},\{b\},\{c\}\}$.

It is worthnoting that there is an important difference between the equation $a b=b a$ for traces, and the equation $\{a\}\{b\}=$ $\{b\}\{a\}$ for g-comtrace monoids. For traces, the equation $a b=b a$, when translated into step sequences, corresponds to two equations $\{a, b\}=\{a\}\{b\}$ and $\{a, b\}=\{b\}\{a\}$, which implies $\{a\}\{b\} \equiv\{a, b\} \equiv\{b\}\{a\}$. For g-comtrace monoids, the equation $\{a\}\{b\}=\{b\}\{a\}$ implies that $\{a, b\}$ is not a step, i.e., neither the equation $\{a, b\}=\{a\}\{b\}$ nor the equation $\{a, b\}=\{b\}\{a\}$ belongs to the set of equations. In other words, for traces the equation $a b=b a$ means 'independency', i.e., executing a and b in any order or simultaneously will yield the same consequence. For g-comtrace monoids, the equation $\{a\}\{b\}=\{b\}\{a\}$ means that execution of a and b in any order yields the same result, but executing of a and b in any order is not equivalent to executing them simultaneously.

7. Algebraic properties of comtrace and generalized comtrace congruences

Algebraic properties of trace congruence operations such as left/right cancellation and projection are well understood. They are intuitive and simple tools with many applications [24]. In this section we will generalize these cancellation and projection properties to comtrace and g-comtrace. The basic obstacle is switching from sequences to step sequences.

7.1. Properties of comtrace congruence

Let us consider a comtrace alphabet $\theta=(E, \operatorname{sim}, \operatorname{ser})$ where we reserve \mathbb{S} to denote the set of all possible steps of θ throughout this section.

For each step sequence or enumerated step sequence $x=X_{1} \ldots X_{k}$, we define the step sequence weight of x as weight $(x) \triangleq$ $\sum_{i=1}^{k}\left|X_{i}\right|$. We also define $\biguplus(x) \triangleq \bigcup_{i=1}^{k} X_{i}$.

Due to the commutativity of the independency relation for traces, the mirror rule, which says if two sequences are congruent, then their reverses are also congruent, holds for trace congruence [4]. Hence, in trace theory, we only need a right cancellation operation to produce congruent subsequences from congruent sequences, since the left cancellation comes from the right cancellation of the reverses.

However, the mirror rule does not hold for comtrace congruence since the relation ser is usually not commutative. Example 3 works as a counter-example since $\{a\}\{b, c\} \equiv\{a\}\{b\}\{c\}$ but $\{b, c\}\{a\} \not \equiv\{c\}\{b\}\{a\}$. Thus, we define separate left and right cancellation operators for comtraces.

Let $a \in E, A \in \mathbb{S}$ and $w \in \mathbb{S}^{*}$. The operator \div_{R}, step sequence right cancellation, is defined as follows:

$$
\lambda \div_{R} a \triangleq \lambda, \quad w A \div_{R} a \triangleq \begin{cases}(w \div R a) A & \text { if } a \notin A \\ w & \text { if } A=\{a\} \\ w(A \backslash\{a\}) & \text { otherwise }\end{cases}
$$

Symmetrically, a step sequence left cancellation operator \div_{L} is defined as follows:

$$
\lambda \div_{L} a \triangleq \lambda, \quad A w \div_{L} a \triangleq \begin{cases}A\left(w \div_{L} a\right) & \text { if } a \notin A \\ w & \text { if } A=\{a\} \\ (A \backslash\{a\}) w & \text { otherwise }\end{cases}
$$

Finally, for each $D \subseteq E$, we define the function $\pi_{D}: \mathbb{S}^{*} \rightarrow \mathbb{S}^{*}$, step sequence projection onto D, as follows:

$$
\pi_{D}(\lambda) \triangleq \lambda, \quad \pi_{D}(w A) \triangleq \begin{cases}\pi_{D}(w) & \text { if } A \cap D=\emptyset \\ \pi_{D}(w)(A \cap D) & \text { otherwise }\end{cases}
$$

The algebraic properties of comtraces are similar to those of traces [24].

Proposition 8.

1. $u \equiv v \Longrightarrow$ weight $(u)=$ weight $(v) \quad$ (step sequence weight equality),
2. $u \equiv v \Longrightarrow|u|_{a}=|v|_{a} \quad$ (event-preserving),
3. $u \equiv v \Longrightarrow u \div{ }_{R} a \equiv v \div_{R} a \quad$ (right cancellation),
4. $u \equiv v \Longrightarrow u \div{ }_{L} a \equiv v \div{ }_{L} a \quad$ (left cancellation),
5. $u \equiv v \Longleftrightarrow \forall s, t \in \mathbb{S}^{*}$.sut \equiv svt \quad (step subsequence cancellation),
6. $u \equiv v \Longrightarrow \pi_{D}(u) \equiv \pi_{D}(v) \quad$ (projection rule).

Proof. The proofs use the same techniques as in [24]. We would like recall only the following key observation that simplifies the proof of this proposition: since \equiv is the symmetric transitive closure of \approx, it suffices to show that $u \approx v$ implies the right-hand side of (1)-(6). The rest follows naturally from the definition of comtrace \approx and the congruence \equiv.

Note that $\left(w \div_{R} a\right) \div{ }_{R} b=\left(w \div{ }_{R} b\right) \div R$, so we define

$$
\begin{aligned}
& w \div R\left\{a_{1}, \ldots, a_{k}\right\} \triangleq\left(\ldots\left(\left(w \div{ }_{R} a_{1}\right) \div{ }_{R} a_{2}\right) \ldots\right) \div{ }_{R} a_{k}, \quad \text { and } \\
& w \div \div_{R} A_{1} \ldots A_{k} \triangleq\left(\ldots\left(\left(w \div{ }_{R} A_{1}\right) \div{ }_{R} A_{2}\right) \ldots\right) \div{ }_{R} A_{k} .
\end{aligned}
$$

We define dually for $\div{ }_{L}$. Hence Proposition 8(4) and (5) can be generalized as follows.

Corollary 1. For all $u, v, x \in \mathbb{S}^{*}$, we have

1. $u \equiv v \Longrightarrow u \div{ }_{R} x \equiv v \div_{R} x$.
2. $u \equiv v \Longrightarrow u \div{ }_{L} x \equiv v \div{ }_{L} x$.

7.2. Properties of generalized comtrace congruence

Using the same proof technique as in Proposition 8, we can show that g-comtrace congruence has the same algebraic properties as comtrace congruence.

Proposition 9. Let \mathbb{S} be the set of all steps over a g-comtrace alphabet (E, sim, ser, inl) and $u, v \in \mathbb{S}^{*}$. Then

1. $u \equiv v \Longrightarrow$ weight $(u)=$ weight $(v) \quad$ (step sequence weight equality),
2. $u \equiv v \Longrightarrow|u|_{a}=|v|_{a}$
(event-preserving),
3. $u \equiv v \Longrightarrow u \div{ }_{R} a \equiv v \div_{R} a \quad$ (right cancellation),
4. $u \equiv v \Longrightarrow u \div{ }_{L} a \equiv v \div_{L} a \quad$ (left cancellation),
5. $u \equiv v \Longleftrightarrow \forall s, t \in \mathbb{S}^{*}$.sut $\equiv s v t \quad$ (step subsequence cancellation),
6. $u \equiv v \Longrightarrow \pi_{D}(u) \equiv \pi_{D}(v) \quad$ (projection rule).

Corollary 2. For all step sequences u, v, x over a g-comtrace alphabet (E, sim, ser, inl),

1. $u \equiv v \Longrightarrow u \div{ }_{R} x \equiv v \div{ }_{R} x$,
2. $u \equiv v \Longrightarrow u \div{ }_{L} x \equiv v \div{ }_{L} x$.

The following proposition ensures that if any relation from the set $\{\leqslant, \geqslant,<,>,=, \neq\}$ holds for the positions of two event occurrences after applying cancellation or projection operations on a g-comtrace [\bar{u}], then it also holds for the whole $[\bar{u}]$.

Proposition 10. Let \bar{u} be an enumerated step sequence over a g-comtrace alphabet (E, sim, ser, inl) and $\alpha, \beta, \gamma \in \Sigma_{u}$ such that $\gamma \notin\{\alpha, \beta\}$. Let $\mathcal{R} \in\{\leqslant, \geqslant,<,>,=, \neq\}$. Then

1. if $\forall \bar{v} \in\left[\bar{u} \div{ }_{L} \gamma\right] \cdot \operatorname{pos}_{\bar{v}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{v}}(\beta)$, then $\forall \bar{w} \in[\bar{u}] \cdot \operatorname{pos}_{\bar{w}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w}}(\beta)$,
2. if $\forall \bar{v} \in[\bar{u} \div R \gamma] \cdot \operatorname{pos}_{\bar{v}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{v}}(\beta)$, then $\forall \bar{w} \in[\bar{u}] \cdot \operatorname{pos}_{\bar{w}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w}}(\beta)$,
3. if $S \subseteq \Sigma_{u}$ such that $\{\alpha, \beta\} \subseteq S$, then

$$
\left(\forall \bar{v} \in\left[\pi_{S}(\bar{u})\right] \cdot \operatorname{pos}_{\bar{v}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{v}}(\beta)\right) \quad \Longrightarrow \quad\left(\forall \bar{w} \in[\bar{u}] \cdot \operatorname{pos}_{\bar{w}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w}}(\beta)\right) .
$$

Proof. 1. Assume that

$$
\begin{equation*}
\forall \bar{v} \in[\bar{u} \div L \gamma] \cdot \operatorname{pos}_{\bar{v}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{v}}(\beta) \tag{7.1}
\end{equation*}
$$

Suppose for a contradiction that $\exists \bar{w} \in[\bar{u}] . \neg\left(\operatorname{pos}_{\bar{w}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w}}(\beta)\right)$. Since $\gamma \notin\{\alpha, \beta\}$, we have $\neg\left(\operatorname{pos}_{\bar{w} \div\llcorner\gamma}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w} \div\llcorner\gamma}(\beta)\right)$. But $\bar{w} \in[\bar{u}]$ implies $\bar{w} \div L \gamma \equiv \bar{u} \div L \gamma$. Hence, $\bar{w} \div L \gamma \in[\bar{u} \div L \gamma]$ and $\neg\left(\operatorname{pos}_{\bar{w} \div L \gamma}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w} \div L \gamma}(\beta)\right)$, contradicting (7.1).
2. Dually to part (1).
3. Assume that

$$
\begin{equation*}
\forall \bar{v} \in\left[\pi_{S}(\bar{u})\right] \cdot \operatorname{pos}_{\bar{v}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{v}}(\beta) \tag{7.2}
\end{equation*}
$$

Suppose for a contradiction that $\exists \bar{w} \in[\bar{u}] . \neg\left(\operatorname{pos}_{\bar{w}}(\alpha) \mathcal{R} \operatorname{pos}_{\bar{w}}(\beta)\right)$. Since $\{\alpha, \beta\} \subseteq S$, we have $\neg\left(\operatorname{pos}_{\pi_{S}(\bar{w})}(\alpha) \mathcal{R} \operatorname{pos}_{\pi_{S}(\bar{w})}(\beta)\right)$. But $\bar{w} \in[\bar{v}]$ implies $\pi_{S}(\bar{w}) \equiv \pi_{S}(\bar{u})$. Hence, $\pi_{S}(\bar{w}) \in\left[\pi_{S}(\bar{u})\right]$ and $\neg\left(\operatorname{pos}_{\pi_{S}(\bar{w})}(\alpha) \mathcal{R} \operatorname{pos}_{\pi_{S}(\bar{w})}(\beta)\right)$, contradicting (7.2).

Clearly the above results also hold for comtraces as they are just g-comtraces with inl $=\emptyset$.

8. Maximally concurrent and canonical representations

In this section, we show that traces, comtraces and g-comtraces all have some special representations, that intuitively correspond to maximally concurrent execution of concurrent histories, i.e., "executing as much as possible in parallel". This kind of semantics is formally defined and analyzed for example in [3]. However such representations are truly unique only for comtraces. For traces and g-comtraces, unique (or canonical) representations are obtained by adding some arbitrary total ordering on their alphabets.

In this section we will start with the general case of g-comtraces and then consider comtraces and traces as a special case.

8.1. Representations of generalized comtraces

Let $\Theta=(E, \operatorname{sim}$, ser, inl $)$ be a g-comtrace alphabet and \mathbb{S} be the set of all steps over Θ. We will start with the most "natural" definition which is the straightforward application of the approach used in [3] for an alternative version of traces called "vector firing sequences" (see [14,27]).

Definition 13 (Greedy maximally concurrent form). A step sequence $u=A_{1} \ldots A_{k} \in \mathbb{S}^{*}$ is in greedy maximally concurrent form (GMC-form) if and only if for each $i=1, \ldots, k$:

$$
\left(B_{i} y_{i} \equiv A_{i} \ldots A_{k}\right) \quad \Longrightarrow \quad\left|B_{i}\right| \leqslant\left|A_{i}\right|
$$

where for all $i=1, \ldots, k, A_{i}, B_{i} \in \mathbb{S}$, and $y_{i} \in \mathbb{S}^{*}$.
Proposition 11. For each g-comtrace \mathbf{u} over Θ there is a step sequence $u \in \mathbb{S}^{*}$ in GMC-form such that $\mathbf{u}=[u]$.
Proof. Let $u=A_{1} \ldots A_{k}$, where the steps A_{1}, \ldots, A_{k} are generated by the following simple greedy algorithm:

```
Initialize \(i \leftarrow 0\) and \(u_{0} \leftarrow u\)
while \(u_{i} \neq \lambda\) do
    \(i \leftarrow i+1\)
    Find \(A_{i}\) such that there exists \(y\) such that \(A_{i} y \equiv u_{i-1}\) and for each \(B z \equiv A_{i} y \equiv u_{i-1},|B| \leqslant\left|A_{i}\right|\)
    \(u_{i} \leftarrow u_{i-1} \div{ }_{L} A_{i}\)
end while
\(k \leftarrow i-1\).
```

Since weight $\left(u_{i+1}\right)<$ weight $\left(u_{i}\right)$ the above algorithm always terminates. Clearly $u=A_{1} \ldots A_{k}$ is in GMC-form and $u \in \mathbf{u}$.

The algorithm from the proof of Proposition 11 used to generate A_{1}, \ldots, A_{k} justifies the prefix "greedy" in Definition 13. However the GMC representation of g-comtraces is seldom unique and often not "maximally concurrent". Consider the following two examples.

Example 8. Let $E=\{a, b, c\}, \operatorname{sim}=\{(a, c),(c, a)\}, \operatorname{ser}=\operatorname{sim}$ and inl $=\{(a, b),(b, a)\}$ and $\mathbf{u}=[\{a\}\{b\}\{c\}]=\{\{a\}\{b\}\{c\},\{b\}\{a\}\{c\}$, $\{b\}\{a, c\}\}$. Note that both $\{a\}\{b\}\{c\}$ and $\{b\}\{a, c\}$ are in GMC-form, but only $\{b\}\{a, c\}$ can intuitively be interpreted as maximally concurrent.

Example 9. Let $E=\{a, b, c, d, e\}$, and $\operatorname{sim}=s e r$, inl be as in the picture below, and let $\mathbf{u}=[\{a\}\{b, c, d, e\}]$. One can easily verify by inspection that $\{a\}\{b, c, d, e\}$ is the shortest element of \mathbf{u} and the only element of \mathbf{u} in GMC-form is $\{b, e, d\}\{a\}\{c\}$. The step sequence $\{b, e, d\}\{a\}\{c\}$ is longer and intuitively less maximally concurrent than the step sequence $\{a\}\{b, c, d, e\}$.

sim:
inl:
\qquad
inl:

Hence for g-comtraces the greedy maximal concurrency notion is not necessarily the global maximal concurrency notion, so we will try another approach.

Let $x=A_{1} \ldots A_{k}$ be a step sequence. We define length $\left(A_{1} \ldots A_{k}\right) \triangleq k$. We also say that A_{i} is maximally concurrent in x if $B_{i} y_{i} \equiv A_{i} \ldots A_{k} \Longrightarrow\left|B_{i}\right| \leqslant\left|A_{i}\right|$. Note that A_{k} is always maximally concurrent in x, which makes the following definition correct.

For every step sequence $x=A_{1} \ldots A_{k}$, let $m c(x)$ be the smallest i such that A_{i} is maximally concurrent in x.

Definition 14. A step sequence $u=A_{1} \ldots A_{k}$ is maximally concurrent (MC-) iff

1. $v \equiv u \Longrightarrow$ length $(u) \leqslant$ length (v),
2. for all $i=1, \ldots, k$ and for all w,

$$
\left(u_{i}=A_{i} \ldots A_{k} \equiv w \wedge \text { length }\left(u_{i}\right)=\text { length }(w)\right) \quad \Longrightarrow \quad m c\left(u_{i}\right) \leqslant m c(w)
$$

Theorem 5. For every g-comtrace \mathbf{u}, there exists a step sequence $u \in \mathbf{u}$ such that u is maximally concurrent.

Proof. Let $u_{1} \in \mathbf{u}$ be a step sequence such that for each $v, v \equiv u_{1} \Longrightarrow$ length $\left(u_{1}\right) \leqslant$ length (v), and $\left(v \equiv u_{1} \wedge\right.$ length $\left(u_{1}\right)=$ length $(v)) \Longrightarrow m c\left(u_{1}\right) \leqslant m c(v)$. Obviously such u_{1} exists for every g-comtrace \mathbf{u}. Assume that $u_{1}=A_{1} w_{1}$ and length $\left(u_{1}\right)=k$. Let u_{2} be a step sequence satisfying $u_{2} \equiv w_{1}, u_{2} \equiv v \Longrightarrow$ length $\left(u_{2}\right) \leqslant$ length (v), and ($v \equiv u_{2} \wedge$ length $\left(u_{2}\right)=$ length $\left.(v)\right) \Longrightarrow$ $m c\left(u_{2}\right) \leqslant m c(v)$. Assume that $u_{2}=A_{2} w_{3}$. We repeat this process $k-1$ times. Note that $u_{k}=A_{k} \in \mathbb{S}$. The step sequence $u=A_{1} \ldots A_{k}$ is maximally concurrent and $u \in \mathbf{u}$.

