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later than” relationship. In this paper, we first introduce the novel notion of generalized
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relationship. Then we study some basic algebraic properties and canonical representa-
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generalized comtraces and generalized stratified order structures. The major technical con-
tribution of this paper is a proof showing that generalized comtraces can be represented
by generalized stratified order structures.
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1. Introduction

Mazurkiewicz traces, or just traces,1 are quotient monoids over sequences (or words) [2,23,4]. The theory of traces has
been utilized to tackle problems from diverse areas including combinatorics, graph theory, algebra, logic and especially
concurrency theory [4].

As a language representation of finite partial orders, traces can sufficiently model “true concurrency” in various aspects
of concurrency theory. However, some aspects of concurrency cannot be adequately modelled by partial orders (cf. [8,10]),
and thus cannot be modelled by traces. For example, neither traces nor partial orders can model the “not later than” rela-
tionship [10]. If an event a is performed “not later than” an event b, then this “not later than” relationship can be modelled
by the following set of two step sequences x = {{a}{b}, {a,b}}; where step {a,b} denotes the simultaneous execution of a and
b and the step sequence {a}{b} denotes the execution of a followed by b. But the set x cannot be represented by any trace
(or equivalently any partial order), even if the generators, i.e. elements of the trace alphabet, are sets and the underlying
monoid is the monoid of step sequences (as in [29]).

To overcome these limitations, Janicki and Koutny proposed the comtrace (combined trace) notion [11]. First the set of all
possible steps that generates step sequences is identified by a relation sim, which is called simultaneity. Second a congruence
relation is determined by a relation ser, which is called serializability and is in general not symmetric. Then a comtrace is
defined as a finite set of congruent step sequences. Comtraces were invented to provide a formal linguistic counterpart of
stratified order structures (so-structures), analogously to how traces relate to partial orders.

A so-structure [5,9,11,12] is a triple (X,≺,�), where ≺ and � are binary relations on the set X . So-structures were
invented to model both the “earlier than” (the relation ≺) and the “not later than” (the relation �) relationships, under the
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assumption that all system runs are modelled by stratified partial orders, i.e., step sequences. They have been successfully
applied to model inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for example [11,26,17–
20]).

The paper [11] contains a major result showing that every comtrace uniquely determines a labeled so-structure, and
then use comtraces to provide a semantics of Petri nets with inhibitor arcs. However, so far comtraces are used less often
than so-structures, even though in many cases they appear to be more natural than so-structures. Perhaps this is due to the
lack of a sufficiently developed quotient monoid theory for comtraces similar to that of traces.

However, neither comtraces nor so-structures are enough to model the “non-simultaneously” relationship, which could
be defined by the set of step sequences {{a}{b}, {b}{a}} with the additional assumption that the step {a,b} is not allowed.
In fact, both comtraces and so-structures can adequately model concurrent histories only when paradigm π3 of [10,12] is
satisfied. Intuitively, paradigm π3 formalizes the class of concurrent histories satisfying the condition that if both {a}{b} and
{b}{a} belong to the concurrent history, then so does {a,b} (i.e., these three step sequences {a}{b}, {b}{a} and {a,b} are all
equivalent observations).

To model the general case that includes the “non-simultaneously” relationship, we need the concept of general-
ized stratified order structures (gso-structures), which were introduced and analyzed by Guo and Janicki in [6,8]. A gso-
structure is a triple (X,<>,�), where <> and � are binary relations on X modelling the “non-simultaneously” and
“not later than” relationships respectively, under the assumption that all system runs are modelled by stratified partial
orders.

To provide the reader with a high level view of the main motivation and intuition behind the use of so-structures as
well as the need of gso-structures, we will consider a motivating example (adapted from [8]).

1.1. A motivating example

We will illustrate our basic concepts and constructions by analyzing four simple concurrent programs. Three of these
programs will involve the concepts of simultaneous executions, which is essential to our model. We would like to point out
that the theory presented in this paper is especially for models where simultaneity is well justified, for example for the
models with a discrete time.

All four programs in this example are written using a mixture of cobegin, coend and a version of concurrent guarded
commands.

Example 1.
P1: begin int x,y;

a: begin x:=0; y:=0 end;
cobegin b: x:=x+1, c: y:=y+1 coend
end P1.

P2: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin b: x=0 → y:=y+1, c: x:=x+1 coend
end P2.

P3: begin int x,y;
a: begin x:=0; y:=0 end;
cobegin b: y=0 → x:=x+1, c: x=0 → y:=y+1 coend
end P3.

P4: begin int x;

a: x:=0;

cobegin b: x:=x+1, c: x:=x+2 coend

end P4.

Each program is a different composition of three events (actions) called a, b, and c (ai , bi , ci , i = 1, . . . ,4, to be exact, but
a restriction to a, b, c does not change the validity of the analysis below, while simplifying the notation). Transition systems
modelling these programs are shown in Fig. 1.

Let obs(Pi) denote the set of all program runs involving the actions a, b, c that can be observed. Assume that si-
multaneous executions can be observed. In this simple case all runs (or observations) can be modelled by step sequences.
Let us denote o1 = {a}{b}{c}, o2 = {a}{c}{b}, o3 = {a}{b, c}. Each oi can be equivalently seen as a stratified partial order
oi = ({a,b, c}, oi−→) where:
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Fig. 1. Examples of causality, weak causality, and commutativity. Each program Pi can be modelled by a labeled transition system (automaton) Ai . The step
{a,b} denotes the simultaneous execution of a and b.
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We can now write obs(P1) = {o1,o2,o3}, obs(P2) = {o1,o3}, obs(P3) = {o3}, obs(P4) = {o1,o2}. Note that for every i =
1, . . . ,4, all runs from the set obs(Pi) yield exactly the same outcome. Hence, each obs(Pi) is called the concurrent history
of Pi .

An abstract model of such an outcome is called a concurrent behavior, and now we will discuss how causality, weak
causality and commutativity relations are used to construct concurrent behavior.

1.1.1. Program P1
In the set obs(P1), for each run, a always precedes both b and c, and there is no causal relationship between b and c.

This causality relation, ≺, is the partial order defined as ≺= {(a,b), (a, c)}. In general ≺ is defined by: x ≺ y iff for each run
o we have x o−→ y. Hence for P1, ≺ is the intersection of o1, o2 and o3, and {o1,o2,o3} is the set of all stratified extensions
of the relation ≺.

Thus, in this case, the causality relation ≺ models the concurrent behavior corresponding to the set of (equivalent) runs
obs(P1). We will say that obs(P1) and ≺ are tantamount2 and write obs(P1) � {≺} or obs(P1) � ({a,b, c},≺). Having obs(P1)

one may construct ≺ (as an intersection of all orders from obs(P1)), and then reconstruct obs(P1) (as the set of all stratified
extensions of ≺). This is a classical case of the “true” concurrency approach, where concurrent behavior is modelled by a
causality relation.

Before considering the remaining cases, note that the causality relation ≺ is exactly the same in all four cases, i.e.,
≺i= {(a,b), (a, c)}, for i = 1, . . . ,4, so we may omit the index i.

1.1.2. Programs P2 and P3
To deal with obs(P2) and obs(P3), ≺ is insufficient because o2 /∈ obs(P2) and o1,o2 /∈ obs(P2). Thus, we need a weak

causality relation � defined in this context as x � y iff for each run o we have ¬(y o−→ x) (x is never executed after y).
For our four cases we have �2 = {(a,b), (a, c), (b, c)}, �1 =�4 =≺, and �3 = {(a,b), (a, c), (b, c), (c,b)}. Notice again that
for i = 2,3, the pair of relations {≺,�i} and the set obs(Pi) are tantamount as each is definable from the other. (The set

2 Following [8], we are using the word “tantamount” instead of “equivalent” as the latter usually implies that the entities are of the same type, as
“equivalent automata”, “equivalent expressions”, etc. Tantamount entities can be of different types.
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obs(Pi) can be defined as the greatest set PO of partial orders built from a, b and c satisfying x ≺ y ⇒ ∀o ∈ PO.x o−→ y and
x �i y ⇒ ∀o ∈ PO.¬(y o−→ x).)

Hence again in these cases (i = 2,3) obs(Pi) and {≺,�i} are tantamount, obs(Pi) � {≺,�i}, and so the pair {≺,�i},
i = 2,3, models the concurrent behavior described by obs(Pi). Note that �i alone is not sufficient, since (for instance)
obs(P2) and obs(P2) ∪ {{a,b, c}} define the same relation �.

1.1.3. Program P4
The causality relation ≺ does not model the concurrent behavior of P4 correctly3 since o3 does not belong to obs(P4).

The commutativity relation <> is defined in this context as x <> y iff for each run o either x o−→ y or y o−→ x. For the set
obs(P4), the relation <>4 looks like <>4 = {(a,b), (b,a), (a, c), (c,a), (b, c), (c,b)}. The pair of relations {<>4,≺} and the set
obs(P4) are tantamount as each is definable from the other. (The set obs(P4) is the greatest set PO of partial orders built
from a, b and c satisfying x <>4 y ⇒ ∀o ∈ PO.x o−→ y ∨ y o−→ x and x ≺ y ⇒ ∀o ∈ PO.x o−→ y.) In other words, obs(P4) and
{<>4,≺} are tantamount, so we may say that in this case the relations {<>4,≺} model the concurrent behavior described
by obs(P4).

Note that <>1 =≺ ∪ ≺−1 and the pair {<>1,≺} also model the concurrent behavior described by obs(P1).

1.1.4. Summary of analysis of P1, P2, P3 and P4
For each Pi the state transition model Ai and their respective concurrent histories and concurrent behaviors are sum-

marized in Fig. 1. Thus, we can make the following observations:

1. obs(P1) can be modelled by the relation ≺ alone, and obs(P1) � {≺}.
2. obs(Pi), for i = 1,2,3 can also be modelled by the appropriate pairs of relations {≺,�i}, and obs(Pi) � {≺,�i}.
3. All sets of observations obs(Pi), for i = 1,2,3,4 are modelled by the appropriate pairs of relations {<>i,�i}, and

obs(Pi) � {<>i,�i}.

Note that the relation ≺ is not independent from the relations <>, �, since it can be proven (see [10]) that ≺=<> ∩ �.
Intuitively, since <> and � are the abstraction of the “earlier than or later than” and “not later than” relations, it follows
that their intersection is the abstraction of the “earlier than” relation.

1.1.5. Intuition for comtraces and generalized comtraces
We may also try to model the concurrent behaviors of the programs P1, P2, P3 and P4 only in terms of algebra of

step sequences. To do this we need to introduce an equivalence relation on step sequences such that the sets obs(Pi), for
i = 1, . . . ,4, interpreted as sets of step sequences and not partial orders, are appropriate equivalence classes. A particular
instance of this equivalence relation should depend on the structure of a particular program, or its labeled transition system
representation.

It turns out that in such an approach the program P4 needs to be treated differently than P1, P2 and P3. In order to
avoid ambiguity, we will write obsstep(Pi) to denote the same set of system runs as obs(Pi), but with runs now modelled
by step sequences instead of partial orders.

For all four cases we need two relations simi and seri , i = 1, . . . ,4, on the set {a,b, c}. The relations simi , called simul-
taneity, are symmetric and indicate which actions can be executed simultaneously, i.e. in one step. It is easy to see that
sim1 = sim2 = sim3 = {(b, c), (c,b)}, but sim4 = ∅. The relations seri , called serializability, may not be symmetric, must satisfy
seri ⊆ simi , and indicate how steps can equivalently be executed in some sequence. In principle if (α,β) ∈ ser then the
step {α,β} is equivalent to the sequence {α}{β}. For our four cases we have ser1 = sim1 = {(b, c), (c,b)}, ser2 = {(b, c)},
ser3 = ser4 = ∅.

Let A, B, C be steps such that A = B ∪ C and B ∩ C = ∅. For example A = {b, c}, B = {b} and C = {c}. We will say that the
step A and the step sequence BC are equivalent, A ≈i BC , if B × C ⊆ simi . For example we have {b, c} ≈i {b}{c} for i = 1,2
and {b, c} ≈i {c}{b} for i = 1. The relations ≈3 and ≈4 are empty.

Let ≡i be the smallest equivalence relation on the whole set of events containing ≈i , and for each step sequence
A1 . . . Ak , let [A1 . . . Ak]≡i denote the equivalence class of ≡i containing the step sequence A1 . . . Ak .

For our four cases, we have:

1. [{a}{b}{c}]≡1 = {{a}{b}{c}, {a}{c}{b}, {a}{b, c}} = obsstep(P1) � obs(P1).
2. [{a}{b}{c}]≡2 = {{a}{b}{c}, {a}{b, c}} = obsstep(P2) � obs(P2).
3. [{a}{b}{c}]≡3 = {{a}{b, c}} = obsstep(P3) � obs(P3).
4. [{a}{b}{c}]≡4 = {{a}{b}{c}} �= obsstep(P4).

Strictly speaking the statement obsstep(Pi) = obs(Pi) is false, but obviously obsstep(Pi) � obs(Pi), for i = 1, . . . ,4.

3 Unless we assume that simultaneity is not allowed, or not observed, in which case obs(P1) = obs(P4) = {o1,o2}, obs(P2) = {o1}, obs(P3) = ∅.
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For i = 1, . . . ,3, equivalence classes of each relation ≡i are generated by relations simi and seri . These equivalence classes
are called comtraces (introduced in [11] as a generalization of Mazurkiewicz traces) and can be used to model concurrent
histories of the systems or programs like P1, P2 and P3.

In order to model the concurrent history of P4 with equivalent step sequences, we need a third relation inl4 on the set
of events {a,b, c} that is symmetric and satisfies inl4 ∩ sim4 = ∅. The relation inl4 is called interleaving, and if (x, y) ∈ inl then
events x and y cannot be executed simultaneously, but the execution of x followed by y and the execution of y followed
by x are equivalent. For program P4 we have inl4 = {(b, c), (c,b)}.

We can now define a relation ≈′
4 on step sequences of length two, as BC ≈′

4 C B if B × C ⊆ inl, which for this simple
case gives ≈′

4= {({b}{c}, {c}{b}), ({c}{b}, {b}{c})}. Let ≡4 be the smallest equivalence relation on the whole set of events
containing ≈4 and ≈′

4. Then we have[{a}{b}{c}]≡4
= {{a}{b}{c}, {a}{c}{b}}= obsstep(P4) � obs(P4).

Equivalence classes of relations like ≡4, generated by the relations like sim4, ser4 and inl4 are called generalized comtraces
(g-comtraces, introduced in [15]) and they can be used to model concurrent histories of the systems or programs like P4.

1.2. Summary of contributions

This paper is an expansion and revision of our results from [15,21]. We propose a formal-language counterpart of gso-
structures, called generalized comtraces (g-comtraces). We will revisit and expand the algebraic theory of comtraces, especially
various types of canonical forms and the formal relationship between traces and comtraces. We analyze in detail the prop-
erties of g-comtraces, their canonical representations, and most importantly the formal relationship between g-comtraces
and gso-structures.

1.3. Organization

The content of the paper is organized as follows. In the next section, we review some basic concepts of order theory and
monoid theory. Section 3 recalls the concept of Mazurkiewicz traces and discusses its relationship to finite partial orders.
Section 4 surveys some basic background on the relational structures model of concurrency [5,9,11,12,6,8].

Comtraces are defined and their relationship to traces is discussed in Section 5, and g-comtraces are introduced in
Section 6.

Various basic algebraic properties of both comtrace and g-comtrace congruences are discussed in Section 7. Section 8
is devoted to canonical representations of traces, comtraces and g-comtraces. In Section 9 we recall some results on the
so-structures defined by comtraces. The gso-structures generated by g-comtraces are defined and analyzed in Section 10.
Concluding remarks are made in Section 11. We also include two appendices containing some long and technical proofs of
results from Section 10.

2. Orders, monoids, sequences and step sequences

In this section, we recall some standard notations, definitions and results which are used extensively in this paper.

2.1. Relations, orders and equivalences

The powerset of a set X will be denoted by ℘(X). The set of all non-empty subsets of X will be denoted by ℘\{∅}(X). In
other words, ℘\{∅}(X) � ℘(X) \ {∅}.

Let f : A → B be a function, then for every set C ⊆ A, we write f [C] to denote the image of the set C under f , i.e.,
f [C] � { f (x) | x ∈ C}.

We let idX denote the identity relation on a set X . We write R ◦ S to denote the composition of relations R and S . We
also write R+ and R∗ to denote the (irreflexive) transitive closure and reflexive transitive closure of R respectively.

A binary relation R ⊆ X × X is an equivalence relation on X iff it is reflexive, symmetric and transitive. If R is an
equivalence relation, we write [x]R to denote the equivalence class of x with respect to R , and the set of all equivalence
classes in X is denoted as X/R and called the quotient set of X by R . We drop the subscript and write [x] to denote the
equivalence class of x when R is clear from the context.

A binary relation ≺⊆ X × X is a partial order iff R is irreflexive and transitive. The pair (X,≺) in this case is called a
partially ordered set (poset). The pair (X,≺) is called a finite poset if X is finite. For convenience, we define:

�≺ �
{
(a,b) ∈ X × X

∣∣ a ⊀ b ∧ b ⊀ a
}

(incomparable),

�≺ �
{
(a,b) ∈ X × X

∣∣ a �≺ b ∧ a �= b
}

(distinctly incomparable),

≺� �
{
(a,b) ∈ X × X

∣∣ a ≺ b ∨ a �≺ b
}

(not greater).

A poset (X,≺) is total iff �≺ is empty; and stratified iff �≺ is an equivalence relation. Evidently every total order is
stratified.
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Let ≺1 and ≺2 be partial orders on a set X . Then ≺2 is an extension of ≺1 if ≺1 ⊆≺2. The relation ≺2 is a total extension
(stratified extension) of ≺1 if ≺2 is total (stratified) and ≺1 ⊆≺2.

For a poset (X,≺), we define

TotalX (≺) � {� ⊆ X × X | � is a total extension of ≺}.

Theorem 1. (See Szpilrajn [28].) For every poset (X,≺), ≺=⋂�∈TotalX (≺) �. �
Szpilrajn’s theorem states that every partial order can be uniquely reconstructed by taking the intersection of all of its

total extensions.

2.2. Monoids and equational monoids

A triple (X,∗,1), where X is a set, ∗ is a total binary operation on X , and 1 ∈ X , is called a monoid, if (a∗b)∗c = a∗(b∗c)
and a ∗ 1 = 1 ∗ a = a, for all a,b, c ∈ X .

An equivalence relation ∼⊆ X × X is a congruence in the monoid (X,∗,1) if for all elements a1,a2,b1,b2 of X , a1 ∼
b1 ∧ a2 ∼ b2 ⇒ (a1 ∗ a2) ∼ (b1 ∗ b2).

The triple (X/∼,�, [1]), where [a] � [b] = [a ∗ b], is called the quotient monoid of (X,∗,1) under the congruence ∼. The
mapping φ : X → X/∼ defined as φ(a) = [a] is called the natural homomorphism generated by the congruence ∼. We usually
omit the symbols ∗ and �.

Definition 1 (Equation monoid). Given a monoid M = (X,∗,1) and a finite set of equations EQ = {xi = yi | i = 1, . . . ,n}, define
≡EQ to be the least congruence on M satisfying

xi = yi �⇒ xi ≡EQ yi

for every equation xi = yi ∈ EQ . We call the relation ≡EQ the congruence defined by the set of equation EQ , or EQ-
congruence. The quotient monoid M≡EQ = (X/≡EQ ,�, [1]), where [x] � [y] = [x ∗ y], is called an equational monoid.

The following folklore result shows that the relation ≡EQ can also be uniquely defined in an explicit way.

Proposition 1. (Cf. [21].) Given a monoid M = (X,∗,1) and a set of equations EQ, define the relation ≈⊆ X × X as:

x ≈ y
df⇐⇒ ∃x1, x2 ∈ X .∃(u = w) ∈ EQ .x = x1 ∗ u ∗ x2 ∧ y = x1 ∗ w ∗ x2,

then the EQ-congruence ≡ is (≈ ∪ ≈−1)∗ , the symmetric irreflexive transitive closure of ≈. �
We will see later in this paper that monoids of traces, comtraces and generalized comtraces are all special cases of

equational monoids.

2.3. Sequences, step sequences and partial orders

By an alphabet we shall understand any finite set. For an alphabet Σ , let Σ∗ denote the set of all finite sequences of
elements (words) of Σ , λ denotes the empty sequence, and any subset of Σ∗ is called a language. In the scope of this paper,
we only deal with finite sequences. Let the operator _ · _ denote the sequence concatenation (usually omitted). Since the
sequence concatenation operator is associative and λ is neutral, the triple (Σ∗, ·, λ) is a monoid (of sequences).

Consider an alphabet S ⊆ ℘\{∅}(X) for some alphabet Σ . The elements of S are called steps and the elements of S∗
are called step sequences. For example if S = {{a,b, c}, {a,b}, {a}, {c}} then {a,b}{c}{a,b, c} ∈ S∗ is a step sequence. The triple
(S∗, ·, λ), is a monoid (of step sequences), since the step sequence concatenation is associative and λ is neutral.

We will now show the formal relationship between step sequences and stratified orders. Let t = A1 . . . Ak be a step
sequence in S∗ . We define |t|a , the number of occurrences of an event a in t , as |t|a � |{Ai | 1 � i � k ∧ a ∈ Ai}|, where |X |
denotes the cardinality of the set X .

• We can uniquely construct its enumerated step sequence t as

t � A1 . . . Ak, where Ai �
{

e(|A1...Ai−1|e+1)
∣∣ e ∈ Ai

}
.

We call such α = e(i) ∈ Ai an event occurrence of e. E.g., if t = {a,b}{b, c}{c,a}{a}, then t = {a(1),b(1)}{b(2), c(1)}{a(2),

c(2)}{a(3)} is its enumerated step sequence.
• Let Σt =⋃k

i=1 Ai denote the set of all event occurrences in all steps of t . For example, when t = {a,b}{b, c}{c,a}{a}, we
have Σt = {a(1),a(2),a(3),b(1),b(2), c(1), c(2)}.
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• Define l :Σt → Σ to be the function that returns the label of an event occurrence. In other words, for each event
occurrence α = e(i) , l(α) returns the label e of α. From an enumerated step sequence t = A1 . . . Ak , we can uniquely
recover its step sequence as t = l[A1] . . . l[Ak].

• For each α ∈ Σt , let post(α) denote the index number of the step where α occurs, i.e., if α ∈ A j then post(α) = j. For
our example, post(a

(2)) = 3, post(b
(2)) = 2, etc.

Given a step sequence u, we define two relations �u , �u⊆ Σu × Σu as:

α �u β
df⇐⇒ posu(α) < posu(β) and α �u β

df⇐⇒ posu(α) = posu(β).

Since ��
u is the union of �u and �u , we have

α ��
u β ⇐⇒ (

α �= β ∧ posu(α) � posu(β)
)
.

The two propositions below are folklore results (see [21] for detailed proofs), which are fundamental for understanding why
stratified partial orders and step sequences are two interchangeable concepts. The first proposition shows that �u is indeed
a stratified order.

Proposition 2. Given a step sequence u, the relation �u is an equivalence relation and �u is a stratified order. �
We will call �u the stratified order generated by the step sequence u. Conversely, let � be a stratified order on a set Σ .

Then the second proposition says:

Proposition 3. If � is a stratified order on a set Σ and A, B are two distinct equivalence classes of �� , then either A × B ⊆ � or
B × A ⊆ �. �

In other words, Proposition 3 implies that if we define a binary relation �̂ on the quotient set Σ/�� as

A �̂ B
df⇐⇒ A × B ⊆ �,

then �̂ totally orders Σ/�� into a sequence of equivalence classes Ω� = B1 . . . Bk (k � 0). We will call the sequence Ω�
as the step sequence representing �.

Since sequences are a special case of step sequences and total orders are a special case of stratified orders, the above
results can be applied to sequences and finite total orders as well. Hence, for each sequence x ∈ Σ∗ , we let �x denote the
total order generated by x, and for every total order �, we let Ω� denote the sequence generating �. Furthermore, Σx will
denote the alphabet of the sequence x.

3. Traces vs. partial orders

Traces or partially commutative monoids [2,4,23,24] are equational monoids over sequences. In the previous section we
have shown how sequences correspond to finite total orders and how step sequences correspond to finite stratified orders.
In this section we discuss the relationship between traces and finite partial orders.

The theory of traces has been utilized to tackle problems from diverse areas including combinatorics, graph theory,
algebra, logic and, especially (due to the relationship to partial orders) concurrency theory [4,23,24].

Since traces constitute a sequence representation of partial orders, they can effectively model “true concurrency” in various
aspects of concurrency theory using simple and intuitive means. We will now recall the definition of a trace monoid.

Definition 2. (See [4,24].) Let M = (E∗,∗, λ) be a monoid generated by finite E , and let the relation ind ⊆ E × E be an
irreflexive and symmetric relation (called independency or commutation), and EQ � {ab = ba | (a,b) ∈ ind}. Let ≡ind , called
trace congruence, be the congruence defined by EQ . Then the equational monoid M≡ind = (E∗/≡ind,�, [λ]) is a monoid of
traces (or a free partially commutative monoid). The pair (E, ind) is called a trace alphabet.

We will omit the subscript ind from trace congruence and write ≡ if it causes no ambiguity.

Example 2. Let E = {a,b, c}, ind = {(b, c), (c,b)}, i.e., EQ = {bc = cb}.4 For example, abcbca ≡ accbba (since abcbca ≈ acbbca ≈
acbcba ≈ accbba). Also we have t1 = [abcbca] = {abcbca,abccba,acbbca,acbcba,abbcca,accbba}, t2 = [abc] = {abc,acb} and
t3 = [bca] = {bca, cba} are traces. Note that t1 = t2 � t3 since [abcbca] = [abc] � [bca].

4 Strictly speaking EQ = {bc = cb, cb = bc} but standardly we consider the equations bc = cb and cb = bc as identical.
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Fig. 2. Partial order generated by the trace [abcbca].

Each trace can be interpreted as a finite partial order. Let t = {x1, . . . , xk} be a trace, and let �xi denote the total order
induced by the sequence xi , i = 1, . . . ,k. Note that Σxi = Σx j for all i, j = 1, . . . ,n, so we can define Σt = Σxi , i = 1, . . . ,n.

For example, the set of event occurrences of the trace t1 from Example 2 is Σt1 = {a(1),b(1), c(1),a(2),b(2), c(2)}. Each �i is
a total order on Σt . The partial order generated by t can then be defined as ≺t =⋂k

i=1 �xi . In fact, the set {�x1 , . . . ,�xk }
consists of all total extensions of ≺t (see [23,24]). Thus, the trace t1 = [abcbca] from Example 2 can be interpreted as the
partial order ≺t1 depicted in Fig. 2 (arcs inferred from transitivity are omitted for simplicity).

Remark 1. Given a sequence s, to construct the partial order ≺[s] generated by [s], we do not need to build up to expo-
nentially many elements of [s]. We can simply construct the direct acyclic graph (Σ[s],≺s), where x(i) ≺s y( j) iff x(i) occurs
before y( j) on the sequence s and (x, y) /∈ ind. The relation ≺s is usually not the same as the partial order ≺[s] . However,
after applying the transitive closure operator, we have ≺[s] =≺+

s (cf. [4]). We will later see how this idea is generalized to
the construction of so-structures and gso-structures from their “trace” representations. Note that to do so, it is inevitable
that we have to generalize the transitive closure operator to these order structures.

From the concurrency point of view, the trace quotient monoid representation has a fundamental advantage over its
labeled poset representation when studying the formal linguistic aspects of concurrent behaviors, e.g., Ochmański’s char-
acterization of recognizable trace language [25] and Zielonka’s theory of asynchronous automata [30]. For more details
on traces and their various properties, the reader is referred to the monograph [4]. The reader is also referred to [1] for
interesting discussions on the trade-offs: traces vs. labeled partial order models that allow auto-concurrency, e.g., pomsets.

4. Relational structures model of concurrency

Even though partial orders are one of the main tools for modelling “true concurrency”, they have some limitations.
While they can sufficiently model the “earlier than” relationship, they can model neither the “not later than” relationship
nor the “non-simultaneously” relationship. It was shown in [10] that any reasonable concurrent behavior can be modelled
by an appropriate pair of relations. This leads to the theory of relational structures models of concurrency [12,6,8] (see [8] for a
detailed bibliography and history).

In this section, we review the theory of stratified order structures of [12] and generalized stratified order structures of [6,
8]. The former can model both the “earlier than” and the “not later than” relationships, but not the “non-simultaneously”
relationship. The latter can model all three relationships.

While traces provide sequence representations of causal partial orders, their extensions, comtraces and generalized com-
traces discussed in the following sections, are step sequence representations of stratified order structures and generalized
stratified order structures respectively.

Since the theory of relational order structures is far less known than the theory of causal partial orders, we will not
only give appropriate definitions but also introduce some intuition and motivation behind those definitions using simple
examples.

We start with the concept of an observation:

An observation (also called a run or an instance of concurrent behavior) is an abstract model of the execution of a concur-
rent system.

It was argued in [10] that an observation must be a total, stratified or interval order (interval orders are not used in this
paper). Totally ordered observations can be represented by sequences while stratified observations can be represented by
step sequences.

The next concept is a concurrent behavior:

A concurrent behavior (concurrent history) is a set of equivalent observations.

When totally ordered observations are sufficient to define whole concurrent behaviors, then the concurrent behaviors
can entirely be described by causal partial orders. However if concurrent behaviors consist of more sophisticated sets of
stratified observations, e.g., to model the “not later than” relationship or the “non-simultaneously” relationship, then we
need relational structures [10].
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4.1. Stratified order structure

By a relational structure, we mean a triple T = (X, R1, R2), where X is a set and R1, R2 are binary relations on X .
A relational structure T ′ = (X ′, R ′

1, R ′
2) is an extension of T , denoted as T ⊆ T ′ , iff X = X ′ , R1 ⊆ R ′

1 and R2 ⊆ R ′
2.