For the case of Example 8 the step sequence $\{b\}\{a, c\}$ is maximally concurrent and for the case of Example 9 the step sequence $\{a\}\{b, c, d, e\}$ is maximally concurrent. There may be more than one maximally concurrent step sequences in a g-comtrace. For example if $E=\{a, b\}, \operatorname{sim}=\operatorname{ser}=\emptyset, \operatorname{inl}=\{(a, b),(b, a)\}$, then the g-comtrace $t=[\{a\}\{b\}]=\{\{a\}\{b\},\{b\}\{a\}\}$ and both $\{a\}\{b\}$ and $\{b\}\{a\}$ are maximally concurrent.

Having a canonical (unique) representation is often useful in proving properties about g-comtraces since it allows us to uniquely identify a g-comtrace. Furthermore, to be really useful in proofs, a canonical representation should be easy to construct and manipulate. For g-comtraces, it turns out that a natural way to get a canonical representation is: fix a total order on the alphabet, extend it to a lexicographical ordering on step sequences, and then simply choose the lexicographically least element.

Definition 15 (Lexicographical ordering). Assume that we have a total order $<_{E}$ on E.

1. We define a step order $<^{\text {st }}$ on \mathbb{S} as follows:

$$
A<^{s t} B \quad \stackrel{d f}{\Longleftrightarrow}|A|>|B| \vee\left(|A|=|B| \wedge A \neq B \wedge \min _{<E}(A \backslash B)<_{E} \min _{<E}(B \backslash A)\right),
$$

where $\min _{<_{E}}(X)$ denotes the least element of the set $X \subseteq E$ w.r.t. $<_{E}$.
2. Let $A_{1} \ldots A_{n}$ and $B_{1} \ldots B_{m}$ be two sequences in \mathbb{S}^{*}. We define a lexicographical order $<^{l e x}$ on step sequences in a natural way as the lexicographical order induced by $<^{\text {st }}$, i.e.,

$$
A_{1} \ldots A_{n}<{ }^{l e x} B_{1} \ldots B_{m} \quad \stackrel{d f}{\Longleftrightarrow} \quad \exists k>0 \quad \forall i<k .\left(A_{i}=B_{i} \wedge\left(A_{k}<{ }^{s t} B_{k} \vee n<k \leqslant m\right)\right) .
$$

Directly from the above definition, it follows that $<^{\text {st }}$ totally orders the set of possible steps \mathbb{S} and $<^{\text {lex }}$ totally orders the set of possible step sequences \mathbb{S}^{*}.

Example 10. Assume that $a<_{E} b<_{E} c<_{E} d<_{E} e$. Then we have $\{a, b, c, e\}<^{s t}\{b, c, d\}$ since $\{a, b, c, e\} \backslash\{b, c, d\}=\{a\},\{b, c, d\} \backslash$ $\{a, b, c, e\}=\{d\}$, and $a<_{E} d$. And $\{a, c\}\{b, c\}\{d\}\{d, c\}<{ }^{l e x}\{a, c\}\{b\}\{c, d, e\}$ since $|\{b, c\}|>|\{b\}|$.

Definition 16 (g-canonical step sequence). A step sequence $x \in \mathbb{S}^{*}$ is g-canonical if for every step sequence $y \in \mathbb{S}^{*}$, we have $(x \equiv y \wedge x \neq y) \Longrightarrow x<^{l e x} y$.

In other words, x is g-canonical if it is the least element in the g-comtrace $[x]$ with respect to the lexicographical ordering $<^{\text {lex }}$.

Corollary 3.

1. Each g-canonical step sequence is in GMC-form.
2. For every step sequence $x \in \mathbb{S}^{*}$, there exists a unique g-canonical sequence $u \equiv x$.

All of the concepts and results discussed so far in this section hold also for general equational monoids derived from the step sequence monoid (like those considered in [15]). We will now show that for both comtraces and traces, the GMC-form, MC-form and g-canonical form correspond to the canonical form discussed in [2,3,11,15].

8.2. Canonical representations of comtraces

First note that comtraces are just g-comtraces with an empty relation inl, so all definitions for g-comtraces also hold for comtraces.

Let $\theta=(E, \operatorname{sim}, \operatorname{ser})$ be a comtrace alphabet (i.e. inl $=\emptyset$) and \mathbb{S} be the set of all steps over θ. In principle, $(a, b) \in \operatorname{ser}$ means that the sequence $\{a\}\{b\}$ can be replaced by the set $\{a, b\}$ (and vice versa). We start with the definition of a relation between steps that allows such replacement.

Definition 17 (Forward dependency). Let $\mathbb{F} \subseteq \mathbb{S} \times \mathbb{S}$ be a relation comprising all pairs of steps (A, B) such that there exists a step $C \in \mathbb{S}$ such that

$$
C \subseteq B \wedge A \times C \subseteq \operatorname{ser} \wedge C \times(B \backslash C) \subseteq \operatorname{ser}
$$

The relation $\mathbb{F D}$ is called forward dependency on steps.
Note that in this definition $C \in \mathbb{S}$ implies $C \neq \emptyset$, but $C=B$ is allowed. The next result explains the name "forward dependency" of $\mathbb{F D}$. If $(A, B) \in \mathbb{F D}$, then some elements from B can be moved to A and the outcome will still be equivalent to $A B$.

Lemma 2. $(A, B) \in \mathbb{F D} \Longleftrightarrow(\exists C \in \wp \backslash\{\emptyset\}(B) .(A \cup C)(B \backslash C) \equiv A B) \vee A \cup B \equiv A B$.
Proof. (\Rightarrow) If $C=B$ then $A \cup B \approx A B$ which implies $A \cup B \equiv A B$. If $C \subset B$ and $C \neq \emptyset$ then we have $(A \cup C)(B \backslash C) \approx$ $A C(B \backslash C) \approx A B$, i.e. $(A \cup C)(B \backslash C) \equiv A B$.
(\Leftarrow) Assume $A \cup B \equiv A B$. This means $A \cup B \in \mathbb{S}$ and consequently $A \cap B=\emptyset, A \times B \subseteq$ ser. Let $a \in A, b \in B$. By Proposition $8(6),\{a, b\}=\pi_{\{a, b\}}(A \cup B) \equiv \pi_{\{a, b\}}(A B)=\{a\}\{b\}$. But $\{a, b\} \equiv\{a\}\{b\}$ means $(a, b) \in$ ser. Therefore $A \times B \subseteq$ ser, i.e. $(A, B) \in \mathbb{F} \mathbb{D}$.

Assume $C \subset B, C \neq \emptyset$ and $(A \cup C)(B \backslash C) \equiv A B$. This implies $A \cup C \in \mathbb{S}$ and $A \cap C=\emptyset$. Let $a \in A$ and $c \in C$. By Proposition 8(6), $\{a, c\}=\pi_{\{a, c\}}(A \cup C)(B \backslash C) \equiv \pi_{\{a, c\}}(A B)=\{a\}\{c\}$. But $\{a, c\} \equiv\{a\}\{c\}$ means $(a, c) \in$ ser. Hence $A \times C \subseteq$ ser. Let $b \in B \backslash C$ and $c \in C$. By Proposition $8(6),\{c\}\{b\}=\pi_{\{b, c\}}(A \cup C)(B \backslash C) \equiv \pi_{\{b, c\}}(A B)=\{b, c\}$. Thus $\{c\}\{b\} \equiv\{b, c\}$, which means $(c, b) \in \operatorname{ser}$, i.e. $C \times(B \backslash C) \subseteq$ ser. Hence $(A, B) \in \mathbb{F D}$.

We will now recall the definition of a canonical step sequence for comtraces.

Definition 18 (Comtrace canonical step sequence). (See [11].) A step sequence $u=A_{1} \ldots A_{k}$ is canonical if we have $\left(A_{i}, A_{i+1}\right) \notin$ $\mathbb{F D}$ for all $i, 1 \leqslant i<k$.

The next results show that a canonical step sequence for comtraces is in fact "greedy".
Lemma 3. For each non-empty canonical step sequence $u=A_{1} \ldots A_{k}$, we have

$$
A_{1}=\left\{a \mid \exists w \in[u] . w=C_{1} \ldots C_{m} \wedge a \in C_{1}\right\} .
$$

Proof. Let $A=\left\{a \mid \exists w \in[u] . w=C_{1} \ldots C_{m} \wedge a \in C_{1}\right\}$. Since $u \in[u], A_{1} \subseteq A$. We need to prove that $A \subseteq A_{1}$. Definitely $A=A_{1}$ if $k=1$, so assume $k>1$. Suppose that $a \in A \backslash A_{1}, a \in A_{j}, 1<j \leqslant k$, and $a \notin A_{i}$ for $i<j$. Since $a \in A$, there is $v=B x \in[u]$ such that $a \in B$. Note that $A_{j-1} A_{j}$ is also canonical and $u^{\prime}=A_{j-1} A_{j}=\left(u \div R\left(A_{j+1} \ldots A_{k}\right)\right) \div L\left(A_{1} \ldots A_{j-2}\right)$. Let $v^{\prime}=\left(v \div R\left(A_{j+1} \ldots A_{k}\right)\right) \div L\left(A_{1} \ldots A_{j-2}\right)$. We have $v^{\prime}=B^{\prime} x^{\prime}$ where $a \in B^{\prime}$. By Corollary $1, u^{\prime} \equiv v^{\prime}$. Since $u^{\prime}=A_{j-1} A_{j}$ is canonical then $\exists c \in A_{j-1} .(c, a) \notin \operatorname{ser}$ or $\exists b \in A_{j} .(a, b) \notin \operatorname{ser}$.

- For the former case: $\pi_{\{a, c\}}\left(u^{\prime}\right)=\{c\}\{a\}$ (if $c \notin A_{j}$) or $\pi_{\{a, c\}}\left(u^{\prime}\right)=\{c\}\{a, c\}$ (if $\left.c \in A_{j}\right)$. If $\pi_{\{a, c\}}\left(u^{\prime}\right)=\{c\}\{a\}$ then $\pi_{\{a, c\}}\left(v^{\prime}\right)$ equals either $\{a, c\}$ (if $c \in B^{\prime}$) or $\{a\}\{c\}$ (if $c \notin B^{\prime}$), i.e., in both cases $\pi_{\{a, c\}}\left(u^{\prime}\right) \not \equiv \pi_{\{a, c\}}\left(v^{\prime}\right)$, contradicting Proposition 8(6). If $\pi_{\{a, c\}}\left(u^{\prime}\right)=\{c\}\{a, c\}$ then $\pi_{\{a, c\}}\left(v^{\prime}\right)$ equals either $\{a, c\}\{c\}$ (if $c \in B^{\prime}$) or $\{a\}\{c\}\{c\}$ (if $c \notin B^{\prime}$). However in both cases $\pi_{\{a, c\}}\left(u^{\prime}\right) \not \equiv \pi_{\{a, c\}}\left(v^{\prime}\right)$, contradicting Proposition $8(6)$. For the latter case, let $d \in A_{j-1}$. Then $\pi_{\{a, b, d\}}\left(u^{\prime}\right)=\{d\}\{a, b\}$ (if $d \notin A_{j}$), or $\pi_{\{a, b, d\}}\left(u^{\prime}\right)=\{d\}\{a, b, d\}$ (if $d \in A_{j}$). If $\pi_{\{a, b, d\}}\left(u^{\prime}\right)=\{d\}\{a, b\}$ then $\pi_{\{a, b, d\}}\left(v^{\prime}\right)$ is one of the following $\{a, b, d\},\{a, b\}\{d\},\{a, d\}\{b\},\{a\}\{b\}\{d\}$ or $\{a\}\{d\}\{b\}$, and in either case $\pi_{\{a, b, d\}}\left(u^{\prime}\right) \not \equiv \pi_{\{a, b, d\}}\left(v^{\prime}\right)$, again contradicting Proposition 8(6).
- If $\pi_{\{a, b, d\}}\left(u^{\prime}\right)=\{d\}\{a, b, d\}$, then we know $\pi_{\{a, b, d\}}\left(v^{\prime}\right)$ is one of the following $\{a, b, d\}\{d\},\{a, b\}\{d\}\{d\},\{a, d\}\{b, d\}$, $\{a, d\}\{b\}\{d\},\{a, d\}\{d\}\{b\},\{a\}\{b\}\{d\}\{d\},\{a\}\{d\}\{b\}\{d\}$, or $\{a\}\{d\}\{d\}\{b\}$. However in any of these cases we have $\pi_{\{a, b, d\}}\left(u^{\prime}\right) \not \equiv$ $\pi_{\{a, b, d\}}\left(v^{\prime}\right)$, contradicting Proposition 8(6) as well.

We will now show that for comtraces the canonical form from Definition 18 and GMC-form are equivalent, and that each comtrace has a unique canonical representation.

Theorem 6. A step sequence u is in GMC-form if and only if it is canonical.
Proof. (\Leftarrow) Suppose that $u=A_{1} \ldots A_{k}$ is canonical. By Lemma 3 we have that for each $B_{1} y_{1} \equiv A_{1} \ldots A_{k},\left|B_{1}\right| \leqslant\left|A_{1}\right|$. Since each $A_{i} \ldots A_{k}$ is also canonical, $A_{2} \ldots A_{k}$ is canonical so by Lemma 3 again we have that for each $B_{2} y_{2} \equiv A_{2} \ldots A_{k}$, $\left|B_{2}\right| \leqslant\left|A_{2}\right|$. And so on, i.e. $u=A_{1} \ldots A_{k}$ is in GMC-form.
(\Rightarrow) Suppose that $u=A_{1} \ldots A_{k}$ is not canonical, and j is the smallest number such that $\left(A_{j}, A_{j+1}\right) \in \mathbb{F D}$. Hence $A_{1} \ldots A_{j-1}$ is canonical, and, by (\Leftarrow) of this theorem, in GMC-form. By Lemma 2, either there is a non-empty $C \subset A_{j+1}$ such that $\left(A_{j} \cup C\right)\left(A_{j+1} \backslash B\right) \equiv A_{j} A_{j+1}$, or $A_{j} \cup A_{j+1} \equiv A_{j} A_{j+1}$. In the first case since $C \neq \emptyset,\left|A_{j} \cup C\right|>\left|A_{j}\right|$; in the second case $\left|A_{j} \cup A_{j+1}\right|>\left|A_{j}\right|$, so $A_{j} \ldots A_{k}$ is not in GMC-form, which means $u=A_{1} \ldots A_{k}$ is not in GMC-form either.

Theorem 7. (Implicit in [11].) For each step sequence v there is a unique canonical step sequence u such that $v \equiv u$.
Proof. The existence follows from Proposition 11 and Theorem 6. We only need to show uniqueness. Suppose that $u=$ $A_{1} \ldots A_{k}$ and $v=B_{1} \ldots B_{m}$ are both canonical step sequences and $u \equiv v$. By induction on $k=|u|$ we will show that $u=v$. By Lemma 3, we have $B_{1}=A_{1}$. If $k=1$, this ends the proof. Otherwise, let $u^{\prime}=A_{2} \ldots A_{k}$ and $w^{\prime}=B_{2} \ldots B_{m}$ and u^{\prime}, v^{\prime} are both canonical step sequences of $\left[u^{\prime}\right]$. Since $\left|u^{\prime}\right|<|u|$, by the induction hypothesis, we obtain $A_{i}=B_{i}$ for $i=2, \ldots, k$ and $k=m$.

The result of Theorem 7 was not stated explicitly in [11], but it can be derived from the results of Propositions 3.1, 4.8 and 4.9 of [11]. However Propositions 3.1 and 4.8 of [11] involve the concepts of partial orders and stratified order structures, while the proof of Theorem 7 uses only the algebraic properties of step sequences and comtraces.

Immediately from Theorems 6 and 7 we get the following result.
Corollary 4. A step sequence u is canonical if and only if it is g-canonical.
It turns out that for comtraces the canonical representation and MC representation are also equivalent.
Lemma 4. If a step sequence u is canonical and $u \equiv v$, then length $(u) \leqslant \operatorname{length}(v)$.
Proof. By induction on length (v). Obvious for length $(v)=1$ as then $u=v$. Assume it is true for all v such that length $(v) \leqslant$ $r-1, r \geqslant 2$. Consider $v=B_{1} B_{2} \ldots B_{r}$ and let $u=A_{1} A_{2} \ldots A_{k}$ be a canonical step sequence such that $v \equiv u$. Let $v_{1}=v \div L$ $A_{1}=C_{1} \ldots C_{s}$. By Corollary $1(2), v_{1} \equiv u \div{ }_{L} A_{1}=A_{2} \ldots A_{k}$, and $A_{2} \ldots A_{k}$ is clearly canonical. Hence by induction assumption $k-1=\operatorname{length}\left(A_{2} \ldots A_{k}\right) \leqslant s$. By Lemma $3, B_{1} \subseteq A_{1}$, hence $v_{1}=v \div_{L} A_{1}=B_{2} \ldots B_{r} \div_{L} A_{1}=C_{1} \ldots C_{s}$, which means $s \leqslant r-1$. Therefore $k-1 \leqslant s \leqslant r-1$, i.e. $k \leqslant r$, which ends the proof.