Definition 3 (Stratified order structure). (See [12].) A stratified order structure (so-structure) is a relational structure S =
(X,≺,�), such that for all a,b, c ∈ X , the following hold:

S1: a �� a, S3: a � b � c ∧ a �= c �⇒ a � c,

S2: a ≺ b �⇒ a � b, S4: a � b ≺ c ∨ a ≺ b � c �⇒ a ≺ c.

When X is finite, S is called a finite so-structure.

Note that the axioms S1–S4 imply that (X,≺) is a poset and a ≺ b ⇒ b �� a. The relation ≺ is called causality and
represents the “earlier than” relationship, and the relation � is called weak causality and represents the “not later than”
relationship. The axioms S1–S4 model the mutual relationship between “earlier than” and “not later than” relations, provided
that the system runs are modelled by stratified orders.

The concept of so-structures were independently introduced in [5] and [9] (the axioms are slightly different from S1–S4,
although equivalent). Their comprehensive theory has been presented in [12]. They have been successfully applied to model
inhibitor and priority systems, asynchronous races, synthesis problems, etc. (see for example [11,26,17,18,16,19,20]). The
name follows from the following result.

Proposition 4. (See [10].) For every stratified order � on X, the triple S� = (X,�,��) is a so-structure. �
Definition 4 (Stratified extension of so-structure). (See [12].) A stratified order � on X is a stratified extension of a so-structure
S = (X,≺,�) if for all α,β ∈ X ,

α ≺ β �⇒ α � β and α � β �⇒ α �� β.

The set of all stratified extensions of S is denoted as ext(S).

According to Szpilrajn’s theorem, every poset can be reconstructed by taking the intersection of all of its total extensions.
A similar result holds for so-structures and stratified extensions.

Theorem 2. (See [12, Theorem 2.9].) Let S = (X,≺,�) be a so-structure. Then

S =
(

X,
⋂

�∈ext(S)

�,
⋂

�∈ext(S)

��

)
. �

The set ext(S) also has the following internal property that will be useful in various proofs.

Theorem 3. (See [10].) Let S = (X,≺,�) be a so-structure. Then for every a,b ∈ X,(∃� ∈ ext(S).a � b
)∧ (∃� ∈ ext(S).b � a

) �⇒ ∃� ∈ ext(S).a �� b. �
The classification of concurrent behaviors provided in [10] says that a concurrent behavior conforms to the paradigm5

π3 if it has the same property as stated in Theorem 3 for ext(S). In other words, Theorem 3 states that the set ext(S)

conforms to the paradigm π3.

4.2. Generalized stratified order structure

The stratified order structures can adequately model concurrent histories only when the paradigm π3 is satisfied. For
the general case, we need gso-structures introduced in [6] also under the assumption that the system runs are defined as
stratified orders.

Definition 5 (Generalized stratified order structure). (See [6,8].) A generalized stratified order structure (gso-structure) is a rela-
tional structure G = (X,<>,�) such that � is irreflexive, <> is symmetric and irreflexive, and the triple SG = (X,≺G ,�),
where ≺G =<> ∩ �, is a so-structure, called the so-structure induced by G . When X is finite, G is called a finite gso-structure.

5 A paradigm is a supposition or statement about the structure of a concurrent behavior (concurrent history) involving a treatment of simultaneity. See
[8,10] for more details.
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The relation <> is called commutativity and represents the “non-simultaneously” relationship, while the relation � is
called weak causality and represents the “not later than” relationship.

For a binary relation R on X , we let Rsym � R ∪ R−1 denote the symmetric closure of R .

Definition 6 (Stratified extension of gso-structure). (See [6,8].) A stratified order � on X is a stratified extension of a gso-
structure G = (X,<>,�) if for all α,β ∈ X ,

α <> β �⇒ α�symβ and α � β �⇒ α �� β.

The set of all stratified extensions of G is denoted as ext(G).

Every gso-structure can also be uniquely reconstructed from its stratified extensions. The generalization of Szpilrajn’s
theorem for gso-structures can be stated as the following.

Theorem 4. (See [6,8].) Let G = (X,<>,�) be a gso-structure. Then

G =
(

X,
⋂

�∈ext(G)

�sym,
⋂

�∈ext(G)

��

)
. �

The gso-structures do not have an equivalent of Theorem 3. As a counter-example consider G = ({a,b, c},<>4,�4) where
<>4 and �4 are those from Fig. 1. Hence ext(G) = obs(P4) = {o1,o2}, where o1 = {a}{b}{c} and o2 = {a}{c}{b}. For this gso-
structure we have b

o1−−→ c and c
o2−−→ b, but neither o1 nor o2 contains the step {b, c}, so Theorem 3 does not hold. The lack

of an equivalent of Theorem 3 makes proving properties about gso-structures more difficult, but they can model the most
general concurrent behaviors provided that observations are modelled by stratified orders [8].

5. Comtraces

The standard definition of a free monoid (E∗,∗, λ) assumes that the elements of E have no internal structure (or their
internal structure does not affect any monoidal properties), and they are often called ‘letters’, ‘symbols’, ‘names’, etc. When
we assume the elements of E have some internal structure, for instance that they are sets, this internal structure may be
used when defining the set of equations EQ . This idea is exploited in the concept of a comtrace.

Comtraces (combined traces), introduced in [11] as an extension of traces to distinguish between “earlier than” and
“not later than” phenomena, are equational monoids of step sequence monoids. The equations EQ are in this case defined
implicitly via two relations: simultaneity and serializability.

Definition 7 (Comtrace alphabet). (See [11].) Let E be a finite set (of events) and let ser ⊆ sim ⊂ E × E be two relations called
serializability and simultaneity respectively and the relation sim is irreflexive and symmetric. Then the triple (E, sim, ser) is
called a comtrace alphabet.

Intuitively, if (a,b) ∈ sim then a and b can occur simultaneously (or be a part of a synchronous occurrence in the sense
of [17]), while (a,b) ∈ ser means that a and b may occur simultaneously and also a may occur before b (i.e., both executions
are equivalent). We define S, the set of all (potential) steps, as the set of all cliques of the graph (E, sim), i.e.,

S �
{

A
∣∣ A �= ∅ ∧ ∀a,b ∈ A.

(
a = b ∨ (a,b) ∈ sim

)}
.

Definition 8 (Comtrace congruence). (See [11].) Let θ = (E, sim, ser) be a comtrace alphabet and let ≡ser , called comtrace
congruence, be the EQ-congruence defined by the set of equations

EQ �
{

A = BC
∣∣ A = B ∪ C ∈ S ∧ B × C ⊆ ser

}
.

Then the equational monoid (S∗/≡ser,�, [λ]) is called a monoid of comtraces over θ .

Since ser is irreflexive, for each (A = BC) ∈ EQ we have B ∩ C = ∅. By Proposition 1, the comtrace congruence relation
can also be defined explicitly in non-equational form as follows.

Proposition 5. Let θ = (E, sim, ser) be a comtrace alphabet and let S∗ be the set of all step sequences defined on θ . Let ≈ser⊆ S∗ × S∗
be the relation comprising all pairs (t, u) of step sequences such that t = w Az and u = w BC z, where w, z ∈ S∗ and A, B, C are steps
satisfying B ∪ C = A and B × C ⊆ ser. Then ≡ser= (≈ser ∪ ≈−1

ser )
∗ . �

We will omit the subscript ser from comtrace congruence and ≈ser , and only write ≡ and ≈ if it causes no ambiguity.
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Example 3. Let E = {a,b, c} where a, b and c are three atomic operations, where

a: y := x + y, b: x := y + 2, c: y := y + 1.

Assume simultaneous reading is allowed, but simultaneous writing is not allowed. Then the events b and c can be performed
simultaneously, and the execution of the step {b, c} gives the same outcome as executing b followed by c. The events a and b
can also be performed simultaneously, but the outcome of executing the step {a,b} is not the same as executing a followed
by b, or b followed by a. Note that although executing the steps {a,b} and {b, c} is allowed, we cannot execute the step
{a, c} since that would require writing on the same variable y.

Let E = {a,b, c} be the set of events. Then we can define the comtrace alphabet θ = (E, sim, ser), where sim =
{(a,b), (b,a), (b, c), (c,b)} and ser = {(b, c)}. Thus the set of all possible steps is

Sθ = {{a}, {b}, {c}, {a,b}, {b, c}}.
We observe that the set t = [{a}{a,b}{b, c}] = {{a}{a,b}{b, c}, {a}{a,b}{b}{c}} is a comtrace. But the step sequence
{a}{a,b}{c}{b} is not an element of t because (c,b) /∈ ser.

Even though traces are quotient monoids over sequences and comtraces are quotient monoids over step sequences (and
the fact that steps are sets is used in the definition of quotient congruence), traces can be regarded as a special case of
comtraces. In principle, each trace commutativity equation ab = ba corresponds to two comtrace equations {a,b} = {a}{b}
and {a,b} = {b}{a}. This relationship can formally be formulated as follows.

Let (E, ind) and (E, sim, ser) be trace and comtrace alphabets respectively. For each sequence x = a1 . . .an ∈ E∗ , we define
x{ } = {a1} . . . {an} to be its corresponding step sequence, which in this case consists of only singleton steps.

Lemma 1.

1. Assume ser = sim. Then for each comtrace t ∈ S∗/≡ser there exists a step sequence x = {a1} . . . {ak} ∈ S∗ such that t = [x]≡ser .
2. If ser = sim = ind, then for each x, y ∈ E∗ , we have x ≡ind y ⇐⇒ x{ } ≡ser y{ } .

Proof. (1) follows from the fact that if ser = sim, then for each A = {a1, . . . ,ak} ∈ S, we have A ≡ser {a1} . . . {ak}. (2) is a
simple consequence of the definition of x{ } . �

Let t be a trace over (E, ind) and let v be a comtrace over (E, sim, ser). We say that t and v are tantamount if sim =
ser = ind and there is x ∈ E∗ such that t = [x]≡ind and v = [x{ }]≡ser . If a trace t and a comtrace v are equivalent we will write

t
t�c≡ v. Note that Lemma 1 guarantees that this definition is valid.

Proposition 6. Let t, r be traces and v,w be comtraces. Then

1. t
t�c≡ v ∧ t

t�c≡ w �⇒ v = w.
2. t

t�c≡ v ∧ r
t�c≡ v �⇒ t = r.

Proof. 1. t
t�c≡ v means that there is x ∈ E∗ such that t = [x]≡ind and v = [x{ }]≡ser , and t

t�c≡ w means that there is y ∈ E∗
such that t = [y]≡ind and w = [y{ }]≡ser . Since t = [x]≡ind = [y]≡ind then x ≡ind y and by Lemma 1(2), x{ } ≡ser y{ } , i.e. v = w.

2. Similarly as (1). �
Equivalent traces and comtraces generate identical partial orders. However, we will postpone the discussion of this issue

to Section 9. Hence traces can be regarded as a special case of comtraces.
Note that comtrace might be a useful notion to formalize the concept of synchrony (cf. [17]). In principle, events a1, . . . ,ak

are synchronous if they can be executed in one step {a1, . . . ,ak} but this execution cannot be modelled by any sequence of
proper subsets of {a1, . . . ,ak}. Note that in general ‘synchrony’ is not necessarily ‘simultaneity’ as it does not include the
concept of time [15]. It appears, however, that the mathematics to deal with synchrony are close to that to deal with
simultaneity.

Definition 9 (Independency and synchrony). Let (E, sim, ser) be a given comtrace alphabet. We define the relations ind, syn
and the set Ssyn as follows:

• ind ⊆ E × E , called independency, and defined as ind = ser ∩ ser−1,
• syn ⊆ E × E , called synchrony, and defined as:

(a,b) ∈ syn
df⇐⇒ (a,b) ∈ sim \ sersym,
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• Ssyn ⊆ S, called synchronous steps, and defined as:

A ∈ Ssyn
df⇐⇒ A �= ∅ ∧ (∀a,b ∈ A.(a,b) ∈ syn).

If (a,b) ∈ ind then a and b are independent, i.e., executing them either simultaneously, or a followed by b, or b followed
by a, will yield exactly the same result. If (a,b) ∈ syn then a and b are synchronous, which means they might be executed in
one step, either {a,b} or as a part of bigger step, but such an execution of {a,b} is not equivalent to either a followed by b,
or b followed by a. In principle, the relation syn is a counterpart of ‘synchrony’ (cf. [17]). If A ∈ Ssyn , then the set of events
A can be executed as one step, but it cannot be simulated by any sequence of its subsets.

Example 4. Assume we have E = {a,b, c,d, e}, sim = {(a,b), (b,a), (a, c), (c,a), (a,d), (d,a)}, and ser = {(a,b), (b,a), (a, c)}.
Hence, S = {{a,b}, {a, c}, {a,d}, {a}, {b}, {c}, {e}}, and

ind = {(a,b), (b,a)
}
, syn = {(a,d), (d,a)

}
, Ssyn = {{a,d}}.

Since {a,d} ∈ Ssyn , the step {a,d} cannot be split into smaller steps. For example the comtraces x1 = [{a,b}{c}{a}], x2 =
[{e}{a,d}{a, c}], and x3 = [{a,b}{c}{a}{e}{a,d}{a, c}] are respectively the following sets of step sequences:

x1 = {{a,b}{c}{a}, {a}{b}{c}{a}, {b}{a}{c}{a}, {b}{a, c}{a}},
x2 = {{e}{a,d}{a, c}, {e}{a,d}{a}{c}},
x3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{a,b}{c}{a}{e}{a,d}{a, c}, {a}{b}{c}{a}{e}{a,d}{a, c},

{b}{a}{c}{a}{e}{a,d}{a, c}, {b}{a, c}{a}{e}{a,d}{a, c},
{a,b}{c}{a}{e}{a,d}{a}{c}, {a}{b}{c}{a}{e}{a,d}{a}{c},
{b}{a}{c}{a}{e}{a,d}{a}{c}, {b}{a, c}{a}{e}{a,d}{a}{c}

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We also have x3 = x1 � x2. Note that since (c,a) /∈ ser, {a, c} ≡ser {a}{c} �≡ser {c}{a}.

We can easily extend the concepts of comtraces to the level of languages, with potential applications similar to traces.
For any step sequence language L, we define a comtrace language [L]Θ (or just [L]) to be the set {[u] | u ∈ L}. The languages
of comtraces provide a bridge between operational and structural semantics. In other words, if a step sequence language L
describes an operational semantics of a given concurrent system, we only need to derive the comtrace alphabet (E, sim, ser)
from the system, and the comtrace language [L] defines the structural semantics of the system.

Example 5. Consider the following simple concurrent system Priority, which comprises two sequential subsystems such that

• the first subsystem can cyclically engage in event a followed by event b,
• the second subsystem can cyclically engage in event b or in event c,
• the two systems synchronize by means of handshake communication,
• there is a priority constraint stating that if it is possible to execute event b, then c must not be executed.

This example has often been analyzed in the literature (cf. [13]), usually under the interpretation that a = ‘Error Message’,
b = ‘Stop And Restart’, and c = ‘Some Action’. It can be formally specified in various notations including Priority and Inhibitor
Nets (cf. [9,12]). Its operational semantics (easily found in any model) can be defined by the following step sequence lan-
guage

LPriority � Pref
(({c}∗ ∪ {a}{b} ∪ {a, c}{b})∗),

where Pref (L) �
⋃

w∈L{u ∈ L | ∃v.uv = w} denotes the prefix closure of L.
The rules for deriving the comtrace alphabet (E, sim, ser) depend on the model, and for Priority, the set of possible

steps is S = {{a}, {b}, {c}, {a, c}}, and ser = {(c,a)} and sim = {(a, c), (c,a)}. Then, [LPriority] defines the structural comtrace
semantics of Priority. For instance, the comtrace [{a, c}{b}] = {{c}{a}{b}, {a, c}{b}} is in the language [LPriority].

6. Generalized comtraces

There are reasonable concurrent behaviors that cannot be modelled by any comtrace. Let us analyze the following exam-
ple.

Example 6. Let E = {a,b, c} where a, b and c are three atomic operations defined as follows (we assume simultaneous
reading is allowed):
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a: x := x + 1, b: x := x + 2, c: y := y + 1.

It is reasonable to consider them all as ‘concurrent’ as any order of their executions yields exactly the same results (see
[10,12] for more motivation and formal considerations as well as the program P4 of Example 1). Assume that simultaneous
reading is allowed, but simultaneous writing is not. Then while simultaneous executions of {a, c} and {b, c} are allowed, we
cannot execute {a,b}, since simultaneous writing on the same variable x is not allowed.

The set of all equivalent executions (or runs) involving one occurrence of the operations a, b and c, and modelling the
above case,

x =
{ {a}{b}{c}, {a}{c}{b}, {b}{a}{c}, {b}{c}{a}, {c}{a}{b},

{c}{b}{a}, {a, c}{b}, {b, c}{a}, {b}{a, c}, {a}{b, c}
}

,

is a valid concurrent history [10,12]. However x is not a comtrace. The problem is that we have {a}{b} ≡ {b}{a} but {a,b} is
not a valid step, so comtrace cannot represent this situation.

In this section, we will introduce the generalized comtrace notion (g-comtrace), an extension of comtrace, which is also
defined over step sequences. The g-comtraces will be able to model “non-simultaneously” relationship similar to the one
from Example 6.

Definition 10 (Generalized comtrace alphabet). Let E be a finite set (of events). Let ser, sim and inl be three relations on E
called serializability, simultaneity and interleaving respectively satisfying the following conditions:

• sim and inl are irreflexive and symmetric,
• ser ⊆ sim, and
• sim ∩ inl = ∅.

Then the triple (E, sim, ser, inl) is called a g-comtrace alphabet.

The interpretation of the relations sim and ser is as in Definition 7, and (a,b) ∈ inl means a and b cannot occur simulta-
neously, but their occurrence in any order is equivalent. As for comtraces, we define the set S of all (potential) steps as the
set of all cliques of the graph (E, sim).

Definition 11 (Generalized comtrace congruence). Let Θ = (E, sim, ser, inl) be a g-comtrace alphabet and let ≡{ser,inl} , called
g-comtrace congruence, be the EQ-congruence defined by the set of equations EQ = EQ1 ∪ EQ2, where

EQ1 � {A = BC | A = B ∪ C ∈ S ∧ B × C ⊆ ser},
EQ2 � {B A = AB | A ∈ S ∧ B ∈ S ∧ A × B ⊆ inl}.

The equational monoid (S∗/≡{ser,inl},�, [λ]) is called a monoid of g-comtraces over Θ .

Since ser and inl are irreflexive, (A = BC) ∈ EQ1 implies B ∩ C = ∅, and (AB = B A) ∈ EQ2 implies A ∩ B = ∅. Since
inl ∩ sim = ∅, we also have that if (AB = B A) ∈ EQ2, then A ∪ B /∈ S.

By Proposition 1, the g-comtrace congruence relations can also be defined explicitly in non-equational form as follows.

Definition 12. Let Θ = (E, sim, ser, inl) be a g-comtrace alphabet and let S∗ be the set of all step sequences defined on Θ .

• Let ≈1 ⊆ S∗ × S∗ be the relation comprising all pairs (t, u) of step sequences such that t = w Az and u = w BC z where
w, z ∈ S∗ and A, B , C are steps satisfying B ∪ C = A and B × C ⊆ ser.

• Let ≈2 ⊆ S∗ × S∗ be the relation comprising all pairs (t, u) of step sequences such that t = w ABz and u = w B Az where
w, z ∈ S∗ and A, B are steps satisfying A × B ⊆ inl.

We define ≈{ser,inl} as ≈{ser,inl}�≈1 ∪ ≈2.

Proposition 7. For each g-comtrace alphabet Θ = (E, sim, ser, inl)

≡{ser,inl}=
(
≈{ser,inl} ∪ ≈−1

{ser,inl}
)∗

.

Proof. Follows from Proposition 1. �
The name “generalized comtraces” comes from the fact that when inl = ∅, Definition 11 coincides with Definition 8 of

a comtrace monoid. We will omit the subscript {ser, inl} from ≡{ser,inl} and ≈{ser,inl} , and write ≡ and ≈ when causing no
ambiguity.
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Example 7. The set x from Example 6 is a g-comtrace, where we have E = {a,b, c}, ser = sim = {(a, c), (c,a), (b, c), (c,b)},
inl = {(a,b), (b,a)}, and S = {{a, c}, {b, c}, {a}, {b}, {c}}.

It is worthnoting that there is an important difference between the equation ab = ba for traces, and the equation {a}{b} =
{b}{a} for g-comtrace monoids. For traces, the equation ab = ba, when translated into step sequences, corresponds to two
equations {a,b} = {a}{b} and {a,b} = {b}{a}, which implies {a}{b} ≡ {a,b} ≡ {b}{a}. For g-comtrace monoids, the equation
{a}{b} = {b}{a} implies that {a,b} is not a step, i.e., neither the equation {a,b} = {a}{b} nor the equation {a,b} = {b}{a}
belongs to the set of equations. In other words, for traces the equation ab = ba means ‘independency’, i.e., executing a and
b in any order or simultaneously will yield the same consequence. For g-comtrace monoids, the equation {a}{b} = {b}{a}
means that execution of a and b in any order yields the same result, but executing of a and b in any order is not equivalent
to executing them simultaneously.

7. Algebraic properties of comtrace and generalized comtrace congruences

Algebraic properties of trace congruence operations such as left/right cancellation and projection are well understood.
They are intuitive and simple tools with many applications [24]. In this section we will generalize these cancellation and
projection properties to comtrace and g-comtrace. The basic obstacle is switching from sequences to step sequences.

7.1. Properties of comtrace congruence

Let us consider a comtrace alphabet θ = (E, sim, ser) where we reserve S to denote the set of all possible steps of θ

throughout this section.
For each step sequence or enumerated step sequence x = X1 . . . Xk , we define the step sequence weight of x as weight(x) �∑k

i=1 |Xi|. We also define
⊎

(x) �
⋃k

i=1 Xi .
Due to the commutativity of the independency relation for traces, the mirror rule, which says if two sequences are

congruent, then their reverses are also congruent, holds for trace congruence [4]. Hence, in trace theory, we only need a right
cancellation operation to produce congruent subsequences from congruent sequences, since the left cancellation comes from
the right cancellation of the reverses.

However, the mirror rule does not hold for comtrace congruence since the relation ser is usually not commutative. Exam-
ple 3 works as a counter-example since {a}{b, c} ≡ {a}{b}{c} but {b, c}{a} �≡ {c}{b}{a}. Thus, we define separate left and right
cancellation operators for comtraces.

Let a ∈ E , A ∈ S and w ∈ S∗ . The operator ÷R , step sequence right cancellation, is defined as follows:

λ ÷R a � λ, w A ÷R a �
{

(w ÷R a)A if a /∈ A,

w if A = {a},
w(A \ {a}) otherwise.

Symmetrically, a step sequence left cancellation operator ÷L is defined as follows:

λ ÷L a � λ, Aw ÷L a �
{ A(w ÷L a) if a /∈ A,

w if A = {a},
(A \ {a})w otherwise.

Finally, for each D ⊆ E , we define the function πD : S∗ → S∗ , step sequence projection onto D , as follows:

πD(λ) � λ, πD(w A) �
{

πD(w) if A ∩ D = ∅,

πD(w)(A ∩ D) otherwise.

The algebraic properties of comtraces are similar to those of traces [24].

Proposition 8.

1. u ≡ v �⇒ weight(u) = weight(v) (step sequence weight equality),
2. u ≡ v �⇒ |u|a = |v|a (event-preserving),
3. u ≡ v �⇒ u ÷R a ≡ v ÷R a (right cancellation),
4. u ≡ v �⇒ u ÷L a ≡ v ÷L a (left cancellation),
5. u ≡ v ⇐⇒ ∀s, t ∈ S∗.sut ≡ svt (step subsequence cancellation),
6. u ≡ v �⇒ πD(u) ≡ πD(v) (projection rule).

Proof. The proofs use the same techniques as in [24]. We would like recall only the following key observation that simplifies
the proof of this proposition: since ≡ is the symmetric transitive closure of ≈, it suffices to show that u ≈ v implies the
right-hand side of (1)–(6). The rest follows naturally from the definition of comtrace ≈ and the congruence ≡. �
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Note that (w ÷R a) ÷R b = (w ÷R b) ÷R a, so we define

w ÷R {a1, . . . ,ak} �
(
. . .
(
(w ÷R a1) ÷R a2

)
. . .
)÷R ak, and

w ÷R A1 . . . Ak �
(
. . .
(
(w ÷R A1) ÷R A2

)
. . .
)÷R Ak.

We define dually for ÷L . Hence Proposition 8(4) and (5) can be generalized as follows.

Corollary 1. For all u, v, x ∈ S∗ , we have

1. u ≡ v �⇒ u ÷R x ≡ v ÷R x.
2. u ≡ v �⇒ u ÷L x ≡ v ÷L x. �

7.2. Properties of generalized comtrace congruence

Using the same proof technique as in Proposition 8, we can show that g-comtrace congruence has the same algebraic
properties as comtrace congruence.

Proposition 9. Let S be the set of all steps over a g-comtrace alphabet (E, sim, ser, inl) and u, v ∈ S∗ . Then

1. u ≡ v �⇒ weight(u) = weight(v) (step sequence weight equality),
2. u ≡ v �⇒ |u|a = |v|a (event-preserving),
3. u ≡ v �⇒ u ÷R a ≡ v ÷R a (right cancellation),
4. u ≡ v �⇒ u ÷L a ≡ v ÷L a (left cancellation),
5. u ≡ v ⇐⇒ ∀s, t ∈ S∗.sut ≡ svt (step subsequence cancellation),
6. u ≡ v �⇒ πD(u) ≡ πD(v) (projection rule).

Corollary 2. For all step sequences u, v, x over a g-comtrace alphabet (E, sim, ser, inl),

1. u ≡ v �⇒ u ÷R x ≡ v ÷R x,
2. u ≡ v �⇒ u ÷L x ≡ v ÷L x. �

The following proposition ensures that if any relation from the set {�,�,<,>,=, �=} holds for the positions of two event
occurrences after applying cancellation or projection operations on a g-comtrace [u], then it also holds for the whole [u].

Proposition 10. Let u be an enumerated step sequence over a g-comtrace alphabet (E, sim, ser, inl) and α,β,γ ∈ Σu such that
γ /∈ {α,β}. Let R ∈ {�,�,<,>,=, �=}. Then

1. if ∀v ∈ [u ÷L γ ].posv(α)R posv(β), then ∀w ∈ [u].posw(α)R posw(β),
2. if ∀v ∈ [u ÷R γ ].posv(α)R posv(β), then ∀w ∈ [u].posw(α)R posw(β),
3. if S ⊆ Σu such that {α,β} ⊆ S, then(∀v ∈ [πS(u)

]
.posv(α)R posv(β)

) �⇒ (∀w ∈ [u].posw(α)R posw(β)
)
.

Proof. 1. Assume that

∀v ∈ [u ÷L γ ].posv(α)R posv(β). (7.1)

Suppose for a contradiction that ∃w ∈ [u].¬(posw(α)R posw(β)). Since γ /∈ {α,β}, we have ¬(posw÷Lγ (α)R posw÷Lγ (β)).
But w ∈ [u] implies w ÷L γ ≡ u ÷L γ . Hence, w ÷L γ ∈ [u ÷L γ ] and ¬(posw÷Lγ (α)R posw÷Lγ (β)), contradicting (7.1).

2. Dually to part (1).
3. Assume that

∀v ∈ [πS(u)
]
.posv(α)R posv(β). (7.2)

Suppose for a contradiction that ∃w ∈ [u].¬(posw(α)R posw(β)). Since {α,β} ⊆ S , we have ¬(posπS (w)(α)R posπS (w)(β)).
But w ∈ [v] implies πS (w) ≡ πS (u). Hence, πS (w) ∈ [πS(u)] and ¬(posπS (w)(α)R posπS (w)(β)), contradicting (7.2). �

Clearly the above results also hold for comtraces as they are just g-comtraces with inl = ∅.
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8. Maximally concurrent and canonical representations

In this section, we show that traces, comtraces and g-comtraces all have some special representations, that intuitively
correspond to maximally concurrent execution of concurrent histories, i.e., “executing as much as possible in parallel”. This kind
of semantics is formally defined and analyzed for example in [3]. However such representations are truly unique only for
comtraces. For traces and g-comtraces, unique (or canonical) representations are obtained by adding some arbitrary total
ordering on their alphabets.

In this section we will start with the general case of g-comtraces and then consider comtraces and traces as a special
case.

8.1. Representations of generalized comtraces

Let Θ = (E, sim, ser, inl) be a g-comtrace alphabet and S be the set of all steps over Θ . We will start with the most
“natural” definition which is the straightforward application of the approach used in [3] for an alternative version of traces
called “vector firing sequences” (see [14,27]).

Definition 13 (Greedy maximally concurrent form). A step sequence u = A1 . . . Ak ∈ S∗ is in greedy maximally concurrent form
(GMC-form) if and only if for each i = 1, . . . ,k:

(Bi yi ≡ Ai . . . Ak) �⇒ |Bi | � |Ai|,
where for all i = 1, . . . ,k, Ai, Bi ∈ S, and yi ∈ S∗ .

Proposition 11. For each g-comtrace u over Θ there is a step sequence u ∈ S∗ in GMC-form such that u = [u].

Proof. Let u = A1 . . . Ak , where the steps A1, . . . , Ak are generated by the following simple greedy algorithm:

1: Initialize i ← 0 and u0 ← u
2: while ui �= λ do
3: i ← i + 1
4: Find Ai such that there exists y such that Ai y ≡ ui−1 and for each Bz ≡ Ai y ≡ ui−1, |B| � |Ai |
5: ui ← ui−1 ÷L Ai

6: end while
7: k ← i − 1.

Since weight(ui+1) < weight(ui) the above algorithm always terminates. Clearly u = A1 . . . Ak is in GMC-form and
u ∈ u. �

The algorithm from the proof of Proposition 11 used to generate A1, . . . , Ak justifies the prefix “greedy” in Definition 13.
However the GMC representation of g-comtraces is seldom unique and often not “maximally concurrent”. Consider the
following two examples.