Theorem 8. A step sequence u is maximally concurrent if and only if it is canonical.
Proof. (\Leftarrow) Let u be canonical. From Lemma 4 it follows the condition (1) of Definition 14 is satisfied. By Theorem $6, u$ is in GMC-form, so the condition (2) of Definition 14 is satisfied as well.
(\Rightarrow) By induction on length (u). It is obviously true for $u=A_{1}$. Suppose it is true for length $(u)=k$. Let $u=$ $A_{1} A_{2} \ldots A_{k} A_{k+1}$ be maximally concurrent. The step sequence $A_{2} \ldots A_{k+1}$ is also maximally concurrent and canonical by the induction assumption. If $A_{1} A_{2} \ldots A_{k+1}$ is not canonical, then $\left(A_{1}, A_{2}\right) \in \mathbb{F D}$. By Lemma 2, either there is non-empty $C \subset B$ such that $\left(A_{1} \cup C\right)\left(A_{2} \backslash C\right) \equiv A_{1} A_{2}$, or $A_{1} \cup A_{2} \equiv A_{1} B_{2}$. Hence either $\left(A_{1} \cup C\right)\left(A_{2} \backslash C\right) A_{3} \ldots A_{k+1} \equiv A_{1} \ldots A_{k+1}=u$ or $\left(A \cup A_{2}\right) A_{3} \ldots A_{k+1} \equiv A_{1} \ldots A_{k+1}=u$. The former contradicts the condition (2) of Definition 14, the latter one contradicts the condition (1) of Definition 14 , so u is not maximally concurrent, which means $\left(A_{1}, A_{2}\right) \notin \mathbb{F D}$, so $u=A_{1} \ldots A_{k+1}$ is canonical.

Summing up, as far as canonical representation is concerned, comtraces behave quite nicely. All three forms for gcomtraces, GMC-form, MC-form and g-canonical form, collapse to one comtrace canonical form if inl= \emptyset.

8.3. Canonical representations of traces

We will show that the canonical representations of traces are conceptually the same as the canonical representations of comtraces. The differences are merely "syntactical", as traces are sets of sequences, so "maximal concurrency" cannot be expressed explicitly, while comtraces are sets of step sequences.

Let $(E$, ind $)$ be a trace alphabet and $\left(E^{*} / \equiv, \circledast,[\lambda]\right)$ be the corresponding monoid of traces. A sequence $x=a_{1} \ldots a_{k} \in E^{*}$ is called fully commutative if $\left(a_{i}, a_{j}\right) \in$ ind for all $i \neq j$ and $i, j \in\{1, \ldots, k\}$.

Corollary 5. If $x=a_{1} \ldots a_{k} \in E^{*}$ is fully commutative and $y=a_{i_{1}} \ldots a_{i_{k}}$ is any permutation of $a_{1} \ldots a_{k}$, then $x \equiv y$.

The above corollary could be interpreted as saying that if $x=a_{1} \ldots a_{k} \in E^{*}$ is fully commutative than the set of events $\left\{a_{1}, \ldots, a_{k}\right\}$ can be executed simultaneously.

Definition 19 (Greedy maximally concurrent form for traces). (See [2,3].) A sequence $x \in E^{*}$ is in greedy maximally concurrent form (GMC-form) if $x=\lambda$ or $x=x_{1} \ldots x_{n}$ such that

1. each x_{i} is fully commutative, for $i=1, \ldots, n$,
2. for each $1 \leqslant i \leqslant n-1$ and for each element a of x_{i+1} there exists an element b of x_{i} such that $(a, b) \notin$ ind.

Often the form from the above definition is called "canonical" $[3,14,15]$.
Theorem 9. (See $[2,3]$.$) For every trace \boldsymbol{t} \in E^{*} / \equiv$, there exists $x \in E^{*}$ such that $\boldsymbol{t}=[x]$ and x is in the GMC-form.
The GMC-form as defined above is not unique, a trace may have more than one GMC representation. For instance the trace $\mathbf{t}_{1}=[a b c b c a]$ from Example 2 has four GMC representations: $a b c b c a, a c b b c a, a b c c b a$, and $a c b c b a$. The GMC-form is however unique when traces are represented as vector firing sequences ${ }^{6}$ [3,14,27], where each fully commutative sequence is represented by a unique vector of events (so the name "canonical" used in $[3,14]$ is justified). To get uniqueness for Mazurkiewicz traces, it suffices to order fully commutative sequences. For example, we may introduce an arbitrary total order on E, extend it lexicographically to E^{*} and add the condition that in the representation $x=x_{1} \ldots x_{n}$, each x_{i} is minimal w.r.t. the lexicographic ordering. The GMC-form with this additional condition is called Foata canonical form.

Theorem 10. (See [2].) Every trace has a unique representation in the Foata canonical form.
We will now show the relationship between GMC-form for traces and GMC-form (or canonical form) for comtraces.
Define \mathbb{S}, the set of steps generated by (E, ind) as the set of all cliques of the graph of the relation ind, and for each fully commutative sequence $x=a_{1} \ldots a_{n}$, let $\operatorname{st}(x)=\left\{a_{1}, \ldots, a_{n}\right\} \in \mathbb{S}$ be the step generated by x.

For each sequence $x=x_{1} \ldots x_{k}$ in GMC-form in (E, ind), we call the step sequence $x^{\{\max \}}=\operatorname{st}\left(x_{1}\right) \ldots \operatorname{st}\left(x_{k}\right) \in \mathbb{S}^{*}$, the maximally concurrent step sequence representation of x. Note that by Theorem 10 , the step sequence $x^{\{\max \}}$ is unique. The name is formally justified by the following result (which also follows implicitly from [3]).

Proposition 12.

1. A sequence $x=x_{1} \ldots x_{n}$ is in GMC-form in (E, ind) if and only if the step sequence $x^{\{\max \}}=\operatorname{st}\left(x_{1}\right) \ldots \operatorname{st}\left(x_{k}\right)$ is in GMC-form (or canonical form) in (E, sim, ser) where $\operatorname{sim}=\operatorname{ser}=$ ind.
2. $[x]_{\equiv_{\text {ind }}} \stackrel{\mathrm{t}}{ } \stackrel{\text { m }}{\equiv} \mathrm{C}\left[x^{\{\max \}}\right]_{\equiv_{\text {ser }}}$.

Proof. 1. If $x=x_{1} \ldots x_{n}$ is not in GMC-form then by (2) of Definition 19, there are x_{i}, x_{i+1} and $b \in \operatorname{st}\left(x_{i+1}\right)$ such that for all $a \in \operatorname{st}\left(x_{i}\right),(a, b) \in$ ind. Since ser $=$ ind this means that $\left(\operatorname{st}\left(x_{1}\right), \operatorname{st}\left(x_{i+1}\right)\right) \in \mathbb{F D}$, so $x^{\{\max \}}$ is not canonical. Suppose that $x^{\{\max \}}$ is not canonical, i.e. $\left(\operatorname{st}\left(x_{1}\right), \operatorname{st}\left(x_{i+1}\right)\right) \in \mathbb{F D}$ for some i. This means there is a non-empty $C \subseteq \operatorname{st}\left(x_{i+1}\right)$ such that $\operatorname{st}\left(x_{i}\right) \times C \subseteq \operatorname{ser}$ and $C \times\left(\operatorname{st}\left(x_{i+1}\right) \backslash C\right) \subseteq \operatorname{ser}$. Let $a \in \operatorname{st}\left(x_{i}\right)$ and $b \in C \subseteq \operatorname{st}\left(x_{i+1}\right)$. Since ind $=\operatorname{ser}$, then $(a, b) \in$ ind, so $x=x_{1} \ldots x_{n}$ is not in GMC-form.
2. Clearly $[x]_{\equiv_{\text {ind }}} \stackrel{\text { thw }}{\equiv}\left[x^{\{ \}}\right]_{\equiv_{\text {ser }}}$. Let $a_{1} \ldots a_{n}$ be a fully commutative sequence. Since ser $=$ ind, $\left\{a_{1}\right\} \ldots\left\{a_{n}\right\} \equiv_{\text {ser }}\left\{a_{1}, \ldots, a_{n}\right\}$. Hence, for each sequence $x, x^{\{ \}} \equiv_{\text {ser }} x^{\{\max \}}$, i.e. $\left[x^{\{ \}}\right]_{\equiv_{\text {ser }}}=\left[x^{\{\max \}}\right]_{\equiv_{\text {ser }}}$.

Hence we have proved that the GMC-form (or canonical form) for comtraces and GMC-form for traces are semantically identical concepts. They both describe the greedy maximally concurrent semantics, which for both comtraces and traces is also the global maximally concurrent semantics.

9. Comtraces and stratified order structures

In this section we will recall the major result of [11] that shows how comtraces define appropriate so-structures. We will start with the definition of \diamond-closure construction that plays a substantial role in most applications of so-structures for modelling concurrent systems (cf. [11,19,17,18]).

Definition 20 (Diamond closure of relational structures). (See [11].) Given a relational structure $S=\left(X, R_{1}, R_{2}\right)$, we define S^{\diamond}, the \diamond-closure of S, as

[^5]$$
S^{\diamond} \triangleq\left(X, \prec_{R_{1}, R_{2}}, \sqsubset_{R_{1}, R_{2}}\right)
$$
where $\prec_{R_{1}, R_{2}} \triangleq\left(R_{1} \cup R_{2}\right)^{*} \circ R_{1} \circ\left(R_{1} \cup R_{2}\right)^{*}$ and $\sqsubset_{R_{1}, R_{2}} \triangleq\left(R_{1} \cup R_{2}\right)^{*} \backslash i d_{X}$.
The motivation behind the above definition is the following. For 'reasonable' R_{1} and R_{2}, the relational structure $\left(X, R_{1}, R_{2}\right)^{\diamond}$ should satisfy the axioms $S 1$-S4 of the so-structure definition. Intuitively, \diamond-closure is a generalization of the transitive closure constructions for relations to so-structures. Note that if $R_{1}=R_{2}$ then $\left(X, R_{1}, R_{2}\right)^{\diamond}=\left(X, R_{1}^{+}, R_{1}^{+}\right)$. The following result shows that the properties of \diamond-closure are close to the appropriate properties of transitive closure.

Theorem 11 (Closure properties of \diamond-closure). (See [11].) For a relational structure $S=\left(X, R_{1}, R_{2}\right)$,

1. if R_{2} is irreflexive, then $S \subseteq S^{\diamond}$,
2. $\left(S^{\diamond}\right)^{\diamond}=S^{\diamond}$,
3. S^{\diamond} is a so-structure if and only if $\prec_{R_{1}, R_{2}}=\left(R_{1} \cup R_{2}\right)^{*} \circ R_{1} \circ\left(R_{1} \cup R_{2}\right)^{*}$ is irreflexive,
4. if S is a so-structure, then $S=S^{\diamond}$.

Every comtrace is a set of equivalent step sequences and every step sequence represents a stratified order, so a comtrace can be interpreted as a set of equivalent stratified orders. From the theory presented in Section 4 and the fact that comtrace satisfies paradigm π_{3}, it follows that this set of orders should define a so-structure, which should be called a so-structure defined by a given comtrace. On the other hand, with respect to a comtrace alphabet, every comtrace can be uniquely generated from any step sequence it contains. Thus, we will show that given a step sequence u over a comtrace alphabet, without analyzing any other elements of the comtrace $[u]$ but u itself, we will be able to construct the same so-structure as the one defined by the whole comtrace. Formulations and proofs of such results are done in [11] and depend heavily on the \diamond-closure construction and its properties.

Let $\theta=(E, \operatorname{sim}$, ser $)$ be a comtrace alphabet, and let $u \in \mathbb{S}^{*}$ be a step sequence and let $\triangleleft_{u} \subseteq \Sigma_{u} \times \Sigma_{u}$ be the stratified order generated by u as defined in Section 2.3. Note that if $u \equiv w$ then $\Sigma_{u}=\Sigma_{w}$. Thus, for every comtrace $\mathbf{x}=[u] \in \mathbb{S}^{*} / \equiv$, we can define $\Sigma_{\mathbf{x}}=\Sigma_{u}$.

We will now show how the \diamond-closure operator is used to define a so-structure induced by a single step sequence u.

Definition 21. Let $u \in \mathbb{S}^{*}$. We define the relations $\prec_{u}, \sqsubset_{u} \subseteq \Sigma_{\mathbf{u}} \times \Sigma_{\mathbf{u}}$ as:

1. $\alpha \prec_{u} \beta \stackrel{d f}{\Longleftrightarrow} \alpha \triangleleft_{u} \beta \wedge(l(\alpha), l(\beta)) \notin$ ser,
2. $\alpha \sqsubset_{u} \beta \stackrel{d f}{\Longleftrightarrow} \alpha \triangleleft_{u} \beta \wedge(l(\beta), l(\alpha)) \notin \operatorname{ser}$.

Lemma 5. (See [11, Lemma 4.7].) For all $u, v \in \mathbb{S}^{*}$, if $u \equiv v$, then $\prec_{u}=\prec_{v}$ and $\sqsubset_{u}=\sqsubset_{v}$.
Definition 21 together with Lemma 5 describes two basic local invariants of the elements of $\Sigma_{\mathbf{u}}$. The relation \prec_{u} captures the situation when α always precedes β, and the relation \sqsubset_{u} captures the situation when α never follows β.

Definition 22. Given a comtrace $\mathbf{u}=[u] \in \mathbb{S}^{*} / \equiv$. We define

$$
S^{\{u\}} \triangleq\left(\Sigma_{\mathbf{u}}, \prec_{u}, \sqsubset_{u}\right)^{\diamond}, \quad S_{\mathbf{u}} \triangleq\left(\Sigma_{\mathbf{u}}, \bigcap_{x \in \mathbf{u}} \triangleleft_{x}, \bigcap_{x \in \mathbf{u}} \triangleleft_{x}\right) .
$$

The relational structure $S^{\{u\}}$ is the so-structure induced by the single step sequence u and $S_{\mathbf{u}}$ is the so-structure defined by the comtrace \mathbf{u}. The following theorem justifies the names and summarizes some nontrivial results concerning the sostructures generated by comtraces.

Theorem 12. (See [11,12].) For all $u, v \in \mathbb{S}^{*}$, we have

1. $S^{\{u\}}$ and $S_{[u]}$ are so-structures,
2. $u \equiv v \Longleftrightarrow S^{\{u\}}=S^{\{v\}}$,
3. $S^{\{u\}}=S_{[u]}$,
4. $\operatorname{ext}\left(S_{[u]}\right)=\left\{\triangleleft_{x} \mid x \in[u]\right\}$.

Theorem 12 states that the so-structures $S^{\{u\}}$ and $S_{[u]}$ from Definition 22 are identical and their stratified extensions are exactly the elements of the comtrace $[u]$ with step sequences interpreted as stratified orders. However, from an algorithmic point of view, the definition of $S^{\{u\}}$ is more interesting, since building the relations \prec_{u} and \sqsubset_{u} and getting their \diamond-closure,

Fig. 3. An example of the relations sim, ser on $E=\{a, b, c, d\}$, and the so-structure (X, \prec, \sqsubset) defined by the comtrace $[\{a, b\}\{c\}\{a, d\}]_{\equiv s e r}=$ $\{\{a, b\}\{c\}\{a, d\},\{a\}\{b\}\{c\}\{a, d\},\{a\}\{b, c\}\{a, d\},\{b\}\{a\}\{c\}\{a, d\}\}$.
which in turn can be reduced to computing transitive closure of relations, can be done efficiently. In contrast, a direct use of the $S_{[u]}$ definition requires precomputing up to exponentially many elements of the comtrace [u].

Fig. 3 shows an example of a comtrace and the so-structure it generates.

10. Generalized stratified order structures generated by generalized comtraces

The relationship between g-comtraces and gso-structures is in principle the same as the relationship between comtraces and so-structures discussed in the previous section. Each g-comtrace uniquely determines a finite labeled gso-structure. However the formulations and proofs of these analogue results for g-comtraces are more complex. The difficulties are mainly due to the following facts:

- The definition of gso-structure is implicit, it involves using the induced so-structures (see Definition 5), which makes practically all definitions more complex (especially the counterpart of \diamond-closure), and the use of Theorem 4 more difficult than the use of Theorem 2.
- The internal property expressed by Theorem 3, which says that $\operatorname{ext}(S)$ conforms to paradigm π_{3} of [10], does not hold for gso-structures.
- Generalized comtraces do not have a 'natural' canonical form with a well understood interpretation.
- The relation inl introduces plenty of irregularities and increases substantially the number of cases that need to be considered in many proofs.

In this section, we will prove the analogue of Theorem 12 showing that every g-comtrace uniquely determines a finite gso-structure.

10.1. Commutative closure of relational structures

We will start with the notion of commutative closure of a relational structure. It is an extension of the concept of \diamond closure (see Definition 20) which was used in [11] and the previous section to construct finite so-structures from single step sequences or stratified orders.

Definition 23 (Commutative closure). Let $G=\left(X, R_{1}, R_{2}\right)$ be any relational structure, and let $R_{3}=R_{1} \cap R_{2}^{*}$. Using the notation from Definition 20, the commutative closure of the relational structure G is defined as

$$
G^{\bowtie}=\left(X,\left(\prec_{R_{3} R_{2}}\right)^{\text {sym }} \cup R_{1}, \sqsubset_{R_{3} R_{2}}\right) .
$$

The motivation behind the above definition is similar to that for \diamond-closure: for 'reasonable' R_{1} and $R_{2},\left(X, R_{1}, R_{2}\right)^{\bowtie}$ should be a gso-structure. Intuitively the \bowtie-closure is also a generalization of transitive closure for relations. Note that if $R_{1}=R_{2}$ then $\left(X, R_{1}, R_{2}\right)^{\bowtie}=\left(X,\left(R_{1}^{+}\right)^{\text {sym }}, R_{1}^{+}\right)$. Since the definition of gso-structures involves the definition of so-structures (see Definition 5), the definition of \bowtie-closure uses the concept of \diamond-closure.

Note that we do not have an equivalent of Theorem 11 for \bowtie-closure. The reason is that \bowtie-closure is tailored to simplify the proofs in the next section rather than to be a closure operator by itself. Nevertheless, \bowtie-closure satisfies some general properties of a closure operator.

The first property is the monotonicity of \bowtie-closure.
Proposition 13. If $G_{1}=\left(X, R_{1}, R_{2}\right)$ and $G_{2}=\left(X, Q_{1}, Q_{2}\right)$ are two relational structures such that $G_{1} \subseteq G_{2}$, then $G_{1}^{\bowtie} \subseteq G_{2}^{\bowtie}$.

Proof. Since $R_{1} \subseteq Q_{1}$ and $R_{2} \subseteq Q_{2}$ then $R_{3} \subseteq Q_{3}$, and $\left(X, R_{3}, R_{2}\right)^{\diamond} \subseteq\left(X, Q_{3}, Q_{2}\right)^{\diamond}$, i.e. $\prec_{R_{3} R_{2}} \subseteq \prec_{Q_{3} Q_{2}}$ and $\sqsubset_{R_{3} R_{2}} \subseteq \sqsubset_{Q_{3} Q_{2}}$, which immediately implies $G_{1}^{\bowtie} \subseteq G_{2}^{\bowtie}$.

Another desirable property of \bowtie-closure is that gso-structures are fixed points of \bowtie.
Proposition 14. If $G=(X, \diamond, \sqsubset)$ is a gso-structure then $G=G \bowtie$.
Proof. Since G is a gso-structure, by Definition $5, S_{G}=\left(X, \prec_{G}, \sqsubset\right)$ is a so-structure. Hence, by Theorem 11(4), $S_{G}=S_{G}^{\diamond}$, which implies $\sqsubset=\left(\prec_{G} \cup \sqsubset\right)^{*} \backslash i d_{X}$. But since S_{G} is a so-structure, $\prec_{G} \subseteq \sqsubset$. So $\sqsubset=\sqsubset^{*} \backslash i d_{X}$. Let $\prec=\diamond \cap \sqsubset^{*}$. Then since \diamond is irreflexive,

$$
\prec=>\cap \sqsubset^{*}=>\cap\left(\sqsubset^{*} \backslash i d_{X}\right)=>\cap \sqsubset=\prec_{G}
$$

Hence, $(X, \prec, \sqsubset)=\left(X, \prec_{G}, \sqsubset\right)$ is a so-structure. By Theorem $11(4)$, we know $(X, \prec, \sqsubset)=(X, \prec, \sqsubset)^{\diamond}$. So from Definition 23, $G^{\bowtie}=\left(X, \prec^{\text {sym }} \cup \diamond, \sqsubset\right)$. Since \diamond is symmetric and $\prec \subseteq \diamond$, we have $\prec^{\text {sym }} \cup \diamond=\diamond$. Thus, $G=G^{\bowtie}$.

10.2. Generalized stratified order structure generated by a step sequence

We will now introduce a construction that derives a gso-structure from a single step sequence over a given g-comtrace alphabet. The idea of the construction is the same as $S^{\{u\}}$ from the previous section. First we construct some relational invariants and next we will use \bowtie-closure in the similar manner as \rangle-closure was used for $S^{\{u\}}$. However the construction is more elaborate and requires full use of the notation from Section 2.3 that allows us to define the formal relationship between step sequences and (labeled) stratified orders. We will also need the following two useful operators for relations.

Definition 24. Let R be a binary relation on X. We define the

- symmetric intersection of R as $R^{\cap} \triangleq R \cap R^{-1}$, and
- the complement of R as $R^{\mathrm{C}} \triangleq(X \times X) \backslash R$.

Let $\Theta=\left(E, \operatorname{sim}\right.$, ser, inl) be a g-comtrace alphabet. Note that if $u \equiv w$ then $\Sigma_{u}=\Sigma_{w}$ so for every g-comtrace $\mathbf{s}=[s] \in$ \mathbb{S}^{*} / \equiv, we can define $\Sigma_{\mathrm{s}}=\Sigma_{\mathrm{s}}$.

Definition 25. Given a step sequence $s \in \mathbb{S}^{*}$.

1. Let the relations $>_{s}, \sqsubset_{s}, \prec_{s} \subseteq \Sigma_{\mathbf{s}} \times \Sigma_{\mathbf{s}}$ be defined as follows:

$$
\begin{align*}
& \alpha \diamond_{s} \beta \quad \stackrel{d f}{\Longleftrightarrow} \quad(l(\alpha), l(\beta)) \in \text { inl }, \tag{10.1}\\
& \alpha \sqsubset_{s} \beta \quad \stackrel{d f}{\Longleftrightarrow} \alpha \triangleleft_{s} \beta \wedge(l(\beta), l(\alpha)) \notin \operatorname{ser} \cup \text { inl }, \tag{10.2}\\
& \alpha \prec_{s} \beta \quad \stackrel{d f}{\Longleftrightarrow} \quad \alpha \triangleleft_{s} \beta \wedge\left(\begin{array}{c}
(l(\alpha), l(\beta)) \notin \operatorname{ser} \cup \text { inl } \\
\vee(\alpha, \beta) \in \diamond_{s} \cap\left(\left(\sqsubset_{s}^{*}\right)^{\mathrm{n}} \circ \diamond_{s}^{\mathrm{C}} \circ\left(\sqsubset_{s}^{*}\right)^{\cap}\right) \\
\vee\binom{(l(\alpha), l(\beta)) \in \operatorname{ser}}{\wedge \exists \delta, \gamma \in \Sigma_{s} .\binom{\delta \triangleleft_{s} \gamma \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}}{\wedge \alpha \sqsubset_{s}^{*} \delta \sqsubset_{s}^{*} \beta \wedge \alpha \sqsubset_{s}^{*} \gamma \sqsubset_{s}^{*} \beta}}
\end{array}\right) . \tag{10.3}
\end{align*}
$$

2. The triple

$$
G^{\{s\}} \triangleq\left(\Sigma_{s}, \prec_{s} \cup \diamond_{s}, \prec_{s} \cup \sqsubset_{s}\right)^{\bowtie}
$$

is called the relational structure induced by the step sequence s.
The intuition of Definition 25 is similar to that of Definition 21. Given a step sequence s and g-comtrace alphabet (E, sim, ser, inl), without analyzing any other elements of [s] except s itself, we would like to construct the gso-structure that is defined by the whole g-comtrace. So we will define appropriate "local" invariants \diamond_{s}, \sqsubset_{s} and \prec_{s} from the sequence s.
(a) Eq. (10.1) is used to construct the relationship $>_{s}$, where two event occurrences α and β might possibly be commutative because they are related by the inl relation.
(b) Eq. (10.2) defines the not later than relationship and this happens when α occurs not later than β on the step sequence s and $\{\alpha, \beta\}$ cannot be serialized into $\{\beta\}\{\alpha\}$, and α and β are not commutative.
(c) Eq. (10.3) is the most complicated one, since we want to take into consideration the "earlier than" relationships which are not taken care of by the commutative closure. There are three such cases:
(i) α occurs before β on the step sequence s , and two event occurrences α and β cannot be put together into a single step $((\alpha, \beta) \notin$ ser $)$ and are not commutative $((\alpha, \beta) \notin$ inl $)$.
(ii) α and β are supposed to be commutative but they cannot be commuted into β and α because α is "synchronous" with some γ and β is "synchronous" with some δ, and (γ, δ) is not in inl ("synchronous" in a sense that they must happen simultaneously).
(iii) (α, β) is in ser but they can never be put together into a single step because there are two distinct event occurrences δ and γ which are "squeezed" between α and β such that $(\delta, \gamma) \notin \operatorname{ser}$, and thus δ and γ can never be put together into a single step.

After building all of these "local" invariants from the step sequence s, all other "global" invariants which can be inferred from the axioms of the gso-structure definition are fully constructed by the commutative closure.

The next lemma will show that the relations from $G^{\{s\}}$ really correspond to positional invariants of all the step sequences from the g-comtrace $[s]$.

Lemma 6. Let $s \in \mathbb{S}^{*}, G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$, and $\prec=\diamond \cap \sqsubset$. If $\alpha, \beta \in \Sigma_{\mathbf{s}}$, then

1. $\alpha>\beta \Longleftrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$,
2. $\alpha \sqsubset \beta \Longleftrightarrow \alpha \neq \beta \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$,
3. $\alpha \prec \beta \Longleftrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$,
4. if $l(\alpha)=l(\beta)$ and $\operatorname{pos}_{s}(\alpha)<\operatorname{pos}_{s}(\beta)$, then $\alpha \prec \beta$.

Eventhough the results of the above lemma are expected and look deceptively simple, the proof is long and highly technical and can be found in Appendix A.

Note that Lemma 6 also implies that we can construct the relational structure induced by the step sequence $G^{\{s\}}$ (we cannot claim that it is a gso-structure right now) if all the step sequences of a g-comtrace are known. We will first show how to define the gso-structure induced from all the positional invariants of all the step sequences of a g-comtrace.

Definition 26. For every $\mathbf{s} \in \mathbb{S}^{*} / \equiv$, we define $G_{\mathbf{s}}=\left(\Sigma_{\mathbf{s}}, \bigcap_{u \in \mathbf{s}} \triangleleft_{u}^{\text {sym }}, \bigcap_{u \in \mathbf{s}} \triangleleft_{u}\right)$.
Note that Theorem 4 does not immediately imply that $G_{\mathbf{s}}$ is a gso-structure. It needs to be proved separately.
We will now show that given a step sequence s over a g-comtrace alphabet, the definition of $G^{\{s\}}$ and the definition of $G_{[s]}$ yield exactly the same gso-structure.

Theorem 13. Let $s \in \mathbb{S}^{*}$. Then $G^{\{s\}}=G_{[s]}$.
Proof. Let $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$ and $\alpha, \beta \in \Sigma_{s}$. Then by Lemma $6(1,2)$, we have

$$
\begin{aligned}
& \alpha \diamond \beta \quad \Longleftrightarrow \quad \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta) \quad \Longleftrightarrow \quad(\alpha, \beta) \in \bigcap_{u \in[s]} \triangleleft_{u}^{\text {sym }}, \\
& \alpha \sqsubset \beta \quad \Longleftrightarrow \quad\left(\alpha \neq \beta \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)\right) \quad \Longleftrightarrow \quad(\alpha, \beta) \in \bigcap_{u \in[s]}\left(\triangleleft_{u}\right)^{\text {sym }} .
\end{aligned}
$$

Hence, $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)=\left(\Sigma_{s}, \bigcap_{u \in[s]} \triangleleft_{u}^{\text {sym }}, \bigcap_{u \in[s]} \triangleleft_{u}\right)=G_{[s]}$.
We will next show that $G^{\{s\}}$ is indeed a gso-structure.
Theorem 14. Let $s \in \mathbb{S}^{*}$. Then $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$ is a gso-structure.
Proof. Since $\diamond=\bigcap_{u \in[s]} \triangleleft_{u}^{\text {sym }}$ and $\triangleleft_{u}^{\text {sym }}$ is irreflexive and symmetric, \diamond is irreflexive and symmetric. Since $\sqsubset=\bigcap_{u \in[s]} \triangleleft_{u}$ and \triangleleft_{u} is irreflexive, \sqsubset is irreflexive.

Let $\prec=\diamond \cap \sqsubset$, it remains to show that $S=(\Sigma, \prec, \sqsubset)$ satisfies the conditions S1-S4 of Definition 3. Since \sqsubset is irreflexive, S 1 is satisfied. Since $\prec \subseteq \sqsubset$, S 2 is satisfied. Assume $\alpha \sqsubset \beta \sqsubset \gamma$ and $\alpha \neq \gamma$. Then

$$
\begin{array}{rlrl}
\alpha & \sqsubset \beta \sqsubset \gamma \wedge \alpha \neq \gamma & \\
& \Longrightarrow & (\alpha, \beta) \in \bigcap_{u \in[s]} \triangleleft_{u} \wedge(\beta, \gamma) \in \bigcap_{u \in[s]} \triangleleft_{u} \wedge \alpha \neq \gamma & \\
& & \text { (Theorem 13〉 } \\
& \Longrightarrow u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta) \leqslant \operatorname{pos}_{u}(\gamma) \wedge \alpha \neq \gamma & & \text { (Definition of } \left.\triangleleft_{u}\right\rangle \\
& \Longrightarrow \sqsubset \gamma & & \text { (Lemma 6(2)). }
\end{array}
$$

Hence，S3 is satisfied．Next we assume that $\alpha \prec \beta \sqsubset_{s} \gamma$ ．Then

$$
\begin{array}{rlrl}
\alpha & \prec \beta \sqsubset \gamma & \\
\Longrightarrow & (\alpha, \beta) \in \bigcap_{u \in[s]}\left(\triangleleft_{u} \cap \triangleleft_{u}^{\text {sym }}\right) \wedge(\beta, \gamma) \in \bigcap_{u \in[s]}\left(\triangleleft_{u} \cap \triangleleft_{u}^{\text {sym }}\right) & & \text { 〈Theorem 13〉 } \\
\Longrightarrow & & \left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta) \wedge \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)\right) & \\
& \wedge\left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\beta) \leqslant \operatorname{pos}_{u}(\gamma) \wedge \operatorname{pos}_{u}(\beta) \neq \operatorname{pos}_{u}(\gamma)\right) & & \text { 〈Definition of } \left.\triangleleft_{u}\right\rangle \\
\Longrightarrow & \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\gamma) & & \\
\Longrightarrow & \alpha \prec \gamma & & \text { 〈Lemma 6(3)). }
\end{array}
$$

Similarly，we can show $\alpha \sqsubset \beta \prec \gamma \Longrightarrow \alpha \prec \gamma$ ．Thus，S4 is satisfied．
Theorem 14 justifies the following definition．
Definition 27．For every step sequence $s, G^{\{s\}}=\left(\Sigma_{s}, \prec_{s} \cup \diamond_{s}, \prec_{s} \cup \sqsubset_{s}\right)^{\bowtie}$ is the gso－structure induced by s ．

At this point it is worth discussing the roles of the two different definitions of the gso－structures generated from a given g－comtrace．Definition 25 allows us to build the gso－structure by looking at a single step sequence of the g－comtrace and its g－comtrace alphabet．On the other hand，to build the gso－structure from a g－comtrace using Definition 26，we need to know either all the positional invariants or all elements of the g－comtrace．By Theorem 13，these two definitions are equivalent．However，in our proof，Definition 25 is more convenient when we want to deduce the properties of the gso－ structure defined from a single step sequence over a given g－comtrace alphabet．On the other hand，Definition 26 will be used to reconstruct the gso－structure when positional invariants of a g－comtrace are known．

10．3．Generalized stratified order structures generated by generalized comtraces

In this section，we want to show that the construction from Definition 25 indeed yields a gso－structure representation of comtraces．But before doing so，we need some preliminary results．

Proposition 15．Let $s \in \mathbb{S}^{*}$ ．Then $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{s\}}\right)$ ．
Proof．Let $G^{\{s\}}=(\Sigma, \diamond, \sqsubset)$ ．By Lemma 6，for all $\alpha, \beta \in \Sigma$ ，

$$
\begin{aligned}
& \alpha \diamond \beta \Longrightarrow \operatorname{pos}_{s}(\alpha) \neq \operatorname{pos}_{s}(\beta) \Longrightarrow \alpha \triangleleft_{s} \beta \vee \beta \triangleleft_{s} \alpha \Longrightarrow \alpha \triangleleft_{s}^{\text {sym }} \beta, \\
& \alpha \sqsubset \beta \Longrightarrow \operatorname{pos}_{s}(\alpha) \leqslant \operatorname{pos}_{s}(\beta) \Longrightarrow \beta .
\end{aligned}
$$

Hence，by Definition 6，we get $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{s\}}\right)$ ．
Proposition 16．Let $s \in \mathbb{S}^{*}$ ．If $\triangleleft \in \operatorname{ext}\left(G^{\{s\}}\right)$ ，then there exists $u \in \mathbb{S}^{*}$ such that $\triangleleft=\triangleleft_{u}$ ．
Proof．Let $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$ and $\Omega_{\triangleleft}=B_{1} \ldots B_{k}$ ．We will show that $u=l\left[B_{1}\right] \ldots l\left[B_{k}\right]$ is a step sequence such that $\triangleleft=\triangleleft_{u}$ ． Suppose $\alpha, \beta \in B_{i}$ are two distinct event occurrences such that $(l(\alpha), l(\beta)) \notin \operatorname{sim}$ ．Then $\operatorname{pos}_{s}(\alpha) \neq \operatorname{pos}_{s}(\beta)$ ，which by Lemma 6 implies that $\alpha \diamond \beta$ ．Since $\triangleleft \in \operatorname{ext}\left(G^{\{s\}}\right)$ ，by Definition $6, \alpha \triangleleft \beta$ or $\beta \triangleleft \alpha$ contradicting that $\alpha, \beta \in B_{i}$ ．Thus，we have shown for all $B_{i}(1 \leqslant i \leqslant k)$ ，

$$
\begin{equation*}
\alpha, \beta \in B_{i} \wedge \alpha \neq \beta \quad \Longrightarrow \quad(l(\alpha), l(\beta)) \in \operatorname{sim} \tag{10.4}
\end{equation*}
$$

By Proposition A．1（2）（in Appendix A），if $e^{(i)}, e^{(j)} \in \Sigma_{s}$ and $i \neq j$ then $\forall u \in[s] \cdot \operatorname{pos}_{u}\left(e^{(i)}\right) \neq \operatorname{pos}_{u}\left(e^{(j)}\right)$ ．So it follows from Lemma 6（1）that $e^{(i)} \diamond e^{(j)}$ ．Since $\triangleleft \in \operatorname{ext}\left(G^{\{s\}}\right)$ ，by Definition 6，
if $e^{\left(k_{0}\right)} \in B_{k}$ and $e^{\left(m_{0}\right)} \in B_{m}$ ，then $k_{0} \neq m_{0} \Longleftrightarrow k \neq m$ ．
From（10．4）it follows that u is a step sequence over θ ．Also by（10．5）， $\operatorname{pos}_{u}^{-1}[\{i\}]=B_{i}$ and $\left|l\left[B_{i}\right]\right|=\left|B_{i}\right|$ for all i ．Hence， $\Omega_{\triangleleft}=\Omega_{\triangleleft u}$ ，which implies $\triangleleft=\triangleleft_{u}$ ．

We want to show that two step sequences over the same g－comtrace alphabet induce the same gso－structure iff they belong to the same g－comtrace（Theorem 15 below）．The proof of an analogous result for comtraces from［11］is simpler because every comtrace has a unique natural canonical representation that is both greedy and maximally concurrent and can be easily constructed．Moreover the canonical representation for comtraces correspond to the unique greedy stratified
extension of appropriate causality relation \prec (see [11]). Nothing similar holds for g-comtraces. For g-comtraces both natural representations, GMC and MC, are not unique. The g-canonical representation (Definition 16) is unique but its uniqueness is artificial and induced by some step sequence lexicographical order $<^{l e x}$ (Definition 15). Nevertheless this lexicographical order $<^{l e x}$ will be the basic tool used in the next lemma. The lack of natural unique representation will make our reasoning a bit harder.