Example 8. Let E = {a,b, c}, sim = {(a, c), (c,a)}, ser = sim and inl = {(a,b), (b,a)} and u = [{a}{b}{c}] = {{a}{b}{c}, {b}{a}{c},
{b}{a, c}}. Note that both {a}{b}{c} and {b}{a, c} are in GMC-form, but only {b}{a, c} can intuitively be interpreted as maxi-
mally concurrent.

Example 9. Let E = {a,b, c,d, e}, and sim = ser, inl be as in the picture below, and let u = [{a}{b, c,d, e}]. One can easily
verify by inspection that {a}{b, c,d, e} is the shortest element of u and the only element of u in GMC-form is {b, e,d}{a}{c}.
The step sequence {b, e,d}{a}{c} is longer and intuitively less maximally concurrent than the step sequence {a}{b, c,d, e}.

Hence for g-comtraces the greedy maximal concurrency notion is not necessarily the global maximal concurrency notion,
so we will try another approach.

Let x = A1 . . . Ak be a step sequence. We define length(A1 . . . Ak) � k. We also say that Ai is maximally concurrent in x
if Bi yi ≡ Ai . . . Ak �⇒ |Bi| � |Ai|. Note that Ak is always maximally concurrent in x, which makes the following definition
correct.

For every step sequence x = A1 . . . Ak , let mc(x) be the smallest i such that Ai is maximally concurrent in x.
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Definition 14. A step sequence u = A1 . . . Ak is maximally concurrent (MC-) iff

1. v ≡ u �⇒ length(u) � length(v),
2. for all i = 1, . . . ,k and for all w ,(

ui = Ai . . . Ak ≡ w ∧ length(ui) = length(w)
) �⇒ mc(ui) � mc(w).

Theorem 5. For every g-comtrace u, there exists a step sequence u ∈ u such that u is maximally concurrent.

Proof. Let u1 ∈ u be a step sequence such that for each v , v ≡ u1 �⇒ length(u1) � length(v), and (v ≡ u1 ∧ length(u1) =
length(v)) �⇒ mc(u1) � mc(v). Obviously such u1 exists for every g-comtrace u. Assume that u1 = A1 w1 and length(u1) = k.
Let u2 be a step sequence satisfying u2 ≡ w1, u2 ≡ v �⇒ length(u2) � length(v), and (v ≡ u2 ∧ length(u2) = length(v)) �⇒
mc(u2) � mc(v). Assume that u2 = A2 w3. We repeat this process k − 1 times. Note that uk = Ak ∈ S. The step sequence
u = A1 . . . Ak is maximally concurrent and u ∈ u. �

For the case of Example 8 the step sequence {b}{a, c} is maximally concurrent and for the case of Example 9 the step
sequence {a}{b, c,d, e} is maximally concurrent. There may be more than one maximally concurrent step sequences in a
g-comtrace. For example if E = {a,b}, sim = ser = ∅, inl = {(a,b), (b,a)}, then the g-comtrace t = [{a}{b}] = {{a}{b}, {b}{a}}
and both {a}{b} and {b}{a} are maximally concurrent.

Having a canonical (unique) representation is often useful in proving properties about g-comtraces since it allows us to
uniquely identify a g-comtrace. Furthermore, to be really useful in proofs, a canonical representation should be easy to con-
struct and manipulate. For g-comtraces, it turns out that a natural way to get a canonical representation is: fix a total order
on the alphabet, extend it to a lexicographical ordering on step sequences, and then simply choose the lexicographically
least element.

Definition 15 (Lexicographical ordering). Assume that we have a total order <E on E .

1. We define a step order <st on S as follows:

A<st B
df⇐⇒ |A| > |B| ∨

(
|A| = |B| ∧ A �= B ∧ min

<E
(A \ B) <E min

<E
(B \ A)

)
,

where min<E (X) denotes the least element of the set X ⊆ E w.r.t. <E .
2. Let A1 . . . An and B1 . . . Bm be two sequences in S∗ . We define a lexicographical order <lex on step sequences in a natural

way as the lexicographical order induced by <st , i.e.,

A1 . . . An<
lex B1 . . . Bm

df⇐⇒ ∃k > 0 ∀i < k.
(

Ai = Bi ∧ (Ak<
st Bk ∨ n < k � m)

)
.

Directly from the above definition, it follows that <st totally orders the set of possible steps S and <lex totally orders the
set of possible step sequences S∗ .

Example 10. Assume that a <E b <E c <E d <E e. Then we have {a,b, c, e}<st{b, c,d} since {a,b, c, e}\{b, c,d} = {a}, {b, c,d}\
{a,b, c, e} = {d}, and a <E d. And {a, c}{b, c}{d}{d, c} <lex{a, c}{b}{c,d, e} since |{b, c}| > |{b}|.

Definition 16 (g-canonical step sequence). A step sequence x ∈ S∗ is g-canonical if for every step sequence y ∈ S∗ , we have
(x ≡ y ∧ x �= y) �⇒ x<lex y.

In other words, x is g-canonical if it is the least element in the g-comtrace [x] with respect to the lexicographical
ordering <lex .

Corollary 3.

1. Each g-canonical step sequence is in GMC-form.
2. For every step sequence x ∈ S∗ , there exists a unique g-canonical sequence u ≡ x. �

All of the concepts and results discussed so far in this section hold also for general equational monoids derived from the
step sequence monoid (like those considered in [15]). We will now show that for both comtraces and traces, the GMC-form,
MC-form and g-canonical form correspond to the canonical form discussed in [2,3,11,15].
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8.2. Canonical representations of comtraces

First note that comtraces are just g-comtraces with an empty relation inl, so all definitions for g-comtraces also hold for
comtraces.

Let θ = (E, sim, ser) be a comtrace alphabet (i.e. inl = ∅) and S be the set of all steps over θ . In principle, (a,b) ∈ ser
means that the sequence {a}{b} can be replaced by the set {a,b} (and vice versa). We start with the definition of a relation
between steps that allows such replacement.

Definition 17 (Forward dependency). Let FD ⊆ S × S be a relation comprising all pairs of steps (A, B) such that there exists
a step C ∈ S such that

C ⊆ B ∧ A × C ⊆ ser ∧ C × (B \ C) ⊆ ser.

The relation FD is called forward dependency on steps.

Note that in this definition C ∈ S implies C �= ∅, but C = B is allowed. The next result explains the name “forward
dependency” of FD. If (A, B) ∈ FD, then some elements from B can be moved to A and the outcome will still be equivalent
to AB .

Lemma 2. (A, B) ∈ FD ⇐⇒ (∃C ∈ ℘\{∅}(B).(A ∪ C)(B \ C) ≡ AB) ∨ A ∪ B ≡ AB.

Proof. (⇒) If C = B then A ∪ B ≈ AB which implies A ∪ B ≡ AB . If C ⊂ B and C �= ∅ then we have (A ∪ C)(B \ C) ≈
AC(B \ C) ≈ AB , i.e. (A ∪ C)(B \ C) ≡ AB .

(⇐) Assume A ∪ B ≡ AB . This means A ∪ B ∈ S and consequently A ∩ B = ∅, A × B ⊆ ser. Let a ∈ A, b ∈ B . By Propo-
sition 8(6), {a,b} = π{a,b}(A ∪ B) ≡ π{a,b}(AB) = {a}{b}. But {a,b} ≡ {a}{b} means (a,b) ∈ ser. Therefore A × B ⊆ ser, i.e.
(A, B) ∈ FD.

Assume C ⊂ B , C �= ∅ and (A ∪ C)(B \ C) ≡ AB . This implies A ∪ C ∈ S and A ∩ C = ∅. Let a ∈ A and c ∈ C . By Propo-
sition 8(6), {a, c} = π{a,c}(A ∪ C)(B \ C) ≡ π{a,c}(AB) = {a}{c}. But {a, c} ≡ {a}{c} means (a, c) ∈ ser. Hence A × C ⊆ ser. Let
b ∈ B \ C and c ∈ C . By Proposition 8(6), {c}{b} = π{b,c}(A ∪ C)(B \ C) ≡ π{b,c}(AB) = {b, c}. Thus {c}{b} ≡ {b, c}, which means
(c,b) ∈ ser, i.e. C × (B \ C) ⊆ ser. Hence (A, B) ∈ FD. �

We will now recall the definition of a canonical step sequence for comtraces.

Definition 18 (Comtrace canonical step sequence). (See [11].) A step sequence u = A1 . . . Ak is canonical if we have (Ai, Ai+1) /∈
FD for all i, 1 � i < k.

The next results show that a canonical step sequence for comtraces is in fact “greedy”.

Lemma 3. For each non-empty canonical step sequence u = A1 . . . Ak, we have

A1 = {a ∣∣ ∃w ∈ [u].w = C1 . . . Cm ∧ a ∈ C1
}
.

Proof. Let A = {a | ∃w ∈ [u].w = C1 . . . Cm ∧ a ∈ C1}. Since u ∈ [u], A1 ⊆ A. We need to prove that A ⊆ A1. Definitely
A = A1 if k = 1, so assume k > 1. Suppose that a ∈ A \ A1, a ∈ A j , 1 < j � k, and a /∈ Ai for i < j. Since a ∈ A, there is
v = Bx ∈ [u] such that a ∈ B . Note that A j−1 A j is also canonical and u′ = A j−1 A j = (u ÷R (A j+1 . . . Ak)) ÷L (A1 . . . A j−2).
Let v ′ = (v ÷R (A j+1 . . . Ak)) ÷L (A1 . . . A j−2). We have v ′ = B ′x′ where a ∈ B ′ . By Corollary 1, u′ ≡ v ′ . Since u′ = A j−1 A j is
canonical then ∃c ∈ A j−1.(c,a) /∈ ser or ∃b ∈ A j .(a,b) /∈ ser.

• For the former case: π{a,c}(u′) = {c}{a} (if c /∈ A j) or π{a,c}(u′) = {c}{a, c} (if c ∈ A j). If π{a,c}(u′) = {c}{a} then π{a,c}(v ′)
equals either {a, c} (if c ∈ B ′) or {a}{c} (if c /∈ B ′), i.e., in both cases π{a,c}(u′) �≡ π{a,c}(v ′), contradicting Proposi-
tion 8(6). If π{a,c}(u′) = {c}{a, c} then π{a,c}(v ′) equals either {a, c}{c} (if c ∈ B ′) or {a}{c}{c} (if c /∈ B ′). However in both
cases π{a,c}(u′) �≡ π{a,c}(v ′), contradicting Proposition 8(6). For the latter case, let d ∈ A j−1. Then π{a,b,d}(u′) = {d}{a,b}
(if d /∈ A j), or π{a,b,d}(u′) = {d}{a,b,d} (if d ∈ A j). If π{a,b,d}(u′) = {d}{a,b} then π{a,b,d}(v ′) is one of the following
{a,b,d}, {a,b}{d}, {a,d}{b}, {a}{b}{d} or {a}{d}{b}, and in either case π{a,b,d}(u′) �≡ π{a,b,d}(v ′), again contradicting Propo-
sition 8(6).

• If π{a,b,d}(u′) = {d}{a,b,d}, then we know π{a,b,d}(v ′) is one of the following {a,b,d}{d}, {a,b}{d}{d}, {a,d}{b,d},
{a,d}{b}{d}, {a,d}{d}{b}, {a}{b}{d}{d}, {a}{d}{b}{d}, or {a}{d}{d}{b}. However in any of these cases we have π{a,b,d}(u′) �≡
π{a,b,d}(v ′), contradicting Proposition 8(6) as well. �

We will now show that for comtraces the canonical form from Definition 18 and GMC-form are equivalent, and that
each comtrace has a unique canonical representation.
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Theorem 6. A step sequence u is in GMC-form if and only if it is canonical.

Proof. (⇐) Suppose that u = A1 . . . Ak is canonical. By Lemma 3 we have that for each B1 y1 ≡ A1 . . . Ak , |B1| � |A1|.
Since each Ai . . . Ak is also canonical, A2 . . . Ak is canonical so by Lemma 3 again we have that for each B2 y2 ≡ A2 . . . Ak ,
|B2| � |A2|. And so on, i.e. u = A1 . . . Ak is in GMC-form.

(⇒) Suppose that u = A1 . . . Ak is not canonical, and j is the smallest number such that (A j, A j+1) ∈ FD. Hence
A1 . . . A j−1 is canonical, and, by (⇐) of this theorem, in GMC-form. By Lemma 2, either there is a non-empty C ⊂ A j+1
such that (A j ∪ C)(A j+1 \ B) ≡ A j A j+1, or A j ∪ A j+1 ≡ A j A j+1. In the first case since C �= ∅, |A j ∪ C | > |A j |; in the second
case |A j ∪ A j+1| > |A j|, so A j . . . Ak is not in GMC-form, which means u = A1 . . . Ak is not in GMC-form either. �
Theorem 7. (Implicit in [11].) For each step sequence v there is a unique canonical step sequence u such that v ≡ u.

Proof. The existence follows from Proposition 11 and Theorem 6. We only need to show uniqueness. Suppose that u =
A1 . . . Ak and v = B1 . . . Bm are both canonical step sequences and u ≡ v . By induction on k = |u| we will show that u = v .
By Lemma 3, we have B1 = A1. If k = 1, this ends the proof. Otherwise, let u′ = A2 . . . Ak and w ′ = B2 . . . Bm and u′, v ′ are
both canonical step sequences of [u′]. Since |u′| < |u|, by the induction hypothesis, we obtain Ai = Bi for i = 2, . . . ,k and
k = m. �

The result of Theorem 7 was not stated explicitly in [11], but it can be derived from the results of Propositions 3.1,
4.8 and 4.9 of [11]. However Propositions 3.1 and 4.8 of [11] involve the concepts of partial orders and stratified order
structures, while the proof of Theorem 7 uses only the algebraic properties of step sequences and comtraces.

Immediately from Theorems 6 and 7 we get the following result.

Corollary 4. A step sequence u is canonical if and only if it is g-canonical. �
It turns out that for comtraces the canonical representation and MC representation are also equivalent.

Lemma 4. If a step sequence u is canonical and u ≡ v, then length(u) � length(v).

Proof. By induction on length(v). Obvious for length(v) = 1 as then u = v . Assume it is true for all v such that length(v) �
r − 1, r � 2. Consider v = B1 B2 . . . Br and let u = A1 A2 . . . Ak be a canonical step sequence such that v ≡ u. Let v1 = v ÷L

A1 = C1 . . . Cs . By Corollary 1(2), v1 ≡ u ÷L A1 = A2 . . . Ak , and A2 . . . Ak is clearly canonical. Hence by induction assumption
k − 1 = length(A2 . . . Ak) � s. By Lemma 3, B1 ⊆ A1, hence v1 = v ÷L A1 = B2 . . . Br ÷L A1 = C1 . . . Cs , which means s � r − 1.
Therefore k − 1 � s � r − 1, i.e. k � r, which ends the proof. �
Theorem 8. A step sequence u is maximally concurrent if and only if it is canonical.

Proof. (⇐) Let u be canonical. From Lemma 4 it follows the condition (1) of Definition 14 is satisfied. By Theorem 6, u is
in GMC-form, so the condition (2) of Definition 14 is satisfied as well.

(⇒) By induction on length(u). It is obviously true for u = A1. Suppose it is true for length(u) = k. Let u =
A1 A2 . . . Ak Ak+1 be maximally concurrent. The step sequence A2 . . . Ak+1 is also maximally concurrent and canonical by
the induction assumption. If A1 A2 . . . Ak+1 is not canonical, then (A1, A2) ∈ FD. By Lemma 2, either there is non-empty
C ⊂ B such that (A1 ∪ C)(A2 \ C) ≡ A1 A2, or A1 ∪ A2 ≡ A1 B2. Hence either (A1 ∪ C)(A2 \ C)A3 . . . Ak+1 ≡ A1 . . . Ak+1 = u or
(A ∪ A2)A3 . . . Ak+1 ≡ A1 . . . Ak+1 = u. The former contradicts the condition (2) of Definition 14, the latter one contradicts
the condition (1) of Definition 14, so u is not maximally concurrent, which means (A1, A2) /∈ FD, so u = A1 . . . Ak+1 is
canonical. �

Summing up, as far as canonical representation is concerned, comtraces behave quite nicely. All three forms for g-
comtraces, GMC-form, MC-form and g-canonical form, collapse to one comtrace canonical form if inl = ∅.

8.3. Canonical representations of traces

We will show that the canonical representations of traces are conceptually the same as the canonical representations
of comtraces. The differences are merely “syntactical”, as traces are sets of sequences, so “maximal concurrency” cannot be
expressed explicitly, while comtraces are sets of step sequences.

Let (E, ind) be a trace alphabet and (E∗/≡,�, [λ]) be the corresponding monoid of traces. A sequence x = a1 . . .ak ∈ E∗
is called fully commutative if (ai,a j) ∈ ind for all i �= j and i, j ∈ {1, . . . ,k}.

Corollary 5. If x = a1 . . .ak ∈ E∗ is fully commutative and y = ai1 . . .ai is any permutation of a1 . . .ak, then x ≡ y. �
k
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The above corollary could be interpreted as saying that if x = a1 . . .ak ∈ E∗ is fully commutative than the set of events
{a1, . . . ,ak} can be executed simultaneously.

Definition 19 (Greedy maximally concurrent form for traces). (See [2,3].) A sequence x ∈ E∗ is in greedy maximally concurrent
form (GMC-form) if x = λ or x = x1 . . . xn such that

1. each xi is fully commutative, for i = 1, . . . ,n,
2. for each 1 � i � n − 1 and for each element a of xi+1 there exists an element b of xi such that (a,b) /∈ ind.

Often the form from the above definition is called “canonical” [3,14,15].

Theorem 9. (See [2,3].) For every trace t ∈ E∗/≡, there exists x ∈ E∗ such that t = [x] and x is in the GMC-form. �
The GMC-form as defined above is not unique, a trace may have more than one GMC representation. For instance the

trace t1 = [abcbca] from Example 2 has four GMC representations: abcbca, acbbca, abccba, and acbcba. The GMC-form is
however unique when traces are represented as vector firing sequences6 [3,14,27], where each fully commutative sequence
is represented by a unique vector of events (so the name “canonical” used in [3,14] is justified). To get uniqueness for
Mazurkiewicz traces, it suffices to order fully commutative sequences. For example, we may introduce an arbitrary total
order on E , extend it lexicographically to E∗ and add the condition that in the representation x = x1 . . . xn , each xi is
minimal w.r.t. the lexicographic ordering. The GMC-form with this additional condition is called Foata canonical form.

Theorem 10. (See [2].) Every trace has a unique representation in the Foata canonical form. �
We will now show the relationship between GMC-form for traces and GMC-form (or canonical form) for comtraces.
Define S, the set of steps generated by (E, ind) as the set of all cliques of the graph of the relation ind, and for each fully

commutative sequence x = a1 . . .an , let st(x) = {a1, . . . ,an} ∈ S be the step generated by x.
For each sequence x = x1 . . . xk in GMC-form in (E, ind), we call the step sequence x{max} = st(x1) . . . st(xk) ∈ S∗ , the

maximally concurrent step sequence representation of x. Note that by Theorem 10, the step sequence x{max} is unique. The
name is formally justified by the following result (which also follows implicitly from [3]).

Proposition 12.

1. A sequence x = x1 . . . xn is in GMC-form in (E, ind) if and only if the step sequence x{max} = st(x1) . . . st(xk) is in GMC-form (or
canonical form) in (E, sim, ser) where sim = ser = ind.

2. [x]≡ind

t�c≡ [x{max}]≡ser .

Proof. 1. If x = x1 . . . xn is not in GMC-form then by (2) of Definition 19, there are xi, xi+1 and b ∈ st(xi+1) such that for all
a ∈ st(xi), (a,b) ∈ ind. Since ser = ind this means that (st(x1), st(xi+1)) ∈ FD, so x{max} is not canonical. Suppose that x{max} is
not canonical, i.e. (st(x1), st(xi+1)) ∈ FD for some i. This means there is a non-empty C ⊆ st(xi+1) such that st(xi) × C ⊆ ser
and C × (st(xi+1) \ C) ⊆ ser. Let a ∈ st(xi) and b ∈ C ⊆ st(xi+1). Since ind = ser, then (a,b) ∈ ind, so x = x1 . . . xn is not in
GMC-form.

2. Clearly [x]≡ind

t�c≡ [x{ }]≡ser . Let a1 . . .an be a fully commutative sequence. Since ser = ind, {a1} . . . {an} ≡ser {a1, . . . ,an}.
Hence, for each sequence x, x{ } ≡ser x{max} , i.e. [x{ }]≡ser = [x{max}]≡ser . �

Hence we have proved that the GMC-form (or canonical form) for comtraces and GMC-form for traces are semantically
identical concepts. They both describe the greedy maximally concurrent semantics, which for both comtraces and traces is
also the global maximally concurrent semantics.

9. Comtraces and stratified order structures

In this section we will recall the major result of [11] that shows how comtraces define appropriate so-structures. We
will start with the definition of ♦-closure construction that plays a substantial role in most applications of so-structures for
modelling concurrent systems (cf. [11,19,17,18]).

Definition 20 (Diamond closure of relational structures). (See [11].) Given a relational structure S = (X, R1, R2), we define S♦ ,
the ♦-closure of S , as

6 Vector firing sequences were introduced by Mike Shields in 1979 [27] as an alternative representation of Mazurkiewicz traces.
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S♦ � (X,≺R1,R2 ,�R1,R2),

where ≺R1,R2� (R1 ∪ R2)
∗ ◦ R1 ◦ (R1 ∪ R2)

∗ and �R1,R2� (R1 ∪ R2)
∗ \ idX .

The motivation behind the above definition is the following. For ‘reasonable’ R1 and R2, the relational structure
(X, R1, R2)

♦ should satisfy the axioms S1–S4 of the so-structure definition. Intuitively, ♦-closure is a generalization of
the transitive closure constructions for relations to so-structures. Note that if R1 = R2 then (X, R1, R2)

♦ = (X, R+
1 , R+

1 ). The
following result shows that the properties of ♦-closure are close to the appropriate properties of transitive closure.

Theorem 11 (Closure properties of ♦-closure). (See [11].) For a relational structure S = (X, R1, R2),

1. if R2 is irreflexive, then S ⊆ S♦ ,
2. (S♦)♦ = S♦ ,
3. S♦ is a so-structure if and only if ≺R1,R2= (R1 ∪ R2)

∗ ◦ R1 ◦ (R1 ∪ R2)
∗ is irreflexive,

4. if S is a so-structure, then S = S♦ . �
Every comtrace is a set of equivalent step sequences and every step sequence represents a stratified order, so a comtrace

can be interpreted as a set of equivalent stratified orders. From the theory presented in Section 4 and the fact that comtrace
satisfies paradigm π3, it follows that this set of orders should define a so-structure, which should be called a so-structure
defined by a given comtrace. On the other hand, with respect to a comtrace alphabet, every comtrace can be uniquely
generated from any step sequence it contains. Thus, we will show that given a step sequence u over a comtrace alphabet,
without analyzing any other elements of the comtrace [u] but u itself, we will be able to construct the same so-structure as the
one defined by the whole comtrace. Formulations and proofs of such results are done in [11] and depend heavily on the
♦-closure construction and its properties.

Let θ = (E, sim, ser) be a comtrace alphabet, and let u ∈ S∗ be a step sequence and let �u ⊆ Σu × Σu be the stratified
order generated by u as defined in Section 2.3. Note that if u ≡ w then Σu = Σw . Thus, for every comtrace x = [u] ∈ S∗/≡,
we can define Σx = Σu .

We will now show how the ♦-closure operator is used to define a so-structure induced by a single step sequence u.

Definition 21. Let u ∈ S∗ . We define the relations ≺u,�u⊆ Σu × Σu as:

1. α ≺u β
df⇐⇒ α �u β ∧ (l(α), l(β)) /∈ ser,

2. α �u β
df⇐⇒ α ��

u β ∧ (l(β), l(α)) /∈ ser.

Lemma 5. (See [11, Lemma 4.7].) For all u, v ∈ S∗ , if u ≡ v, then ≺u =≺v and �u =�v . �
Definition 21 together with Lemma 5 describes two basic local invariants of the elements of Σu . The relation ≺u captures

the situation when α always precedes β , and the relation �u captures the situation when α never follows β .

Definition 22. Given a comtrace u = [u] ∈ S∗/≡. We define

S{u} � (Σu,≺u,�u)♦, Su �
(

Σu,
⋂
x∈u

�x,
⋂
x∈u

��
x

)
.

The relational structure S{u} is the so-structure induced by the single step sequence u and Su is the so-structure defined
by the comtrace u. The following theorem justifies the names and summarizes some nontrivial results concerning the so-
structures generated by comtraces.

Theorem 12. (See [11,12].) For all u, v ∈ S∗ , we have

1. S{u} and S[u] are so-structures,
2. u ≡ v ⇐⇒ S{u} = S{v} ,
3. S{u} = S[u] ,
4. ext(S[u]) = {�x | x ∈ [u]}. �

Theorem 12 states that the so-structures S{u} and S[u] from Definition 22 are identical and their stratified extensions are
exactly the elements of the comtrace [u] with step sequences interpreted as stratified orders. However, from an algorithmic
point of view, the definition of S{u} is more interesting, since building the relations ≺u and �u and getting their ♦-closure,
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Fig. 3. An example of the relations sim, ser on E = {a,b, c,d}, and the so-structure (X,≺,�) defined by the comtrace [{a,b}{c}{a,d}]≡ser =
{{a,b}{c}{a,d}, {a}{b}{c}{a,d}, {a}{b, c}{a,d}, {b}{a}{c}{a,d}}.

which in turn can be reduced to computing transitive closure of relations, can be done efficiently. In contrast, a direct use
of the S[u] definition requires precomputing up to exponentially many elements of the comtrace [u].

Fig. 3 shows an example of a comtrace and the so-structure it generates.

10. Generalized stratified order structures generated by generalized comtraces

The relationship between g-comtraces and gso-structures is in principle the same as the relationship between comtraces
and so-structures discussed in the previous section. Each g-comtrace uniquely determines a finite labeled gso-structure.
However the formulations and proofs of these analogue results for g-comtraces are more complex. The difficulties are
mainly due to the following facts:

• The definition of gso-structure is implicit, it involves using the induced so-structures (see Definition 5), which makes
practically all definitions more complex (especially the counterpart of ♦-closure), and the use of Theorem 4 more
difficult than the use of Theorem 2.

• The internal property expressed by Theorem 3, which says that ext(S) conforms to paradigm π3 of [10], does not hold
for gso-structures.

• Generalized comtraces do not have a ‘natural’ canonical form with a well understood interpretation.
• The relation inl introduces plenty of irregularities and increases substantially the number of cases that need to be

considered in many proofs.

In this section, we will prove the analogue of Theorem 12 showing that every g-comtrace uniquely determines a finite
gso-structure.

10.1. Commutative closure of relational structures

We will start with the notion of commutative closure of a relational structure. It is an extension of the concept of ♦-
closure (see Definition 20) which was used in [11] and the previous section to construct finite so-structures from single
step sequences or stratified orders.

Definition 23 (Commutative closure). Let G = (X, R1, R2) be any relational structure, and let R3 = R1 ∩ R∗
2. Using the notation

from Definition 20, the commutative closure of the relational structure G is defined as

G�� = (X, (≺R3 R2)
sym ∪ R1,�R3 R2

)
.

The motivation behind the above definition is similar to that for ♦-closure: for ‘reasonable’ R1 and R2, (X, R1, R2)
��

should be a gso-structure. Intuitively the ��-closure is also a generalization of transitive closure for relations. Note that if
R1 = R2 then (X, R1, R2)

�� = (X, (R+
1 )

sym
, R+

1 ). Since the definition of gso-structures involves the definition of so-structures
(see Definition 5), the definition of ��-closure uses the concept of ♦-closure.

Note that we do not have an equivalent of Theorem 11 for ��-closure. The reason is that ��-closure is tailored to simplify
the proofs in the next section rather than to be a closure operator by itself. Nevertheless, ��-closure satisfies some general
properties of a closure operator.

The first property is the monotonicity of ��-closure.

Proposition 13. If G1 = (X, R1, R2) and G2 = (X, Q 1, Q 2) are two relational structures such that G1 ⊆ G2 , then G�� ⊆ G�� .
1 2



R. Janicki, D.T.M. Lê / Information and Computation 209 (2011) 1355–1389 1377
Proof. Since R1 ⊆ Q 1 and R2 ⊆ Q 2 then R3 ⊆ Q 3, and (X, R3, R2)
� ⊆ (X, Q 3, Q 2)

� , i.e. ≺R3 R2 ⊆≺Q 3 Q 2 and �R3 R2 ⊆�Q 3 Q 2 ,
which immediately implies G��

1 ⊆ G��
2 . �

Another desirable property of ��-closure is that gso-structures are fixed points of ��.

Proposition 14. If G = (X,<>,�) is a gso-structure then G = G�� .

Proof. Since G is a gso-structure, by Definition 5, SG = (X,≺G ,�) is a so-structure. Hence, by Theorem 11(4), SG = S�
G ,

which implies �= (≺G ∪ �)∗ \ idX . But since SG is a so-structure, ≺G ⊆�. So �=�∗ \idX . Let ≺=<> ∩ �∗ . Then since <>

is irreflexive,

≺=<> ∩ �∗=<> ∩ (�∗ \idX ) =<> ∩ �=≺G .

Hence, (X,≺,�) = (X,≺G ,�) is a so-structure. By Theorem 11(4), we know (X,≺,�) = (X,≺,�)�. So from Definition 23,
G�� = (X,≺sym ∪ <>,�). Since <> is symmetric and ≺⊆<>, we have ≺sym ∪ <>=<>. Thus, G = G�� . �
10.2. Generalized stratified order structure generated by a step sequence

We will now introduce a construction that derives a gso-structure from a single step sequence over a given g-comtrace
alphabet. The idea of the construction is the same as S{u} from the previous section. First we construct some relational
invariants and next we will use ��-closure in the similar manner as ♦-closure was used for S{u} . However the construction
is more elaborate and requires full use of the notation from Section 2.3 that allows us to define the formal relationship
between step sequences and (labeled) stratified orders. We will also need the following two useful operators for relations.

Definition 24. Let R be a binary relation on X . We define the

• symmetric intersection of R as R� � R ∩ R−1, and
• the complement of R as RC � (X × X) \ R .