Lemma 7. Let s be a step sequence over a g-comtrace alphabet (E, ser, sim, inl) and $<_{E}$ be any total order on E. Let $u=A_{1} \ldots A_{n}$ be the g-canonical representation of $[s]$ (i.e., u is the least element of the g-comtrace $[s]$ w.r.t. $<^{\text {lex }}$). Let $G^{\{s\}}=(\Sigma, \diamond, \sqsubset)$ and $\prec=\diamond \cap \sqsubset$. For each $X \subseteq \Sigma$, let $\operatorname{mins}_{<}(X)$ denote the set of all minimal elements of X w.r.t. \prec and define

$$
Z(X) \triangleq\left\{Y \subseteq \operatorname{mins}_{\prec}(X) \mid(\forall \alpha, \beta \in Y . \neg(\alpha \diamond \beta)) \wedge(\forall \alpha \in Y, \forall \beta \in X \backslash Y . \neg(\beta \sqsubset \alpha))\right\}
$$

Let $\bar{u}=\overline{A_{1}} \ldots \overline{A_{n}}$ be the enumerated step sequence of u. Then A_{i} is the least element of the set $\left\{l[Y] \mid Y \in Z\left(\Sigma \backslash \biguplus\left(\overline{A_{1}} \ldots \overline{A_{i-1}}\right)\right)\right\}$ w.r.t. the ordering $<^{\text {st. }}$.

Before presenting the proof, we will explain the intuition behind the definition of the set $Z(X)$. Let us consider $Z(\Sigma)$ first. Then A_{1} in this lemma is the least element of the set $\{l[Y] \mid Y \in Z(\Sigma)\}$ w.r.t. the ordering $<^{\text {st }}$. Our goal is to construct A_{1} by looking only at the gso-structure G without having to construct up to exponentially many stratified extensions of G. The most technical part of this proof is to show that $\overline{A_{1}}$ actually belongs to the set $Z(\Sigma)$. Recall that to show that $Y \in Z(\Sigma)$, we want to show that Y satisfies the following conditions:
(i) no two elements in Y are commutative,
(ii) for an element $\alpha \in Y$ and $\beta \in \Sigma \backslash Y$, it is not the case that β is not later than α.

Note that we actually define $Z(X)$ instead of $Z(\Sigma)$, because we want to apply it successively to build all the steps A_{i} of the g-canonical representation u of $G^{\{s\}}$. This lemma can be seen as an algorithm to build the g-canonical representation of [s] by looking only at $G^{\{s\}}$.

Proof of Lemma 7. First notice that by Lemma 6(3), for every non-empty $X \subseteq \Sigma$, since Σ is finite, we know that mins (X) is non-empty and finite. Furthermore by Lemma 6(4), if $e^{(i)}, e^{(j)} \in \Sigma$ and $i<\bar{j}$, then $e^{(i)} \prec e^{(j)}$. Hence, for all $\alpha, \beta \in \operatorname{mins}_{<}(X)$, where $X \subseteq \Sigma$, we have $l(\alpha) \neq l(\beta)$. This ensures that if $Y \in Z(X)$ and $X \subseteq \Sigma$, then $|Y|=|l[Y]|$.

For all $\alpha \in \overline{A_{1}}$ and $\beta \in \Sigma, \operatorname{pos}_{s}(\beta) \geqslant \operatorname{pos}_{s}(\alpha)$. Hence, by Lemma 6(3), $\neg(\beta \prec \alpha)$. Thus,

$$
\begin{equation*}
\overline{A_{1}} \subseteq \operatorname{mins}_{<}(\Sigma) \tag{10.6}
\end{equation*}
$$

For all $\alpha, \beta \in \overline{A_{1}}$, since $\operatorname{pos}_{s}(\beta)=\operatorname{pos}_{s}(\alpha)$, by Lemma 6(1), we have

$$
\begin{equation*}
\neg(\alpha>\beta) \tag{10.7}
\end{equation*}
$$

For any $\alpha \in \overline{A_{1}}$ and $\beta \in \Sigma \backslash \overline{A_{1}}$, since $\operatorname{pos}_{s}(\beta)<\operatorname{pos}_{s}(\alpha)$, by Lemma 6(2),

$$
\begin{equation*}
\neg(\beta \sqsubset \alpha) \tag{10.8}
\end{equation*}
$$

From (10.6), (10.7) and (10.8), we know that $\overline{A_{1}} \in Z(\Sigma)$. Hence, $Z(\Sigma) \neq \emptyset$. This ensures the least element of $\{l[Y] \mid Y \in$ $Z(\Sigma)\}$ w.r.t. $<^{\text {st }}$ is well defined.

Let $Y_{0} \in Z(\Sigma)$ such that $B_{0}=l\left[Y_{0}\right]$ is the least element of $\{l[Y] \mid Y \in Z(\Sigma)\}$ w.r.t. $<^{\text {st }}$. We want to show that $A_{1}=B_{0}$. Since $<^{\text {st }}$ is a total order, we know that $A_{1}<{ }^{\text {st }} B_{0}$ or $B_{0}<{ }^{\text {st }} A_{1}$ or $A_{1}=B_{0}$. But since $\overline{A_{1}} \in Z(\Sigma)$ and B_{0} be the least element of the set $\{l[B] \mid B \in Z(\Sigma)\}, \neg\left(A_{1}<{ }^{\text {st }} B_{0}\right)$. Hence, to show that $A_{1}=B_{0}$, it suffices to show $\neg\left(B_{0}<{ }^{\text {st }} A_{1}\right)$.

Suppose that $B_{0}<{ }^{\text {st }} A_{1}$. We first want to show that for every non-empty $W \subseteq Y_{0}$ there is an enumerated step sequence v such that

$$
\begin{equation*}
\bar{v}=W_{0} \overline{v_{0}} \equiv \overline{A_{1}} \ldots \overline{A_{n}} \quad \text { and } \quad W \subseteq W_{0} \subseteq Y_{0} \tag{10.9}
\end{equation*}
$$

We will prove this by induction on $|W|$.
Base case. When $|W|=1$, we let $\left\{\alpha_{0}\right\}=W$. We choose $\overline{v_{1}}=\overline{E_{0}} \ldots \overline{E_{k}} \overline{y_{1}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $\alpha_{0} \in \overline{E_{k}}(k \geqslant 0)$ such that for all $\overline{v^{\prime}}=\overline{E_{0}^{\prime}} \ldots \overline{E_{k^{\prime}}^{\prime}} \overline{y_{1}^{\prime}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $\alpha_{0} \in \overline{E_{k^{\prime}}^{\prime}}$, we have
(i) $\operatorname{weight}\left(\overline{E_{0}} \ldots \overline{E_{k}}\right) \leqslant \operatorname{weight}\left(\overline{E_{0}^{\prime}} \ldots \overline{E_{k^{\prime}}^{\prime}}\right)$, and
(ii) $\operatorname{weight}\left(\overline{E_{k-1}} \overline{E_{k}}\right) \leqslant \operatorname{weight}\left(\overline{\bar{E}_{k^{\prime}-1}^{\prime}} \overline{E_{k^{\prime}}^{\prime}}\right)$.

We then consider only $\bar{w}=\overline{E_{0}} \ldots \overline{E_{k}}$. We observe by the way we chose $\overline{v_{1}}$, we have $\forall \beta \in \biguplus(\bar{w}) .\left(\beta \neq \alpha_{0} \Longrightarrow \forall t \in\right.$ [w]. $\left.\operatorname{pos}_{t}(\beta) \leqslant \operatorname{pos}_{t}\left(\alpha_{0}\right)\right)$. Hence, since $\bar{w}=\bar{u} \div{ }_{R} \overline{v_{0}}$, it follows from Proposition 10(1, 2) that

$$
\forall \beta \in \biguplus(\bar{w}) \cdot\left(\beta \neq \alpha_{0} \Longrightarrow \forall t \in\left[A_{1} \ldots A_{n}\right] \cdot \operatorname{pos}_{t}(\beta) \leqslant \operatorname{pos}_{t}\left(\alpha_{0}\right)\right)
$$

Then it follows from Lemma $6(2)$ that $\forall \beta \in \biguplus(\bar{w}) .\left(\beta \neq \alpha_{0} \Longrightarrow \beta \sqsubset \alpha_{0}\right)$. But by the way Y_{0} was chosen, we know that $\forall \alpha \in Y_{0} . \forall \beta \in \Sigma \backslash Y_{0} \neg(\beta \sqsubset \alpha)$. Hence,

$$
\begin{equation*}
\biguplus(\bar{w})=\left(\overline{E_{0}} \cup \cdots \cup \overline{E_{k}}\right) \subseteq Y_{0} \tag{10.10}
\end{equation*}
$$

We next want to show

$$
\begin{equation*}
\forall \alpha \in \overline{E_{i}} . \forall \beta \in \overline{E_{j}} \cdot\{\alpha\}\{\beta\} \equiv\{\alpha, \beta\} \quad(0 \leqslant i<j \leqslant k) \tag{10.11}
\end{equation*}
$$

Suppose not. Then either $[\{\alpha\}\{\beta\}]=\{\{\alpha\}\{\beta\}\}$ or $[\{\alpha\}\{\beta\}]=\{\{\alpha\}\{\beta\},\{\beta\}\{\alpha\}\}$. In either case, we have $\forall t \in[\{l(\alpha)\}\{l(\beta)\}]$. $\operatorname{pos}_{t}(\alpha) \neq \operatorname{pos}_{t}(\beta)$. Since $\{\alpha\}\{\beta\} \equiv \pi_{\{\alpha, \beta\}}(\bar{u})$, by Proposition $10(3), \forall t \in[u] \cdot \operatorname{pos}_{t}(\alpha) \neq \operatorname{pos}_{t}(\beta)$. So by Lemma $6, \alpha>\beta$. This contradicts that $Y_{0} \in Z(\Sigma)$ and $\alpha, \beta \in \Sigma(\bar{w}) \subseteq Y_{0}$. Thus, we have shown (10.11), which implies that for all $\alpha \in \overline{E_{i}}$ and $\beta \in \overline{E_{j}}(0 \leqslant i<j \leqslant k),(l(\alpha), l(\beta)) \in \operatorname{ser}$. Then $\overline{E_{0}} \ldots \overline{E_{k}} \equiv \bigcup_{i=0}^{k} \overline{E_{i}}$. Hence, by (10.10) and (10.11), there exists a step sequence $v_{1}^{\prime \prime}$ such that $\overline{v_{1}^{\prime \prime}}=\left(\bigcup_{i=0}^{k} \overline{E_{i}}\right) \overline{y_{1}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $\left\{\alpha_{0}\right\} \subseteq \bigcup_{i=0}^{k} \overline{E_{i}} \subseteq Y_{0}$.

Inductive step. When $|W|>1$, we pick an element $\beta_{0} \in W$. By applying the induction hypothesis on $W \backslash\left\{\beta_{0}\right\}$, we get a step sequence v_{2} such that $\overline{v_{2}}=\overline{F_{0}} \overline{y_{2}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ where $W \backslash\left\{\beta_{0}\right\} \subseteq \overline{F_{0}} \subseteq Y_{0}$. If $W \subseteq \overline{F_{0}}$, we are done. Otherwise, proceeding like the base case, we construct a step sequence v_{3} such that $\overline{v_{3}}=\overline{F_{0}} \overline{F_{1}} \overline{y_{3}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $\left\{\beta_{0}\right\} \subseteq \overline{F_{1}} \subseteq Y_{0}$. Since $\overline{F_{0}} \subseteq Y_{0}$, we have $W \subseteq \overline{F_{0}} \cup \overline{F_{1}} \subseteq Y_{0}$. Then similarly to how we proved (10.11), we can show that $\forall \alpha \in \overline{F_{0}}, \forall \beta \in \overline{F_{1}} .\{\alpha\}\{\beta\} \equiv\{\alpha, \beta\}$. This means that for all $\alpha \in \overline{F_{0}}$ and $\beta \in \overline{F_{1}},(l(\alpha), l(\beta)) \in$ ser. Hence, $\overline{F_{0}} \overline{F_{1}} \equiv \overline{F_{0}} \cup \overline{F_{1}}$. Hence, there is a step sequence v_{4} such that $\overline{v_{4}}=\left(\overline{F_{0}} \cup \overline{F_{1}}\right) \overline{y_{4}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $W \subseteq\left(\overline{F_{0}} \cup \overline{F_{1}}\right) \subseteq Y_{0}$.

Thus, we have shown (10.9). So by choosing $W=Y_{0}$, we get a step sequence v such that $\bar{v}=W_{0} \overline{v_{0}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$ and $Y_{0} \subseteq W_{0} \subseteq Y_{0}$. Hence, $\bar{v}=W_{0} \overline{v_{0}} \equiv \overline{A_{1}} \ldots \overline{A_{n}}$. Thus, $v=B_{0} v_{0} \equiv A_{1} \ldots A_{n}$. But since $B_{0}<{ }^{s t} A_{1}$, this contradicts the fact that $A_{1} \ldots A_{n}$ is the least element of [s] w.r.t. $<^{l e x}$. Hence, A_{1} is the least element of $\{l[Y] \mid Y \in Z(\Sigma)\}$ w.r.t. $<^{\text {st }}$.

We now prove that A_{i} is the least element of the set $\left\{l[Y] \mid Y \in Z\left(\Sigma \backslash \biguplus\left(\overline{A_{1}} \ldots \overline{A_{i-1}}\right)\right)\right\}$ w.r.t. $<^{\text {st }}$ by induction on n, the number of steps of the g-canonical step sequence $u=A_{1} \ldots A_{n}$. If $n=0$, we are done. If $n>0$, then we have just shown that A_{1} is the least element of $\{l[Y] \mid Y \in Z(\Sigma)\}$ w.r.t. $<{ }^{\text {st }}$. By applying the induction hypothesis on $p=\overline{A_{2}} \ldots \overline{A_{n}}$, $\Sigma_{p}=\Sigma \backslash \overline{A_{1}}$, and its gso-structure $\left(\Sigma_{p}, \diamond \cap\left(\Sigma_{p} \times \Sigma_{p}\right), \sqsubset \cap\left(\Sigma_{p} \times \Sigma_{p}\right)\right.$, we get A_{i} is the least element of the set $\{l[Y] \mid$ $\left.Y \in Z\left(\Sigma \backslash \biguplus\left(\overline{A_{1}} \ldots \overline{A_{i-1}}\right)\right)\right\}$ w.r.t. $<^{\text {st }}$ for all $i \geqslant 2$.

Theorem 15. Let s and t be step sequences over a g-comtrace alphabet (E, sim, ser, inl). Then $s \equiv t$ iff $G^{\{s\}}=G^{\{t\}}$.
Proof. (\Rightarrow) If $s \equiv t$, then $[s]=[t]$. Hence, by Theorem $13, G^{\{s\}}=G^{\{t\}}$.
(\Leftarrow) By Lemma 7 , we can use $G^{\{s\}}$ to construct a unique element w_{1} such that w_{1} is the least element of [s] w.r.t. $<^{l e x}$, and then use $G^{\{t\}}$ to construct a unique element w_{2} that is the least element of $[t]$ w.r.t. $e^{\text {lex }}$. But since $G^{\{s\}}=G^{\{t\}}$, we get $w_{1}=w_{2}$. Hence, $s \equiv t$.

Theorem 15 justifies the following definition:
Definition 28. For every g-comtrace [s], $G_{[s]}=G^{\{s\}}=\left(\Sigma_{s}, \prec_{s} \cup \diamond_{s}, \prec_{s} \cup \sqsubset_{s}\right)^{\bowtie}$ is the gso-structure induced by the g comtrace $[\mathrm{s}]$.

To end this section, we prove two major results. Theorem 16 says that the stratified extensions of the gso-structure induced by a g-comtrace [t] are exactly those generated by the step sequences in [t]. Theorem 17 says that the gso-structure induced by a g-comtrace is uniquely identified by any of its stratified extensions.

Lemma 8. Let $s, t \in \mathbb{S}^{*}$ and $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$. Then $G^{\{s\}}=G^{\{t\}}$.
The proof of the above lemma uses Definition 25 heavily and thus requires a separate analysis of many cases and was moved to Appendix B.

Theorem 16. Let $s, t \in \mathbb{S}^{*}$. Then $\operatorname{ext}\left(G^{\{s\}}\right)=\left\{\triangleleft_{u} \mid u \in[s]\right\}$.
Proof. (\subseteq) Suppose $\triangleleft \in \operatorname{ext}\left(G^{\{s\}}\right)$. By Proposition 16, there is a step sequence u such that $\triangleleft_{u}=\triangleleft$. Hence, by Lemma 8, we have $G^{\{u\}}=G^{\{s\}}$, which by Theorem 15 implies that $u \equiv s$. Hence, $\operatorname{ext}\left(G^{\{s\}}\right) \subseteq\left\{\triangleleft_{u} \mid u \in[s]\right\}$.
(\supseteq) If $u \in[s]$, then it follows from Theorem 15 that $G^{\{u\}}=G^{\{s\}}$. This and Proposition 15 imply $\triangleleft_{u} \in \operatorname{ext}\left(G^{\{s\}}\right)$. Hence, $\operatorname{ext}\left(G^{\{s\}}\right) \supseteq\left\{\triangleleft_{u} \mid u \in[s]\right\}$.

Theorem 17. Let $s, t \in \mathbb{S}^{*}$ and $\operatorname{ext}\left(G^{\{s\}}\right) \cap \operatorname{ext}\left(G^{\{t\}}\right) \neq \emptyset$. Then $s \equiv t$.

.... sim

ser

\otimes

\ulcorner

$\prec_{G}=\diamond \cap \sqsubset$

Fig. 4. A g-comtrace alphabet (E, sim, ser, inl), where $E=\{a, b, c, d\}$, the gso-structure $G=(X, \diamond, \sqsubset)$ and $\prec_{G}=\diamond \cap \sqsubset$ defined by the g-comtrace $[\{a, b\}\{c\}\{a, d\}]=\{\{a, b\}\{c\}\{a, d\},\{a\}\{b\}\{c\}\{a, d\},\{a\}\{b, c\}\{a, d\},\{b\}\{a\}\{c\}\{a, d\},\{b\}\{c\}\{a\}\{a, d\},\{b, c\},\{a\}\{a, d\}\}$.

Proof. Let $\triangleleft \in \operatorname{ext}\left(G^{\{s\}}\right) \cap \operatorname{ext}\left(G^{\{t\}}\right)$. By Proposition 16, there is a step sequence u such that $\triangleleft u=\triangleleft$. By Lemma 8, we have $G^{\{s\}}=G^{\{u\}}=G^{\{t\}}$. This and Theorem 15 yield $s \equiv t$.

Summing up, we have proved the analogue of Theorem 12 for g-comtraces. In fact, Theorem 12 is a straightforward consequence of this section for inl $=\emptyset$.

Fig. 4 shows an example of a g-comtrace and the gso-structure it generates.

11. Conclusion and future work

The comtrace concept is revisited and its extension, the g-comtrace notion, is introduced. Comtraces and g-comtraces are generalizations of Mazurkiewicz traces, where the concepts of simultaneity, serializability and interleaving are used to define the quotient monoids instead of the usual independency relation in the case of traces. We analyzed some algebraic properties of comtraces and g-comtraces, where an interesting application is the proof of the uniqueness of comtrace canonical representation. We study the canonical representations of traces, comtraces and g-comtraces and their mutual relationships in a more unified framework. We observe that comtraces have a natural unique canonical form which corresponds to their maximal concurrent representation, ${ }^{7}$ while the unique canonical representation of g-comtrace can only be obtained by choosing the lexicographically least element.

The most important contribution of this paper, Theorem 16, shows that every g-comtrace uniquely determines a labeled gso-structure. We believe the reason why the proof of Theorem 16 is more technical than the similar theorem for comtraces is that both comtraces and so-structures satisfy paradigm π_{3} while g-comtraces and gso-structures do not. Intuitively, what paradigm π_{3} really says is that the underlying structure consists of partial orders. For comtraces and so-structures, we did augment some more priority relationships into the incomparable elements with respect to the standard causal partial order to produce the not later than relation, and this process might introduce cycles into the graph of the "not later than" relation. However, it is important to observe that any two distinct elements lying on a cycle of the "not later than" relation must belong to the same synchronous set since the "not later than" relation is a strict preorder. Thus, if we collapse each synchronous set into a single vertex, then the resulting "quotient" graph of the "not later than" relation is a partial order. The reader is referred to the second author's recent work [22] for more detailed discussion on the preorder property of the "not later than" relation and how this property manifests itself in the comtrace notion. When paradigm π_{3} is not satisfied, as with g-comtraces or gso-structures, we have more than a partial order structure, and hence the usual techniques that depend too on the underlying partial order structure of comtraces and so-structures are often not applicable.

Despite some obvious advantages, for instance, handy composition and no need to use labels, quotient monoids (perhaps with some exception of traces) are less popular for analyzing issues of concurrency than their relational counterparts such as partial orders, so-structures, occurrence graphs, etc. We believe that in many cases, more sophisticated quotient monoids, e.g., comtraces and g-comtraces, can provide simpler and more adequate models of concurrent histories than their relational equivalences.

Much harder future tasks are in the area of comtrace and g-comtrace languages where major problems like recognizability [25], acceptability [30], etc. are still open.

Acknowledgments

We are grateful to the anonymous referees, who pointed out many typos and suggested us a better way to organize the materials of this paper. We are indebted to many others for their feedbacks and encouragements. These include Steve Cook,

[^6]Grzegorz Herman, Marek Janicki, Galina Jirásková, Gregory H. Moore, Michael Soltys, Yuli Ye, Marek Zaionc, Nadya Zubkova, and Jeffery Zucker. This work is financially supported by the Ontario Graduate Scholarship and the Natural Sciences and Engineering Research Council of Canada.

Appendix A. Proof of Lemma 6

Proposition A.1. Let u be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and $\alpha, \beta \in \Sigma_{u}$ such that $l(\alpha)=l(\beta)$ and $\alpha \neq \beta$. Then

1. $\operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$,
2. if $\operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$ and v is a step sequence satisfying $v \equiv u$, then $\operatorname{pos}_{v}(\alpha)<\operatorname{pos}_{v}(\beta)$.

Proof. 1. Follows from the fact that sim is irreflexive.
2. Follows from Proposition 7 and that ser and inl are irreflexive.

From the definition of g-comtrace $\approx_{\{s e r, i n l\}}$ (Definition 12), we can easily show the following proposition, which aims to describe the intuition that if an event α occurs before (or simultaneously with) β in the first step sequence and α occurs later than β on the second step sequence congruent with the first one, then there must be two "immediately congruent" step sequences, i.e., related by the relation $\approx_{\{s e r, \text { inl }\}}$ (written as just \approx), where this commutation (or serialization) of α and β occurs.

Proposition A.2. Let u, w be step sequences over a g-comtrace alphabet (E, sim, ser, inl) such that $u\left(\approx \cup \approx^{-1}\right) w$. Then

1. if $\operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$ and $\operatorname{pos}_{w}(\beta)<\operatorname{pos}_{w}(\alpha)$, then there are x, y, A, B such that $\bar{u}=\bar{x} \bar{A} \bar{B} \bar{y}\left(\approx \cup \approx^{-1}\right) \bar{x} \bar{B} \bar{A} \bar{y}=\bar{w}$ and $\alpha \in \bar{A}$, $\beta \in \bar{B}$. We also have $(l(\alpha), l(\beta)) \in$ inl,
2. if $\operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\beta)$ and $\operatorname{pos}_{w}(\beta)<\operatorname{pos}_{w}(\alpha)$, then there are x, y, A, B, C such that $\bar{u}=\bar{x} \bar{A} \bar{y} \approx \bar{x} \bar{B} \bar{C} \bar{y}=\bar{w}$ and $\beta \in \bar{B}$ and $\alpha \in \bar{C}$. This also means $(l(\beta), l(\alpha)) \in$ ser.

Proposition A.3. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl). If $\alpha, \beta \in \Sigma_{s}$, then

1. $\alpha>_{s} \beta \Longrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$,
2. $\alpha \sqsubset_{s} \beta \Longrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$,
3. $\alpha \prec_{s} \beta \Longrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$,
and $\alpha \neq \beta$ in all three cases.
Proof. 1. Follows from the fact that $i n l \cap \operatorname{sim}=\emptyset$.
4. Assume that $\alpha \sqsubset_{s} \beta$. Suppose that $\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha)>\operatorname{pos}_{u}(\beta)$. Then there must be some $u_{1}, u_{1} \in[s]$ such that $u_{1}(\approx$ $\left.\cup \approx^{-1}\right) u_{2}$ and $\operatorname{pos}_{u_{1}}(\alpha) \leqslant \operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha)>\operatorname{pos}_{u_{2}}(\beta)$. There are two cases:
(i) If $\operatorname{pos}_{u_{1}}(\alpha)<\operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha)>\operatorname{pos}_{u_{2}}(\beta)$, then by Proposition A.2(1), $(l(\alpha), l(\beta)) \in$ inl, contradicting that $\alpha \sqsubset_{s} \beta$.
(ii) If $\operatorname{pos}_{u_{1}}(\alpha)=\operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha)>\operatorname{pos}_{u_{2}}(\beta)$, then it follows from Proposition A.2(2), $(l(\beta), l(\alpha)) \in$ ser, contradicting that $\alpha \sqsubset_{s} \beta$.
5. Assume that $\alpha \prec_{s} \beta$. Suppose that $\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \geqslant \operatorname{pos}_{u}(\beta)$. Then there must be some $u_{1}, u_{1} \in[s]$ such that $u_{1}(\approx$ $\left.\cup \approx^{-1}\right) u_{2}$ and $\operatorname{pos}_{u_{1}}(\alpha)<\operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha) \geqslant \operatorname{pos}_{u_{2}}(\beta)$. There are two cases:
(i) If $\operatorname{pos}_{u_{1}}(\alpha)<\operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha)=\operatorname{pos}_{u_{2}}(\beta)$, then it follows from Proposition A.2(2) that $(l(\alpha), l(\beta)) \in$ ser and $\neg\left(\alpha>_{s} \beta\right)$. Hence, it follows from (10.3) that

$$
\exists \delta, \gamma \in \Sigma_{s} \cdot\binom{\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}}{\wedge \alpha \sqsubset_{s}^{*} \delta \sqsubset_{s}^{*} \beta \wedge \alpha \sqsubset_{s}^{*} \gamma \sqsubset_{s}^{*} \beta} .
$$

By (2) and transitivity of \leqslant, we have

$$
\left(\begin{array}{rl}
\gamma & \neq \delta \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser} \\
& \wedge\left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\delta) \leqslant \operatorname{pos}_{u}(\beta)\right) \\
& \wedge\left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\gamma) \leqslant \operatorname{pos}_{u}(\beta)\right)
\end{array}\right) .
$$

But since $\operatorname{pos}_{u_{2}}(\alpha)=\operatorname{pos}_{u_{2}}(\beta)$, we get $\operatorname{pos}_{u_{2}}(\gamma)=\operatorname{pos}_{u_{2}}(\delta)$. Since we assumed $\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma)$, it follows from Proposition A.2(2) that $(l(\delta), l(\gamma)) \in s e r$, a contradiction.
(ii) If $\operatorname{pos}_{u_{1}}(\alpha)<\operatorname{pos}_{u_{1}}(\beta)$ and $\operatorname{pos}_{u_{2}}(\alpha)>\operatorname{pos}_{u_{2}}(\beta)$, then by Proposition A.2(1), $(l(\alpha), l(\beta)) \in$ inl. Since we already assumed $\alpha \prec_{s} \beta$, by (10.3), $(\alpha, \beta) \in \diamond_{s} \cap\left(\left(\square_{s}^{*}\right)^{\text {® }} \circ \diamond_{s}^{\mathrm{C}} \circ\left(\square_{s}^{*}\right)^{\mathrm{n}}\right)$. So there are γ, δ such that $\alpha\left(\sqsubset_{s}^{*}\right)^{\mathrm{n}} \gamma \diamond_{s}^{\mathrm{C}} \delta\left(\square_{s}^{*}\right)^{\text {® }} \beta$. Observe that

$$
\begin{array}{rll}
\alpha & \left(\sqsubset_{s}^{*}\right)^{n} \gamma & \\
& \Longrightarrow \alpha\left(\square_{s}^{*}\right) \gamma \wedge \gamma\left(\sqsubset_{s}^{*}\right) \alpha & \\
& \Longrightarrow \forall u \in[s] \cdot p \operatorname{s}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\gamma) \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\gamma) \leqslant \operatorname{pos}_{u}(\alpha) & \quad\langle\text { by }(2)\rangle \\
& \Longrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\gamma) & \\
& \Longrightarrow\{\alpha, \gamma\} \subseteq \bar{A} & \langle\text { since } \alpha \in \bar{A}\rangle .
\end{array}
$$

Similarly, since $\delta\left(\sqsubset_{s}^{*}\right)^{\mathrm{n}} \beta$, we can show that $\{\delta, \beta\} \subseteq \bar{B}$. Since $\bar{x} \bar{A} \bar{B} \bar{y}\left(\approx \cup \approx^{-1}\right) \bar{x} \bar{B} \bar{A} \bar{y}$, we get $A \times B \subseteq$ inl. So $(l(\gamma), l(\delta)) \in$ inl. But $\gamma \diamond{ }_{s}^{\mathrm{C}} \delta$ implies that $(l(\gamma), l(\delta)) \notin$ inl, a contradiction.

Immediately from Proposition A.3, we get the following proposition.
Proposition A.4. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$. If $\alpha, \beta \in \Sigma_{s}$, then

1. $\alpha \diamond \beta \Longrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$,
2. $\alpha \sqsubset \beta \Longrightarrow\left(\alpha \neq \beta \wedge \forall u \in[s] . \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)\right)$.

Definition A. 1 (Serializable and non-serializable steps). Let A be a step over a g-comtrace alphabet (E, sim, ser, inl) and let $a \in A$ then:

1. Step A is called serializable iff

$$
\exists B, C \in \wp^{\backslash\{\varnothing\}}(A) . B \cup C=A \wedge B \times C \subseteq \operatorname{ser}
$$

Step A is called non-serializable iff A is not serializable. Every non-serializable step is a synchronous step as defined in Definition 9.
2. Step A is called serializable to the left of a iff

$$
\exists B, C \in \wp \backslash\{\emptyset\}(A) . B \cup C=A \wedge a \in B \wedge B \times C \subseteq \operatorname{ser}
$$

Step A is called non-serializable to the left of a iff A is not serializable to the left of a, i.e., $\forall B, C \in \wp \backslash\{\varnothing\}(A)$. $(B \cup C=$ $A \wedge a \in B) \Longrightarrow B \times C \nsubseteq$ ser .
3. Step A is called serializable to the right of a iff

$$
\exists B, C \in \wp \wp^{\backslash\{\varnothing\}}(A) . B \cup C=A \wedge a \in C \wedge B \times C \subseteq \text { ser }
$$

Step A is called non-serializable to the right of a iff A is not serializable to the right of a, i.e., $\forall B, C \in \wp^{\backslash \emptyset\}}(A) .(B \cup C=$ $A \wedge a \in C) \Longrightarrow B \times C \nsubseteq$ ser .

Proposition A.5. Let A be a step over a g-comtrace alphabet (E, sim, ser, inl). Then

1. if A is non-serializable to the left of $l(\alpha)$ for some $\alpha \in \bar{A}$, then $\alpha \sqsubset_{A}^{*} \beta$ for all $\beta \in \bar{A}$,
2. if A is non-serializable to the right of $l(\beta)$ for some $\beta \in \bar{A}$, then $\alpha \sqsubset_{A}^{*} \beta$ for all $\alpha \in \bar{A}$,
3. if A is non-serializable, then $\forall \alpha, \beta \in \bar{A} . \alpha \sqsubset_{A}^{*} \beta$.

Before we proceed with the proof, since for all $\alpha, \beta \in \bar{A},(l(\alpha), l(\beta)) \notin i n l$, observe that

$$
\alpha \sqsubset_{A} \beta \quad \Longleftrightarrow \quad \operatorname{pos}_{A}(\alpha) \leqslant \operatorname{pos}_{A}(\beta) \wedge(l(\beta), l(\alpha)) \notin \operatorname{ser} .
$$

Proof of Proposition A.5. 1. For any $\beta \in \bar{A}$, we have to show that $\alpha \sqsubset_{A}^{*} \beta$. We define the \sqsubset_{A}-right closure set of α inductively as follows:

$$
R C^{0}(\alpha) \triangleq\{\alpha\}, \quad R C^{n}(\alpha) \triangleq\left\{\delta \in \bar{A} \mid \exists \gamma \in R C^{n-1}(\alpha) \wedge \gamma \sqsubset_{A} \delta\right\}
$$

Then by induction on \bar{n}, we can show that $\left|R C^{n+1}(\alpha)\right|>\left|R C^{n}(\alpha)\right|$ or $R C^{n}(\alpha)=\bar{A}$. So if A is finite, then for some $n<|A|$, we must have $R C^{n}(\alpha)=\bar{A}$ and $\beta \in R C^{n}(\alpha)$. It follows that $\alpha \sqsubset_{A}^{*} \beta$.
2. Dually to (1).
3. Since A is non-serializable, it follows that A is non-serializable to the left of $l(\alpha)$ for every $\alpha \in \bar{A}$. Hence, the assertion follows.

The existence of a non-serializable sub-step of a step A to the left/right of an element $a \in A$ can be explained by the following proposition.

Proposition A.6. Let A be a step over an alphabet $\Theta=(E$, sim, ser, inl) and $a \in A$. Then

1. there exists a unique $B \subseteq A$ such that $a \in B, B$ is non-serializable to the left of a, and $A \neq B \Longrightarrow A \equiv(A \backslash B) B$,
2. there exists a unique $C \subseteq A$ such that $a \in C, C$ is non-serializable to the right of a, and $A \neq C \Longrightarrow A \equiv C(A \backslash C)$,
3. there exists a unique $D \subseteq A$ such that $a \in D, D$ is non-serializable, and $A \equiv x D y$, where x and y are step sequences over Θ.