Let Θ = (E, sim, ser, inl) be a g-comtrace alphabet. Note that if u ≡ w then Σu = Σw so for every g-comtrace s = [s] ∈
S∗/≡, we can define Σs = Σs .

Definition 25. Given a step sequence s ∈ S∗ .

1. Let the relations <>s,�s,≺s⊆ Σs × Σs be defined as follows:

α <>s β
df⇐⇒ (

l(α), l(β)
) ∈ inl, (10.1)

α �s β
df⇐⇒ α ��

s β ∧ (l(β), l(α)
)

/∈ ser ∪ inl, (10.2)

α ≺s β
df⇐⇒ α �s β ∧

⎛⎜⎜⎜⎜⎜⎝
(l(α), l(β)) /∈ ser ∪ inl

∨ (α,β) ∈<>s ∩ ((�∗
s )

� ◦ <>C
s ◦ (�∗

s )
�)

∨
⎛⎝ (l(α), l(β)) ∈ ser

∧ ∃δ,γ ∈ Σs.

(
δ �s γ ∧ (l(δ), l(γ )) /∈ ser

∧ α �∗
s δ �∗

s β ∧ α �∗
s γ �∗

s β

)⎞⎠

⎞⎟⎟⎟⎟⎟⎠ . (10.3)

2. The triple

G{s} � (Σs,≺s ∪ <>s,≺s ∪ �s)
��

is called the relational structure induced by the step sequence s.

The intuition of Definition 25 is similar to that of Definition 21. Given a step sequence s and g-comtrace alphabet
(E, sim, ser, inl), without analyzing any other elements of [s] except s itself, we would like to construct the gso-structure that
is defined by the whole g-comtrace. So we will define appropriate “local” invariants <>s , �s and ≺s from the sequence s.

(a) Eq. (10.1) is used to construct the relationship <>s , where two event occurrences α and β might possibly be commu-
tative because they are related by the inl relation.

(b) Eq. (10.2) defines the not later than relationship and this happens when α occurs not later than β on the step sequence
s and {α,β} cannot be serialized into {β}{α}, and α and β are not commutative.

(c) Eq. (10.3) is the most complicated one, since we want to take into consideration the “earlier than” relationships which
are not taken care of by the commutative closure. There are three such cases:
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(i) α occurs before β on the step sequence s, and two event occurrences α and β cannot be put together into a single
step ((α,β) /∈ ser) and are not commutative ((α,β) /∈ inl).

(ii) α and β are supposed to be commutative but they cannot be commuted into β and α because α is “synchronous”
with some γ and β is “synchronous” with some δ, and (γ , δ) is not in inl (“synchronous” in a sense that they must
happen simultaneously).

(iii) (α,β) is in ser but they can never be put together into a single step because there are two distinct event occur-
rences δ and γ which are “squeezed” between α and β such that (δ, γ ) /∈ ser, and thus δ and γ can never be put
together into a single step.

After building all of these “local” invariants from the step sequence s, all other “global” invariants which can be inferred
from the axioms of the gso-structure definition are fully constructed by the commutative closure.

The next lemma will show that the relations from G{s} really correspond to positional invariants of all the step sequences
from the g-comtrace [s].

Lemma 6. Let s ∈ S∗ , G{s} = (Σs,<>,�), and ≺=<> ∩ �. If α,β ∈ Σs , then

1. α <> β ⇐⇒ ∀u ∈ [s].posu(α) �= posu(β),
2. α � β ⇐⇒ α �= β ∧ ∀u ∈ [s].posu(α) � posu(β),
3. α ≺ β ⇐⇒ ∀u ∈ [s].posu(α) < posu(β),
4. if l(α) = l(β) and poss(α) < poss(β), then α ≺ β .

Eventhough the results of the above lemma are expected and look deceptively simple, the proof is long and highly
technical and can be found in Appendix A.

Note that Lemma 6 also implies that we can construct the relational structure induced by the step sequence G{s} (we
cannot claim that it is a gso-structure right now) if all the step sequences of a g-comtrace are known. We will first show
how to define the gso-structure induced from all the positional invariants of all the step sequences of a g-comtrace.

Definition 26. For every s ∈ S∗/≡, we define Gs = (Σs,
⋂

u∈s �sym
u ,

⋂
u∈s ��

u ).

Note that Theorem 4 does not immediately imply that Gs is a gso-structure. It needs to be proved separately.
We will now show that given a step sequence s over a g-comtrace alphabet, the definition of G{s} and the definition of

G[s] yield exactly the same gso-structure.

Theorem 13. Let s ∈ S∗ . Then G{s} = G[s] .

Proof. Let G{s} = (Σs,<>,�) and α,β ∈ Σs . Then by Lemma 6(1, 2), we have

α <> β ⇐⇒ ∀u ∈ [s].posu(α) �= posu(β) ⇐⇒ (α,β) ∈
⋂

u∈[s]
�sym

u ,

α � β ⇐⇒ (
α �= β ∧ ∀u ∈ [s].posu(α) � posu(β)

) ⇐⇒ (α,β) ∈
⋂

u∈[s]

(��
u

)sym
.

Hence, G{s} = (Σs,<>,�) = (Σs,
⋂

u∈[s] �sym
u ,

⋂
u∈[s] ��

u ) = G[s] . �
We will next show that G{s} is indeed a gso-structure.

Theorem 14. Let s ∈ S∗ . Then G{s} = (Σs,<>,�) is a gso-structure.

Proof. Since <>=⋂u∈[s] �sym
u and �sym

u is irreflexive and symmetric, <> is irreflexive and symmetric. Since �=⋂u∈[s] ��
u

and ��
u is irreflexive, � is irreflexive.

Let ≺=<> ∩ �, it remains to show that S = (Σ,≺,�) satisfies the conditions S1–S4 of Definition 3. Since � is irreflex-
ive, S1 is satisfied. Since ≺⊆�, S2 is satisfied. Assume α � β � γ and α �= γ . Then

α � β � γ ∧ α �= γ

�⇒ (α,β) ∈
⋂

u∈[s]
��

u ∧ (β,γ ) ∈
⋂

u∈[s]
��

u ∧ α �= γ 〈Theorem 13〉

�⇒ ∀u ∈ [s].posu(α) � posu(β) � posu(γ ) ∧ α �= γ 〈Definition of �u〉
�⇒ α � γ

〈
Lemma 6(2)

〉
.
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Hence, S3 is satisfied. Next we assume that α ≺ β �s γ . Then

α ≺ β � γ

�⇒ (α,β) ∈
⋂

u∈[s]

(��
u ∩ �sym

u
)∧ (β,γ ) ∈

⋂
u∈[s]

(��
u ∩ �sym

u
) 〈Theorem 13〉

�⇒ (∀u ∈ [s].posu(α) � posu(β) ∧ posu(α) �= posu(β)
)

∧ (∀u ∈ [s].posu(β) � posu(γ ) ∧ posu(β) �= posu(γ )
) 〈Definition of �u〉

�⇒ ∀u ∈ [s].posu(α) < posu(γ )

�⇒ α ≺ γ
〈
Lemma 6(3)

〉
.

Similarly, we can show α � β ≺ γ �⇒ α ≺ γ . Thus, S4 is satisfied. �
Theorem 14 justifies the following definition.

Definition 27. For every step sequence s, G{s} = (Σs,≺s ∪ <>s,≺s ∪ �s)
�� is the gso-structure induced by s.

At this point it is worth discussing the roles of the two different definitions of the gso-structures generated from a given
g-comtrace. Definition 25 allows us to build the gso-structure by looking at a single step sequence of the g-comtrace and
its g-comtrace alphabet. On the other hand, to build the gso-structure from a g-comtrace using Definition 26, we need
to know either all the positional invariants or all elements of the g-comtrace. By Theorem 13, these two definitions are
equivalent. However, in our proof, Definition 25 is more convenient when we want to deduce the properties of the gso-
structure defined from a single step sequence over a given g-comtrace alphabet. On the other hand, Definition 26 will be
used to reconstruct the gso-structure when positional invariants of a g-comtrace are known.

10.3. Generalized stratified order structures generated by generalized comtraces

In this section, we want to show that the construction from Definition 25 indeed yields a gso-structure representation
of comtraces. But before doing so, we need some preliminary results.

Proposition 15. Let s ∈ S∗ . Then �s ∈ ext(G{s}).

Proof. Let G{s} = (Σ,<>,�). By Lemma 6, for all α,β ∈ Σ ,

α <> β �⇒ poss(α) �= poss(β) �⇒ α �s β ∨ β �s α �⇒ α �sym
s β,

α � β �⇒ poss(α) � poss(β) �⇒ α ��
s β.

Hence, by Definition 6, we get �s ∈ ext(G{s}). �
Proposition 16. Let s ∈ S∗ . If � ∈ ext(G{s}), then there exists u ∈ S∗ such that � = �u .

Proof. Let G{s} = (Σs,<>,�) and Ω� = B1 . . . Bk . We will show that u = l[B1] . . . l[Bk] is a step sequence such that � = �u .
Suppose α,β ∈ Bi are two distinct event occurrences such that (l(α), l(β)) /∈ sim. Then poss(α) �= poss(β), which by

Lemma 6 implies that α <> β . Since � ∈ ext(G{s}), by Definition 6, α � β or β � α contradicting that α,β ∈ Bi . Thus, we
have shown for all Bi (1 � i � k),

α,β ∈ Bi ∧ α �= β �⇒ (
l(α), l(β)

) ∈ sim. (10.4)

By Proposition A.1(2) (in Appendix A), if e(i), e( j) ∈ Σs and i �= j then ∀u ∈ [s].posu(e(i)) �= posu(e( j)). So it follows from
Lemma 6(1) that e(i) <> e( j) . Since � ∈ ext(G{s}), by Definition 6,

if e(k0) ∈ Bk and e(m0) ∈ Bm, then k0 �= m0 ⇐⇒ k �= m. (10.5)

From (10.4) it follows that u is a step sequence over θ . Also by (10.5), pos−1
u [{i}] = Bi and |l[Bi]| = |Bi | for all i. Hence,

Ω� = Ω�u , which implies � = �u . �
We want to show that two step sequences over the same g-comtrace alphabet induce the same gso-structure iff they

belong to the same g-comtrace (Theorem 15 below). The proof of an analogous result for comtraces from [11] is simpler
because every comtrace has a unique natural canonical representation that is both greedy and maximally concurrent and
can be easily constructed. Moreover the canonical representation for comtraces correspond to the unique greedy stratified
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extension of appropriate causality relation ≺ (see [11]). Nothing similar holds for g-comtraces. For g-comtraces both natural
representations, GMC and MC, are not unique. The g-canonical representation (Definition 16) is unique but its uniqueness
is artificial and induced by some step sequence lexicographical order <lex (Definition 15). Nevertheless this lexicographical
order <lex will be the basic tool used in the next lemma. The lack of natural unique representation will make our reasoning
a bit harder.

Lemma 7. Let s be a step sequence over a g-comtrace alphabet (E, ser, sim, inl) and <E be any total order on E. Let u = A1 . . . An be the
g-canonical representation of [s] (i.e., u is the least element of the g-comtrace [s] w.r.t. <lex). Let G{s} = (Σ,<>,�) and ≺=<> ∩ �.
For each X ⊆ Σ , let mins≺(X) denote the set of all minimal elements of X w.r.t. ≺ and define

Z(X) �
{

Y ⊆ mins≺(X)
∣∣ (∀α,β ∈ Y .¬(α <> β)

)∧ (∀α ∈ Y , ∀β ∈ X \ Y .¬(β � α)
)}

.

Let u = A1 . . . An be the enumerated step sequence of u. Then Ai is the least element of the set {l[Y ] | Y ∈ Z(Σ \⊎(A1 . . . Ai−1))}
w.r.t. the ordering <st .

Before presenting the proof, we will explain the intuition behind the definition of the set Z(X). Let us consider Z(Σ)

first. Then A1 in this lemma is the least element of the set {l[Y ] | Y ∈ Z(Σ)} w.r.t. the ordering <st . Our goal is to construct
A1 by looking only at the gso-structure G without having to construct up to exponentially many stratified extensions of G .
The most technical part of this proof is to show that A1 actually belongs to the set Z(Σ). Recall that to show that Y ∈ Z(Σ),
we want to show that Y satisfies the following conditions:

(i) no two elements in Y are commutative,
(ii) for an element α ∈ Y and β ∈ Σ \ Y , it is not the case that β is not later than α.

Note that we actually define Z(X) instead of Z(Σ), because we want to apply it successively to build all the steps Ai of
the g-canonical representation u of G{s} . This lemma can be seen as an algorithm to build the g-canonical representation of
[s] by looking only at G{s} .

Proof of Lemma 7. First notice that by Lemma 6(3), for every non-empty X ⊆ Σ , since Σ is finite, we know that mins≺(X) is
non-empty and finite. Furthermore by Lemma 6(4), if e(i), e( j) ∈ Σ and i < j, then e(i) ≺ e( j) . Hence, for all α,β ∈ mins≺(X),
where X ⊆ Σ , we have l(α) �= l(β). This ensures that if Y ∈ Z(X) and X ⊆ Σ , then |Y | = |l[Y ]|.

For all α ∈ A1 and β ∈ Σ , poss(β) � poss(α). Hence, by Lemma 6(3), ¬(β ≺ α). Thus,

A1 ⊆ mins≺(Σ). (10.6)

For all α,β ∈ A1, since poss(β) = poss(α), by Lemma 6(1), we have

¬(α <> β). (10.7)

For any α ∈ A1 and β ∈ Σ \ A1, since poss(β) < poss(α), by Lemma 6(2),

¬(β � α). (10.8)

From (10.6), (10.7) and (10.8), we know that A1 ∈ Z(Σ). Hence, Z(Σ) �= ∅. This ensures the least element of {l[Y ] | Y ∈
Z(Σ)} w.r.t. <st is well defined.

Let Y0 ∈ Z(Σ) such that B0 = l[Y0] is the least element of {l[Y ] | Y ∈ Z(Σ)} w.r.t. <st . We want to show that A1 = B0.
Since <st is a total order, we know that A1<

st B0 or B0<
st A1 or A1 = B0. But since A1 ∈ Z(Σ) and B0 be the least element

of the set {l[B] | B ∈ Z(Σ)}, ¬(A1<
st B0). Hence, to show that A1 = B0, it suffices to show ¬(B0<

st A1).
Suppose that B0<

st A1. We first want to show that for every non-empty W ⊆ Y0 there is an enumerated step sequence
v such that

v = W0 v0 ≡ A1 . . . An and W ⊆ W0 ⊆ Y0. (10.9)

We will prove this by induction on |W |.
Base case. When |W | = 1, we let {α0} = W . We choose v1 = E0 . . . Ek y1 ≡ A1 . . . An and α0 ∈ Ek (k � 0) such that for all
v ′ = E ′

0 . . . E ′
k′ y′

1 ≡ A1 . . . An and α0 ∈ E ′
k′ , we have

(i) weight(E0 . . . Ek) � weight(E ′
0 . . . E ′

k′ ), and

(ii) weight(Ek−1 Ek) � weight(E ′
k′−1 E ′

k′ ).