Proof. 1. If A is non-serializable to the left of a, then $B=A$. If A is serializable to the left of a, then the following set is not empty:

$$
\zeta \triangleq\left\{D \in \wp^{\backslash\{\emptyset\}}(A) \mid \exists C \in \wp^{\backslash\{\emptyset\}}(A) .(C \cup D=A \wedge a \in D \wedge C \times D \subseteq \operatorname{ser})\right\}
$$

Let $B \in \zeta$ such that B is a minimal element of the poset (ζ, \subset). Let $B \in \zeta$ such that B is a minimal element of the poset (ζ, \subset). We claim that B is non-serializable to the left of a. Suppose for a contradiction that B is serializable to the left of a, then there are some sets $E, F \in \wp \backslash\{\emptyset\}(() B)$ such that $E \cup F=B \wedge a \in F \wedge E \times F \subseteq$ ser. Since $B \in \chi$, there is some set $G \in \wp^{\backslash\{\emptyset\}}(() A)$ such that $G \cup B=A \wedge a \in B \wedge G \times B \subseteq$ ser. Because $G \times B \subseteq$ ser and $F \subset B$, it follows that $G \times F \subseteq$ ser. But since $E \times F \subseteq$ ser, we have $(G \cup E) \times F \subseteq$ ser. Hence, $(G \cup E) \cup F=A \wedge a \in F \wedge(G \cup E) \times F \subseteq$ ser. So $E \in \zeta$ and $E \subset B$. This contradicts that B is minimal. Hence, B is non-serializable to the left of a.

By the way the set ζ is defined, $A \equiv(A \backslash B) B$. It remains to prove the uniqueness of B. Let $B^{\prime} \in \zeta$ such that B^{\prime} is a minimal element of the poset (ζ, \subset). We want to show that $B=B^{\prime}$.

We first show that $B \subseteq B^{\prime}$. Suppose that there is some $b \in B$ such that $b \neq a$ and $b \notin B^{\prime}$. Let α and β denote the event occurrences $a^{(1)}$ and $b^{(1)}$ in Σ_{A} respectively. Since $a \in B$ and b is non-serializable to the left of a and $a \neq b$, it follows from Proposition A.5(1) that $\alpha \sqsubset_{[A]} \beta$. Hence, by Proposition A.3(2), we have

$$
\begin{equation*}
\forall u \in[A] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta) \tag{A.1}
\end{equation*}
$$

By the way B^{\prime} is chosen, we know $A \equiv\left(A \backslash B^{\prime}\right) B^{\prime}$ and $b \notin B^{\prime}$. So it follows that $b \in\left(A \backslash B^{\prime}\right)$. Hence, we have $\left(A \backslash B^{\prime}\right) B^{\prime} \in[A]$ and $\operatorname{pos}_{\left(A \backslash B^{\prime}\right) B^{\prime}}(\beta)<\operatorname{pos}_{\left(A \backslash B^{\prime}\right) B^{\prime}}(\alpha)$, which contradicts (A.1). Thus, $B \subseteq B^{\prime}$. By reversing the roles of B and B^{\prime}, we can prove that $B \supseteq B^{\prime}$. Hence, $B=B^{\prime}$.
2. Dually to (1).
3. By (1) and (2), we choose D to be non-serializable to the left and to the right of a.

Lemma A.1. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and $G^{\{s\}}=\left(\Sigma_{s}, \diamond\right.$, $\left.\sqsubset\right)$. Let $\prec=\sqsubset \cup \diamond$. If $\alpha, \beta \in \Sigma_{s}$, then

1. $\left(\begin{array}{c}\left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)\right) \\ \wedge\left(\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \\ \\ \wedge\left(\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha)>\operatorname{pos}_{u}(\beta)\right)\end{array}\right) \Longrightarrow \alpha>\beta$,
2. $\left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \Longrightarrow \alpha<\beta$,
3. $\left(\alpha \neq \beta \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)\right) \Longrightarrow \alpha \sqsubset \beta$.

Proof. 1. Assume the left-hand side of the implication. Then by Proposition A.2(1), $(l(\alpha), l(\beta)) \in$ inl, which by (10.1) implies that $\alpha>_{s} \beta$. By Definitions 23 and 25, it follows that $\alpha>\beta$.

2 , 3. Since statements (2) and (3) are mutually related due to the fact that $\prec \subseteq \sqsubset$, we cannot prove each statement separately. The main technical insight is that, to have a stronger induction hypothesis, we need prove both statements simultaneously.

Assume $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$ and $\alpha \neq \beta$. Hence, we can choose $u_{0} \in[s]$ where $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}}(k \geqslant 1), E_{1}, E_{k}$ are non-serializable, $\alpha \in \overline{E_{1}}, \beta \in \overline{E_{k}}$, and

$$
\begin{equation*}
\forall u_{0}^{\prime} \in[s] .\binom{\left(\overline{u_{0}^{\prime}}=\overline{x_{0}^{\prime}} \overline{E_{1}^{\prime}} \ldots \overline{E_{k^{\prime}}^{\prime}} \overline{y_{0}^{\prime}} \wedge \alpha \in \overline{E_{1}^{\prime}} \wedge \beta \in \overline{E_{k^{\prime}}^{\prime}}\right)}{\Longrightarrow \operatorname{weight}\left(\overline{E_{1}} \ldots \overline{E_{k}}\right) \leqslant \operatorname{weight}\left(\overline{E_{1}^{\prime}} \ldots \overline{E_{k^{\prime}}^{\prime}}\right)} . \tag{A.2}
\end{equation*}
$$

We will prove by induction on weight $\left(\overline{E_{1}} \ldots \overline{E_{k}}\right)$ that

$$
\begin{align*}
& \left(\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)\right) \quad \Longrightarrow \quad \alpha \prec \beta \tag{A.3}\\
& \left(\alpha \neq \beta \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)\right) \quad \Longrightarrow \quad \alpha \sqsubset \beta \tag{A.4}
\end{align*}
$$

Base case. When weight $\left(\overline{E_{1}} \ldots \overline{E_{k}}\right)=2$, then we consider two cases:

- If $\alpha \neq \beta, \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$ and $\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\beta)$, then
$-\overline{u_{0}}=\overline{x_{0}}\{\alpha, \beta\} \overline{y_{0}}$, or
$-\overline{u_{0}}=\overline{x_{0}}\{\alpha\}\{\beta\} \overline{y_{0}} \equiv \overline{x_{0}}\{\alpha, \beta\} \overline{y_{0}}$.
But since $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$, in either case, we must have $\{l(\alpha), l(\beta)\}$ is not serializable to the right of $l(\beta)$. Hence, by Proposition A.5(2), $\alpha\left(\sqsubset_{s}\right)^{*} \beta$. This by Definitions 23 and 25 implies that $\alpha \sqsubset \beta$.
- If $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$, then it follows $\overline{u_{0}}=\overline{x_{0}}\{\alpha\}\{\beta\} \overline{y_{0}}$ and $(l(\alpha), l(\beta)) \notin \operatorname{ser} \cup$ inl. This, by (10.3), implies that $\alpha \prec_{s} \beta$. Hence, from Definitions 23 and 25, we get $\alpha \prec \beta$.

Since $\prec \subseteq \sqsubset$, it follows from these two cases that (A.3) and (A.4) hold.
Inductive step. When weight $\left(\overline{E_{1}} \ldots \overline{E_{k}}\right)>2$, then $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}}$ where $k \geqslant 1$. We need to consider two cases:
Case (i): If $\alpha \neq \beta$ and $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$ and $\exists u \in[s] \cdot \operatorname{pos}_{u}(\alpha)=\operatorname{pos}_{u}(\beta)$, then there is some $v_{0} \overline{v_{0}}=\overline{w_{0}} \bar{E} \overline{z_{0}}$ and $\alpha, \beta \in \bar{E}$. Either E is non-serializable to the right of $l(\beta)$, or by Proposition A.6(2) $\overline{v_{0}}=\overline{w_{0}} \bar{E} \overline{z_{0}} \equiv \overline{w_{0}^{\prime}} \overline{E^{\prime}} \overline{z_{0}^{\prime}}$ where E^{\prime} is non-serializable to the right of $l(\beta)$. In either case, by Proposition A.5(2), we have $\alpha \sqsubset_{s}^{*} \beta$. So by Definitions 23 and 25 , $\alpha \sqsubset \beta$.

Case (ii): If $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$, then it follows $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}}$ where $k \geqslant 2$ and $\alpha \in \overline{E_{1}}, \beta \in \overline{E_{k}}$. If $(l(\alpha), l(\beta)) \notin$ $\operatorname{ser} \cup \mathrm{inl}$, then by (10.3), $\alpha \prec_{s} \beta$. Hence, from Definitions 23 and 25 , we get $\alpha \prec \beta$. So we need to consider only when $(l(\alpha), l(\beta)) \in \operatorname{ser}$ or $(l(\alpha), l(\beta)) \in$ inl. There are three cases to consider:
(a) If $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \overline{E_{2}} \overline{y_{0}}$ where E_{1} and E_{2} are non-serializable, then since we assume $\forall u \in[s] . \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}$ (β), it follows that $E_{1} \times E_{2} \nsubseteq$ ser and $E_{1} \times E_{2} \nsubseteq$ inl. Hence, there are $\alpha_{1}, \alpha_{2} \in \overline{E_{1}}$ and $\beta_{1}, \beta_{2} \in \overline{E_{2}}$ such that $\left(l\left(\alpha_{1}\right), l\left(\beta_{1}\right)\right) \notin$ inl and $\left(l\left(\alpha_{2}\right), l\left(\beta_{2}\right)\right) \notin \operatorname{ser}$. Since E_{1} and E_{2} are non-serializable, by Proposition A.5(3), $\alpha_{1} \sqsubset_{s}^{*} \alpha_{2}$ and $\beta_{2} \sqsubset_{s}^{*} \beta_{1}$. Also by Definition 25, we know that $\alpha_{1} \diamond_{s} \beta_{2}$ and $\alpha_{2} \diamond_{s}^{C} \beta_{1}$. Thus, by Definition 25, we have $\alpha_{1} \prec_{s} \beta_{2}$. Since E_{1} and E_{2} are non-serializable, by Proposition A.5(3), $\alpha \sqsubset_{s}^{*} \alpha_{1} \prec_{s} \beta_{2} \sqsubset_{s}^{*} \beta$. Hence, by Definitions 23 and $25, \alpha \prec \beta$.
(b) If $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}}$ where $k \geqslant 3$ and $(l(\alpha), l(\beta)) \in$ inl, then let $\gamma \in \overline{E_{2}}$. Observe that we must have

$$
\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}} \equiv \overline{x_{1}} \overline{E_{1}} \overline{w_{1}} \bar{F} \overline{z_{1}} \overline{E_{k}} \overline{y_{1}} \equiv \overline{x_{2}} \overline{E_{1}} \overline{w_{2}} \bar{F} \overline{z_{2}} \overline{E_{k}} \overline{y_{2}}
$$

such that $\gamma \in \bar{F}, F$ is non-serializable, and weight $\left(\overline{E_{1}} \overline{w_{1}} \bar{F}\right)$, weight $\left(\bar{F} \overline{z_{2}} \overline{E_{k}}\right)$ satisfy the minimal condition similarly to (A.2). Since from the way u_{0} is chosen, we know that $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\gamma)$ and $\forall u \in[s] \cdot \operatorname{pos}_{u}(\gamma) \leqslant p o s_{u}(\beta)$, by applying the induction hypothesis, we get

$$
\begin{equation*}
\alpha \sqsubset \gamma \sqsubset \beta . \tag{A.5}
\end{equation*}
$$

So by transitivity of \sqsubset, we get $\alpha \sqsubset \beta$. But since we assume $(l(\alpha), l(\beta)) \in$ inl, it follows that $\alpha \diamond \beta$. Hence, $(\alpha, \beta) \in$ $\sqsubset \cap>=\prec$.
(c) If $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}}$ where $k \geqslant 3$ and $(l(\alpha), l(\beta)) \in \operatorname{ser}$, then we observe from how u_{0} is chosen that

$$
\forall \gamma \in \biguplus\left(\overline{E_{1}} \ldots \overline{E_{k}}\right) \cdot\left(\forall u \in[s] \cdot \operatorname{pos}_{u_{0}}(\alpha) \leqslant \operatorname{pos}_{u_{0}}(\gamma) \leqslant \operatorname{pos}_{u_{0}}(\beta)\right)
$$

Similarly to how we show (A.5), we can prove that

$$
\begin{equation*}
\forall \gamma \in \biguplus\left(\overline{E_{1}} \ldots \overline{E_{k}}\right) \backslash\{\alpha, \beta\} . \alpha \sqsubset \gamma \sqsubset \beta . \tag{A.6}
\end{equation*}
$$

We next want to show that

$$
\begin{equation*}
\exists \delta, \gamma \in \biguplus\left(\overline{E_{1}} \ldots \overline{E_{k}}\right) \cdot\left(\operatorname{pos}_{u_{0}}(\delta)<\operatorname{pos}_{u_{0}}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}\right) \tag{A.7}
\end{equation*}
$$

Suppose that (A.7) does not hold, then

$$
\forall \delta, \gamma \in \biguplus\left(\overline{E_{1}} \ldots \overline{E_{k}}\right) \cdot\left(\operatorname{pos}_{u_{0}}(\delta)<\operatorname{pos}_{u_{0}}(\gamma) \Longrightarrow(l(\delta), l(\gamma)) \in \operatorname{ser}\right)
$$

It follows that $\overline{u_{0}}=\overline{x_{0}} \overline{E_{1}} \ldots \overline{E_{k}} \overline{y_{0}} \equiv \overline{x_{0}} \bar{E} \overline{y_{0}}$, which contradicts that $\forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$. Hence, we have shown (A.7).
Let $\delta, \gamma \in \biguplus\left(\overline{E_{1}} \ldots \overline{E_{k}}\right)$ be event occurrences such that $\operatorname{pos}_{u_{0}}(\delta)<\operatorname{pos}_{u_{0}}(\gamma)$ and $(l(\delta), l(\gamma)) \notin$ ser. By (A.6), $\alpha(\sqsubset \cup$ $\left.i d_{\Sigma_{s}}\right) \delta\left(\sqsubset \cup i d_{\Sigma_{s}}\right) \beta$ and $\alpha\left(\sqsubset \cup i d_{\Sigma_{s}}\right) \gamma\left(\sqsubset \cup i d_{\Sigma_{s}}\right) \beta$. If $\alpha \prec \delta$ or $\delta \prec \beta$ or $\alpha \prec \gamma$ or $\gamma \prec \beta$, then by S4 of Definition 3, $\alpha \prec \beta$. Otherwise, by Definitions 23 and 25, we have $\alpha \sqsubset_{s}^{*} \delta \sqsubset_{s}^{*} \beta$ and $\alpha \sqsubset_{s}^{*} \gamma \sqsubset_{s}^{*} \beta$. But since $\operatorname{pos}_{u_{0}}(\delta)<\operatorname{pos}_{u_{0}}(\gamma)$ and $(l(\delta), l(\gamma)) \notin$ ser, by Definition 25, $\alpha \prec_{s} \beta$. So by Definitions 23 and 25, we have $\alpha<\beta$.

Thus, we have shown (A.3) and (A.4) as desired.

Lemma 6. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl). Let $G^{\{s\}}=\left(\Sigma_{s}, \diamond, \sqsubset\right)$, and let $\prec=\diamond \cap \sqsubset$. Then for every $\alpha, \beta \in \Sigma_{s}$, we have

1. $\alpha>\beta \Longleftrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \neq \operatorname{pos}_{u}(\beta)$,
2. $\alpha \sqsubset \beta \Longleftrightarrow \alpha \neq \beta \wedge \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha) \leqslant \operatorname{pos}_{u}(\beta)$,
3. $\alpha \prec \beta \Longleftrightarrow \forall u \in[s] \cdot \operatorname{pos}_{u}(\alpha)<\operatorname{pos}_{u}(\beta)$,
4. if $l(\alpha)=l(\beta)$ and $\operatorname{pos}_{s}(\alpha)<\operatorname{pos}_{s}(\beta)$, then $\alpha \prec \beta$.

Proof. 1. Follows from Proposition A.4(1) and Lemma A.1(1, 2).
2. Follows from Proposition A.4(2) and Lemma A.1(3).
3. Follows from (1) and (2).
4. Follows from Proposition A.1(2).

Appendix B. Proof of Lemma 8

Lemma 8. Let $s, t \in \mathbb{S}^{*}$ and $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$. Then $G^{\{s\}}=G^{\{t\}}$.
Proof. To show $G^{\{s\}}=G^{\{t\}}$, it suffices to show that $>_{t}=\diamond_{s}, \prec_{t}=\prec_{s}$ and $\sqsubset_{t}=\sqsubset_{s}$ since this will imply that

$$
G^{\{t\}}=\left(\Sigma, \diamond_{t} \cup \prec_{t}, \sqsubset_{t} \cup \prec_{t}\right)^{\bowtie}=\left(\Sigma, \diamond_{s} \cup \prec_{s}, \sqsubset_{s} \cup \prec_{s}\right)^{\bowtie}=G^{\{s\}}
$$

$\left(>_{t}=>_{s}\right)$ Trivially follows from Definition 25.
$\left(\sqsubset_{t}=\sqsubset_{s}\right)$ If $\alpha \sqsubset_{t} \beta$, then by Definitions 23 and $25, \alpha \sqsubset \beta$. But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\alpha \triangleleft_{s} \beta$, which implies $\operatorname{pos}_{s}(\alpha) \leqslant \operatorname{pos}_{s}(\beta)$. But since $\alpha \sqsubset_{t} \beta$, it follows by Definition 25 that $(l(\beta), l(\alpha)) \notin \operatorname{ser} \cup$ inl. Hence, by Definition $25, \alpha \sqsubset_{s} \beta$. Thus,

$$
\begin{equation*}
\sqsubset_{t} \subseteq \sqsubset_{s} \tag{B.1}
\end{equation*}
$$

It remains to show that $\sqsubset_{s} \subseteq \sqsubset_{t}$. Let $\alpha \sqsubset_{s} \beta$, and we suppose that $\neg\left(\alpha \sqsubset_{t} \beta\right)$. Since $\alpha \sqsubset_{s} \beta$, by Definition 25 , $\operatorname{pos}_{s}(\alpha) \leqslant$ $\operatorname{pos}_{s}(\beta)$ and $(l(\beta), l(\alpha)) \notin \operatorname{ser} \cup$ inl. Since we assume $\neg\left(\alpha \sqsubset_{t} \beta\right)$, by Definition 25 , we must have $\operatorname{pos}_{t}(\beta)<\operatorname{pos}_{t}(\alpha)$. Hence, by Definitions 23 and 25, $\beta \prec_{t} \alpha$ and $\beta \prec \alpha$. But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\beta \triangleleft_{s} \alpha$. So $\operatorname{pos}_{s}(\beta)<\operatorname{pos}_{s}(\alpha)$, a contradiction. Thus, $\square_{s} \subseteq \sqsubset_{t}$. Together with (B.1), we get $\sqsubset_{t}=\square_{s}$.
$\left(\prec_{t}=\prec_{s}\right)$ If $\alpha \prec_{t} \beta$, then by Definitions 23 and 25 , $\alpha \prec \beta$ (of $G^{\{t\}}$). But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\alpha \triangleleft_{s} \beta$, which implies

$$
\begin{equation*}
\operatorname{pos}_{s}(\alpha)<\operatorname{pos}_{s}(\beta) \tag{B.2}
\end{equation*}
$$

Since $\alpha \prec_{t} \beta$, by Definition 25, we have

$$
\begin{aligned}
& (l(\alpha), l(\beta)) \notin \operatorname{ser} \cup \operatorname{inl} \\
& \quad \vee(\alpha, \beta) \in \diamond_{t} \cap\left(\left(\sqsubset_{t}^{*}\right)^{\mathrm{\cap}} \circ \diamond_{t}^{\mathrm{C}} \circ\left(\square_{t}^{*}\right)^{\mathrm{@}}\right) \\
& \quad \vee\binom{(l(\alpha), l(\beta)) \in \operatorname{ser}}{\wedge \exists \delta, \gamma \in \Sigma_{t} \cdot\binom{p o s_{t}(\delta)<\operatorname{pos}_{t}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}}{\wedge \alpha \sqsubset_{t}^{*} \delta \sqsubset_{t}^{*} \beta \wedge \alpha \sqsubset_{t}^{*} \gamma \sqsubset_{t}^{*} \beta}} .
\end{aligned}
$$

We want to show that $\alpha \prec_{s} \beta$. There are three cases to consider:
(a) When $(l(\alpha), l(\beta)) \notin \operatorname{ser} \cup$ inl, it follows from (B.2) and Definition 25 that $\alpha \prec_{s} \beta$.
(b) When $(\alpha, \beta) \in>_{t} \cap\left(\left(\square_{t}^{*}\right)^{\text {® }} \circ>_{t}^{\mathrm{C}} \circ\left(\square_{t}^{*}\right)^{\mathrm{n}}\right)$, then $\alpha>_{t} \beta$ and there are $\delta, \gamma \in \Sigma$ such that $\alpha\left(\square_{t}^{*}\right)^{\mathrm{n}} \delta>_{t}^{\mathrm{C}} \gamma\left(\sqsubset_{t}^{*}\right)^{\mathrm{n}} \beta$. Since $\sqsubset_{t}=\sqsubset_{s}$ and $>_{t}=\diamond_{s}$, we have $\alpha \diamond_{s} \beta$ and $\alpha\left(\sqsubset_{s}^{*}\right)^{\cap} \delta \diamond_{s}^{C} \gamma\left(\sqsubset_{s}^{*}\right)^{\text {® }} \beta$. Thus, it follows from (B.2) and Definition 25 that $\alpha \prec_{s} \beta$.
(c) There remains only the case when $(l(\alpha), l(\beta)) \in \operatorname{ser}$ and there are $\delta, \gamma \in \Sigma_{t}$ such that

$$
\binom{\operatorname{pos}_{t}(\delta)<\operatorname{pos}_{t}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}}{\wedge \alpha \sqsubset_{t}^{*} \delta \sqsubset_{t}^{*} \beta \wedge \alpha \sqsubset_{t}^{*} \gamma \sqsubset_{t}^{*} \beta} .
$$

Since $\sqsubset_{t}=\sqsubset_{s}$, we also have $\alpha \sqsubset_{s}^{*} \delta \sqsubset_{s}^{*} \beta \wedge \alpha \sqsubset_{s}^{*} \gamma \sqsubset_{s}^{*} \beta$. Since $(l(\delta), l(\gamma)) \notin$ ser, we either have $(l(\delta), l(\gamma)) \in$ inl or $(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup$ inl.

- If $(l(\delta), l(\gamma)) \in \mathrm{inl}$, then $\operatorname{pos}_{s}(\delta) \neq \operatorname{pos}_{s}(\gamma)$. Thus, $\left(\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}\right)$ or $\left(\operatorname{pos}_{s}(\gamma)<\operatorname{pos}_{s}(\delta) \wedge\right.$ $(l(\gamma), l(\delta)) \notin \operatorname{ser})$. So it follows from (B.2) and Definition 25 that $\alpha \prec_{s} \beta$.
- If $(l(\delta), l(\gamma)) \notin \operatorname{inl}$, then $(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup$ inl. Hence, by Definition $25, \delta \prec_{t} \gamma$, which by Definitions 23 and $25, \delta \prec \gamma$. But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\delta \triangleleft_{s} \gamma$, which implies $\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma)$. Since $\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma)$ and $(l(\delta), l(\gamma)) \notin \operatorname{ser}$, it follows from (B.2) and Definition 25 that $\alpha \prec_{s} \beta$.

Thus, we have shown that $\alpha \prec_{s} \beta$. Hence,

$$
\begin{equation*}
\prec_{t} \subseteq \prec_{s} . \tag{B.3}
\end{equation*}
$$

It remains to show that $\prec_{s} \subseteq \prec_{t}$. Let $\alpha \prec_{s} \beta$. Suppose that $\neg\left(\alpha \prec_{t} \beta\right)$. Since $\alpha \prec_{s} \beta$, by Definition 25 , we need to consider three cases:
(a) When $(l(\alpha), l(\beta)) \notin \operatorname{ser} \cup \mathrm{inl}$, we suppose that $\neg\left(\alpha \prec_{t} \beta\right)$. This by Definition 25 implies that $\operatorname{pos}_{t}(\beta) \leqslant \operatorname{pos}_{t}(\alpha)$. By Definitions 23 and 25, it follows that $\beta \sqsubset_{t} \alpha$ and $\beta \sqsubset \alpha$. But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\beta \triangleleft_{s} \alpha$, which implies $\operatorname{pos}_{s}(\beta) \leqslant \operatorname{pos}_{s}(\alpha)$, a contradiction.
(b) If $(\alpha, \beta) \in>_{s} \cap\left(\left(\sqsubset_{s}^{*}\right)^{\text {n }} \circ>_{s}^{C} \circ\left(\square_{s}^{*}\right)^{\text {n }}\right)$, then since $>_{s}=>_{t}$ and $\sqsubset_{s}=\sqsubset_{t}$, we have $(\alpha, \beta) \in>_{t} \cap\left(\left(\square_{t}^{*}\right)^{\text {@ }} \circ>_{t}^{C} \circ\right.$ $\left.\left(\sqsubset_{t}^{*}\right)^{\text {n }}\right)$. Since $\alpha>_{t} \beta$, we have $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$ or $\operatorname{pos}_{t}(\beta)<\operatorname{pos}_{t}(\alpha)$. We claim that $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$. Suppose for a contradict that $\operatorname{pos}_{t}(\beta)<\operatorname{pos}_{t}(\alpha)$. Since $(\alpha, \beta) \in \diamond_{t} \cap\left(\left(\square_{t}^{*}\right)^{\cap} \circ \diamond_{t}^{C} \circ\left(\sqsubset_{t}^{*}\right)^{\cap}\right)$ and \diamond_{t} is symmetric, we have $(\beta, \alpha) \in \diamond_{t} \cap\left(\left(\sqsubset_{t}^{*}\right)^{\mathrm{n}} \circ>_{t}^{\mathrm{C}} \circ\left(\sqsubset_{t}^{*}\right)^{\mathrm{n}}\right)$. Hence, it follows from Definitions 23 and 25 that $\beta \prec_{t} \alpha$ and $\beta \prec \alpha$. But since $\triangleleft_{s} \in \operatorname{ext}\left(G^{\{t\}}\right)$, we have $\beta \triangleleft_{s} \alpha$, which implies $\operatorname{pos}_{s}(\beta)<\operatorname{pos}_{s}(\alpha)$, a contradiction. Thus, $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$.

(c) There remains only the case when $(l(\alpha), l(\beta)) \in \operatorname{ser}$ and there are $\delta, \gamma \in \Sigma_{s}$ such that

$$
\binom{\operatorname{pos}_{s}(\delta)<\operatorname{pos}_{s}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}}{\wedge \alpha \sqsubset_{s}^{*} \delta \sqsubset_{s}^{*} \beta \wedge \alpha \sqsubset_{s}^{*} \gamma \sqsubset_{s}^{*} \beta} .
$$

Since $\sqsubset_{s}=\sqsubset_{t}$, we have $\alpha \sqsubset_{t}^{*} \delta \sqsubset_{t}^{*} \beta$ and $\alpha \sqsubset_{t}^{*} \gamma \sqsubset_{t}^{*} \beta$, which by Definition 25 and transitivity of \leqslant implies that $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\delta) \leqslant \operatorname{pos}_{t}(\beta)$ and $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\gamma) \leqslant \operatorname{pos}_{t}(\beta)$. Since $(l(\delta), l(\gamma)) \notin \operatorname{ser}$, we either have $(l(\delta), l(\gamma)) \in$ inl or $(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup i n l$.
(i) If $(l(\delta), l(\gamma)) \in \operatorname{inl}$, then $\operatorname{pos}_{t}(\delta) \neq \operatorname{pos}_{t}(\gamma)$. This implies that $\left(\operatorname{pos}_{t}(\delta)<\operatorname{pos}_{t}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser}\right)$ or $\left(p o s_{t}(\gamma)<\right.$ $\left.\operatorname{pos}_{t}(\delta) \wedge(l(\gamma), l(\delta)) \notin \operatorname{ser}\right)$. Since $\operatorname{pos}_{t}(\delta) \neq \operatorname{pos}_{t}(\gamma)$ and $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\delta) \leqslant \operatorname{pos}_{t}(\beta)$ and $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\gamma) \leqslant \operatorname{pos}_{t}(\beta)$, we also have $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$. So it follows from Definition 25 that $\alpha{<_{t}} \beta$.
(ii) If $(l(\delta), l(\gamma)) \notin \mathrm{inl}$, then $(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup \mathrm{inl}$. We want to show that $\operatorname{pos}_{t}(\delta)<\operatorname{pos}_{t}(\gamma)$. Suppose that $\operatorname{pos}_{s}(\delta) \geqslant$ $\operatorname{pos}_{s}(\gamma)$. Since $(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup i n l$, by Definitions 23 and 25, we have $\gamma \sqsubset_{t} \delta$ and $\gamma \sqsubset \delta$. But since $\triangleleft_{s} \in \operatorname{ext}(G\{t\})$, we have $\gamma \triangleleft_{s} \delta$, which implies $\operatorname{pos}_{s}(\gamma) \leqslant \operatorname{pos}_{s}(\delta)$, a contradiction. Since $\operatorname{pos}_{t}(\delta)<\operatorname{pos}_{t}(\gamma)$ and $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\delta) \leqslant$ $\operatorname{pos}_{t}(\beta)$ and $\operatorname{pos}_{t}(\alpha) \leqslant \operatorname{pos}_{t}(\gamma) \leqslant \operatorname{pos}_{t}(\beta)$, we have $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$. Hence, we have $\operatorname{pos}_{t}(\alpha)<\operatorname{pos}_{t}(\beta)$ and

$$
\binom{\operatorname{pos}_{t}(\delta)<\operatorname{pos}_{t}(\gamma) \wedge(l(\delta), l(\gamma)) \notin \operatorname{ser} \cup i n l}{\wedge \alpha \sqsubset_{t}^{*} \delta \sqsubset_{t}^{*} \beta \wedge \alpha \sqsubset_{t}^{*} \gamma \sqsubset_{t}^{*} \beta} .
$$

So it follows that $\alpha \prec_{t} \beta$ by Definition 25 .
Thus, we have shown $\prec_{s} \subseteq \prec_{t}$. This and (B.3) imply $\prec_{t}=\prec_{s}$.

References

[1] B. Bloom, M.Z. Kwiatkowska, Trade-offs in true concurrency: Pomsets and Mazurkiewicz traces, in: Proc. of MFPS, 1991, pp. $350-375$.
[2] P. Cartier, D. Foata, Problèmes combinatoires de commutation et ré-arrangements, Lecture Notes in Math., vol. 85, Springer, 1969.
[3] R. Devillers, R. Janicki, M. Koutny, P.E. Lauer, Concurrent and maximally concurrent evolution of non-sequential systems, Theoret. Comput. Sci. 43 (1986) 213-238.
[4] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, 1995.
[5] H. Gaifman, V. Pratt, Partial order models of concurrency and the computation of function, in: Proc. of LICS'87, pp. 72-85.
[6] G. Guo, R. Janicki, Modelling concurrent behaviours by commutativity and weak causality relations, in: Proc. of AMAST'02, in: Lecture Notes in Comput. Sci., vol. 2422, 2002, pp. 178-191.
[7] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1986.
[8] R. Janicki, Relational structures model of concurrency, Acta Inform. 45 (4) (2008) 279-320.
[9] R. Janicki, M. Koutny, Invariants and paradigms of concurrency theory, in: Lecture Notes in Comput. Sci., vol. 506, Springer, 1991 , pp. 59-74.
[10] R. Janicki, M. Koutny, Structure of concurrency, Theoret. Comput. Sci. 112 (1) (1993) 5-52.
[11] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inform. and Comput. 123 (1) (1995) 1-16.
[12] R. Janicki, M. Koutny, Fundamentals of modelling concurrency using discrete relational structures, Acta Inform. 34 (1997) 367-388.
[13] R. Janicki, M. Koutny, On causality semantics of nets with priorities, Fund. Inform. 34 (1999) 222-255.
[14] R. Janicki, P.E. Lauer, Specification and Analysis of Concurrent Systems: The COSY Approach, Springer, 1992.
[15] R. Janicki, D.T.M. Lê, Modelling concurrency with quotient monoids, in: Proc. of PETRI NETS 2008, in: Lecture Notes in Comput. Sci., vol. 5062, Springer, 2008, pp. 251-269.
[16] G. Juhás, R. Lorenz, C. Neumair, Synthesis of controlled behaviours with modules of signal nets, in: Lecture Notes in Comput. Sci., vol. 3099, Springer, 2004, pp. 233-257.
[17] G. Juhás, R. Lorenz, S. Mauser, Causal semantics of algebraic Petri Nets distinguishing concurrency and synchronicity, Fund. Inform. 86 (3) (2008) 255-298.
[18] G. Juhás, R. Lorenz, S. Mauser, Complete semantics of algebraic Petri Nets, Fund. Inform. 87 (3) (2008) 331-365.
[19] H.C.M. Kleijn, M. Koutny, Process semantics of general inhibitor nets, Inform. and Comput. 190 (2004) 18-69.
[20] J. Kleijn, M. Koutny, Formal languages and concurrent behaviour, Stud. Comput. Intell. 113 (2008) 125-182.
[21] D.T.M. Lê, Studies in comtrace monoids, Master thesis, Dept. of Computing and Software, McMaster University, Hamilton, ON, Canada, August 2008.
[22] Dai Tri Man Lê, A characterization of combined traces using labeled stratified order structures, in: Proceedings of Petri Net 2010, in: Lecture Notes in Comput. Sci., vol. 6128, Springer, 2010, pp. 104-124.
[23] A. Mazurkiewicz, Concurrent program schemes and their interpretation, TR DAIMI PB-78, Comp. Science Depart., Aarhus University, 1977.
[24] A. Mazurkiewicz, Introduction to trace theory, in [4], pp. 3-42.
[25] E. Ochmański, Recognizable trace languages, in [4], pp. 167-204.
[26] M. Pietkiewicz-Koutny, The synthesis problem for elementary net systems, Fund. Inform. $40(2,3)(1999) 310-327$.
[27] M.W. Shields, Adequate path expressions, in: Lecture Notes in Comput. Sci., vol. 70, Springer, 1979, pp. 249-265.
[28] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930) 386-389.
[29] W. Vogler, A generalization of trace theory, RAIRO Inform. Théor. Appl. 25 (2) (1991) 147-156.
[30] W. Zielonka, Notes on finite asynchronous automata, RAIRO Inform. Théor. Appl. 21 (1987) 99-135.

[^0]: * Corresponding author.

 E-mail addresses: janicki@mcmaster.ca (R. Janicki), ledt@cs.toronto.edu (D.T.M. Lê).
 1 The word "trace" has many different meanings in computer science and software engineering. In this paper, we reserve the word "trace" for Mazurkiewicz trace, which is different from "traces" used in Hoare's CSP [7].

[^1]: 2 Following [8], we are using the word "tantamount" instead of "equivalent" as the latter usually implies that the entities are of the same type, as "equivalent automata", "equivalent expressions", etc. Tantamount entities can be of different types.

[^2]: ${ }^{3}$ Unless we assume that simultaneity is not allowed, or not observed, in which case obs $\left(P_{1}\right)=o b s\left(P_{4}\right)=\left\{0_{1}, o_{2}\right\}$, obs $\left(P_{2}\right)=\left\{o_{1}\right\}$, obs $\left(P_{3}\right)=\emptyset$.

[^3]: ${ }^{4}$ Strictly speaking $E Q=\{b c=c b, c b=b c\}$ but standardly we consider the equations $b c=c b$ and $c b=b c$ as identical.

[^4]: 5 A paradigm is a supposition or statement about the structure of a concurrent behavior (concurrent history) involving a treatment of simultaneity. See [8,10] for more details.

[^5]: ${ }^{6}$ Vector firing sequences were introduced by Mike Shields in 1979 [27] as an alternative representation of Mazurkiewicz traces.

[^6]: 7 This is also true for traces when they are represented as vector firing sequences [3].