We then consider only w = E0 . . . Ek . We observe by the way we chose v1, we have ∀β ∈ ⊎(w).(β �= α0 �⇒ ∀t ∈
[w].post(β) � post(α0)). Hence, since w = u ÷R v0, it follows from Proposition 10(1, 2) that

∀β ∈
⊎

(w).
(
β �= α0 �⇒ ∀t ∈ [A1 . . . An].post(β) � post(α0)

)
.
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Then it follows from Lemma 6(2) that ∀β ∈⊎(w).(β �= α0 �⇒ β � α0). But by the way Y0 was chosen, we know that
∀α ∈ Y0.∀β ∈ Σ \ Y0.¬(β � α). Hence,⊎

(w) = (E0 ∪ · · · ∪ Ek) ⊆ Y0. (10.10)

We next want to show

∀α ∈ Ei .∀β ∈ E j .{α}{β} ≡ {α,β} (0 � i < j � k). (10.11)

Suppose not. Then either [{α}{β}] = {{α}{β}} or [{α}{β}] = {{α}{β}, {β}{α}}. In either case, we have ∀t ∈ [{l(α)}{l(β)}].
post(α) �= post(β). Since {α}{β} ≡ π{α,β}(u), by Proposition 10(3), ∀t ∈ [u].post(α) �= post(β). So by Lemma 6, α <> β . This
contradicts that Y0 ∈ Z(Σ) and α,β ∈ Σ(w) ⊆ Y0. Thus, we have shown (10.11), which implies that for all α ∈ Ei and
β ∈ E j (0 � i < j � k), (l(α), l(β)) ∈ ser. Then E0 . . . Ek ≡⋃k

i=0 Ei . Hence, by (10.10) and (10.11), there exists a step sequence

v ′′
1 such that v ′′

1 = (
⋃k

i=0 Ei)y1 ≡ A1 . . . An and {α0} ⊆⋃k
i=0 Ei ⊆ Y0.

Inductive step. When |W | > 1, we pick an element β0 ∈ W . By applying the induction hypothesis on W \ {β0}, we get a step
sequence v2 such that v2 = F0 y2 ≡ A1 . . . An where W \ {β0} ⊆ F0 ⊆ Y0. If W ⊆ F0, we are done. Otherwise, proceeding like
the base case, we construct a step sequence v3 such that v3 = F0 F1 y3 ≡ A1 . . . An and {β0} ⊆ F1 ⊆ Y0. Since F0 ⊆ Y0, we
have W ⊆ F0 ∪ F1 ⊆ Y0. Then similarly to how we proved (10.11), we can show that ∀α ∈ F0.∀β ∈ F1.{α}{β} ≡ {α,β}. This
means that for all α ∈ F0 and β ∈ F1, (l(α), l(β)) ∈ ser. Hence, F0 F1 ≡ F0 ∪ F1. Hence, there is a step sequence v4 such that
v4 = (F0 ∪ F1)y4 ≡ A1 . . . An and W ⊆ (F0 ∪ F1) ⊆ Y0.

Thus, we have shown (10.9). So by choosing W = Y0, we get a step sequence v such that v = W0 v0 ≡ A1 . . . An and
Y0 ⊆ W0 ⊆ Y0. Hence, v = W0 v0 ≡ A1 . . . An . Thus, v = B0 v0 ≡ A1 . . . An . But since B0<

st A1, this contradicts the fact that
A1 . . . An is the least element of [s] w.r.t. <lex . Hence, A1 is the least element of {l[Y ] | Y ∈ Z(Σ)} w.r.t. <st .

We now prove that Ai is the least element of the set {l[Y ] | Y ∈ Z(Σ \⊎(A1 . . . Ai−1))} w.r.t. <st by induction on n,
the number of steps of the g-canonical step sequence u = A1 . . . An . If n = 0, we are done. If n > 0, then we have just
shown that A1 is the least element of {l[Y ] | Y ∈ Z(Σ)} w.r.t. <st . By applying the induction hypothesis on p = A2 . . . An ,
Σp = Σ \ A1, and its gso-structure (Σp,<> ∩ (Σp × Σp),� ∩ (Σp × Σp)), we get Ai is the least element of the set {l[Y ] |
Y ∈ Z(Σ \⊎(A1 . . . Ai−1))} w.r.t. <st for all i � 2. �
Theorem 15. Let s and t be step sequences over a g-comtrace alphabet (E, sim, ser, inl). Then s ≡ t iff G{s} = G{t} .

Proof. (⇒) If s ≡ t , then [s] = [t]. Hence, by Theorem 13, G{s} = G{t} .
(⇐) By Lemma 7, we can use G{s} to construct a unique element w1 such that w1 is the least element of [s] w.r.t. <lex ,

and then use G{t} to construct a unique element w2 that is the least element of [t] w.r.t. <lex . But since G{s} = G{t} , we get
w1 = w2. Hence, s ≡ t . �

Theorem 15 justifies the following definition:

Definition 28. For every g-comtrace [s], G[s] = G{s} = (Σs,≺s ∪ <>s,≺s ∪ �s)
�� is the gso-structure induced by the g-

comtrace [s].

To end this section, we prove two major results. Theorem 16 says that the stratified extensions of the gso-structure
induced by a g-comtrace [t] are exactly those generated by the step sequences in [t]. Theorem 17 says that the gso-structure
induced by a g-comtrace is uniquely identified by any of its stratified extensions.

Lemma 8. Let s, t ∈ S∗ and �s ∈ ext(G{t}). Then G{s} = G{t} .

The proof of the above lemma uses Definition 25 heavily and thus requires a separate analysis of many cases and was
moved to Appendix B.

Theorem 16. Let s, t ∈ S∗ . Then ext(G{s}) = {�u | u ∈ [s]}.

Proof. (⊆) Suppose � ∈ ext(G{s}). By Proposition 16, there is a step sequence u such that �u = �. Hence, by Lemma 8, we
have G{u} = G{s} , which by Theorem 15 implies that u ≡ s. Hence, ext(G{s}) ⊆ {�u | u ∈ [s]}.

(⊇) If u ∈ [s], then it follows from Theorem 15 that G{u} = G{s} . This and Proposition 15 imply �u ∈ ext(G{s}). Hence,
ext(G{s}) ⊇ {�u | u ∈ [s]}. �
Theorem 17. Let s, t ∈ S∗ and ext(G{s}) ∩ ext(G{t}) �= ∅. Then s ≡ t.
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Fig. 4. A g-comtrace alphabet (E, sim, ser, inl), where E = {a,b, c,d}, the gso-structure G = (X,<>,�) and ≺G =<> ∩ � defined by the g-comtrace
[{a,b}{c}{a,d}] = {{a,b}{c}{a,d}, {a}{b}{c}{a,d}, {a}{b, c}{a,d}, {b}{a}{c}{a,d}, {b}{c}{a}{a,d}, {b, c}, {a}{a,d}}.

Proof. Let � ∈ ext(G{s}) ∩ ext(G{t}). By Proposition 16, there is a step sequence u such that �u = �. By Lemma 8, we have
G{s} = G{u} = G{t} . This and Theorem 15 yield s ≡ t . �

Summing up, we have proved the analogue of Theorem 12 for g-comtraces. In fact, Theorem 12 is a straightforward
consequence of this section for inl = ∅.

Fig. 4 shows an example of a g-comtrace and the gso-structure it generates.

11. Conclusion and future work

The comtrace concept is revisited and its extension, the g-comtrace notion, is introduced. Comtraces and g-comtraces
are generalizations of Mazurkiewicz traces, where the concepts of simultaneity, serializability and interleaving are used to
define the quotient monoids instead of the usual independency relation in the case of traces. We analyzed some alge-
braic properties of comtraces and g-comtraces, where an interesting application is the proof of the uniqueness of comtrace
canonical representation. We study the canonical representations of traces, comtraces and g-comtraces and their mutual
relationships in a more unified framework. We observe that comtraces have a natural unique canonical form which corre-
sponds to their maximal concurrent representation,7 while the unique canonical representation of g-comtrace can only be
obtained by choosing the lexicographically least element.

The most important contribution of this paper, Theorem 16, shows that every g-comtrace uniquely determines a labeled
gso-structure. We believe the reason why the proof of Theorem 16 is more technical than the similar theorem for comtraces
is that both comtraces and so-structures satisfy paradigm π3 while g-comtraces and gso-structures do not. Intuitively, what
paradigm π3 really says is that the underlying structure consists of partial orders. For comtraces and so-structures, we
did augment some more priority relationships into the incomparable elements with respect to the standard causal partial
order to produce the not later than relation, and this process might introduce cycles into the graph of the “not later than”
relation. However, it is important to observe that any two distinct elements lying on a cycle of the “not later than” relation
must belong to the same synchronous set since the “not later than” relation is a strict preorder. Thus, if we collapse each
synchronous set into a single vertex, then the resulting “quotient” graph of the “not later than” relation is a partial order.
The reader is referred to the second author’s recent work [22] for more detailed discussion on the preorder property of the
“not later than” relation and how this property manifests itself in the comtrace notion. When paradigm π3 is not satisfied,
as with g-comtraces or gso-structures, we have more than a partial order structure, and hence the usual techniques that
depend too on the underlying partial order structure of comtraces and so-structures are often not applicable.

Despite some obvious advantages, for instance, handy composition and no need to use labels, quotient monoids (perhaps
with some exception of traces) are less popular for analyzing issues of concurrency than their relational counterparts such
as partial orders, so-structures, occurrence graphs, etc. We believe that in many cases, more sophisticated quotient monoids,
e.g., comtraces and g-comtraces, can provide simpler and more adequate models of concurrent histories than their relational
equivalences.

Much harder future tasks are in the area of comtrace and g-comtrace languages where major problems like recognizabil-
ity [25], acceptability [30], etc. are still open.
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Appendix A. Proof of Lemma 6

Proposition A.1. Let u be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and α,β ∈ Σu such that l(α) = l(β) and
α �= β . Then

1. posu(α) �= posu(β),
2. if posu(α) < posu(β) and v is a step sequence satisfying v ≡ u, then posv(α) < posv(β).

Proof. 1. Follows from the fact that sim is irreflexive.
2. Follows from Proposition 7 and that ser and inl are irreflexive. �
From the definition of g-comtrace ≈{ser,inl} (Definition 12), we can easily show the following proposition, which aims to

describe the intuition that if an event α occurs before (or simultaneously with) β in the first step sequence and α occurs
later than β on the second step sequence congruent with the first one, then there must be two “immediately congruent”
step sequences, i.e., related by the relation ≈{ser,inl} (written as just ≈), where this commutation (or serialization) of α and
β occurs.

Proposition A.2. Let u, w be step sequences over a g-comtrace alphabet (E, sim, ser, inl) such that u(≈ ∪ ≈−1)w. Then

1. if posu(α) < posu(β) and posw(β) < posw(α), then there are x, y, A, B such that u = xAB y(≈ ∪ ≈−1)xB A y = w and α ∈ A,
β ∈ B. We also have (l(α), l(β)) ∈ inl,

2. if posu(α) = posu(β) and posw(β) < posw(α), then there are x, y, A, B, C such that u = xA y ≈ xBC y = w and β ∈ B and
α ∈ C . This also means (l(β), l(α)) ∈ ser. �

Proposition A.3. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl). If α,β ∈ Σs , then

1. α <>s β �⇒ ∀u ∈ [s].posu(α) �= posu(β),
2. α �s β �⇒ ∀u ∈ [s].posu(α) � posu(β),
3. α ≺s β �⇒ ∀u ∈ [s].posu(α) < posu(β),

and α �= β in all three cases.

Proof. 1. Follows from the fact that inl ∩ sim = ∅.
2. Assume that α �s β . Suppose that ∃u ∈ [s].posu(α) > posu(β). Then there must be some u1, u1 ∈ [s] such that u1(≈

∪ ≈−1)u2 and posu1
(α) � posu1

(β) and posu2
(α) > posu2

(β). There are two cases:

(i) If posu1
(α) < posu1

(β) and posu2
(α) > posu2

(β), then by Proposition A.2(1), (l(α), l(β)) ∈ inl, contradicting that α �s β .
(ii) If posu1

(α) = posu1
(β) and posu2

(α) > posu2
(β), then it follows from Proposition A.2(2), (l(β), l(α)) ∈ ser, contradicting

that α �s β .

3. Assume that α ≺s β . Suppose that ∃u ∈ [s].posu(α) � posu(β). Then there must be some u1, u1 ∈ [s] such that u1(≈
∪ ≈−1)u2 and posu1

(α) < posu1
(β) and posu2

(α) � posu2
(β). There are two cases:

(i) If posu1
(α) < posu1

(β) and posu2
(α) = posu2

(β), then it follows from Proposition A.2(2) that (l(α), l(β)) ∈ ser and
¬(α <>s β). Hence, it follows from (10.3) that

∃δ,γ ∈ Σs.

(
poss(δ) < poss(γ ) ∧ (l(δ), l(γ )) /∈ ser

∧ α �∗
s δ �∗

s β ∧ α �∗
s γ �∗

s β

)
.

By (2) and transitivity of �, we have⎛⎝ γ �= δ ∧ (l(δ), l(γ )) /∈ ser

∧ (∀u ∈ [s].posu(α) � posu(δ) � posu(β))

∧ (∀u ∈ [s].posu(α) � posu(γ ) � posu(β))

⎞⎠ .

But since posu2
(α) = posu2

(β), we get posu2
(γ ) = posu2

(δ). Since we assumed poss(δ) < poss(γ ), it follows from Propo-
sition A.2(2) that (l(δ), l(γ )) ∈ ser, a contradiction.
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(ii) If posu1
(α) < posu1

(β) and posu2
(α) > posu2

(β), then by Proposition A.2(1), (l(α), l(β)) ∈ inl. Since we already assumed
α ≺s β , by (10.3), (α,β) ∈<>s ∩ ((�∗

s )
� ◦<>C

s ◦ (�∗
s )

�). So there are γ , δ such that α(�∗
s )

�γ<>C
s δ(�∗

s )
�β . Observe that

α(�∗
s )

�γ

�⇒ α(�∗
s )γ ∧ γ (�∗

s )α

�⇒ ∀u ∈ [s].posu(α) � posu(γ ) ∧ ∀u ∈ [s].posu(γ ) � posu(α)
〈
by (2)

〉
�⇒ ∀u ∈ [s].posu(α) = posu(γ )

�⇒ {α,γ } ⊆ A 〈since α ∈ A〉.
Similarly, since δ(�∗

s )
�β , we can show that {δ,β} ⊆ B . Since xAB y(≈ ∪ ≈−1)xB A y, we get A × B ⊆ inl. So (l(γ ), l(δ)) ∈

inl. But γ<>C
s δ implies that (l(γ ), l(δ)) /∈ inl, a contradiction. �

Immediately from Proposition A.3, we get the following proposition.

Proposition A.4. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and G{s} = (Σs,<>,�). If α,β ∈ Σs , then

1. α <> β �⇒ ∀u ∈ [s].posu(α) �= posu(β),
2. α � β �⇒ (α �= β ∧ ∀u ∈ [s].posu(α) � posu(β)). �

Definition A.1 (Serializable and non-serializable steps). Let A be a step over a g-comtrace alphabet (E, sim, ser, inl) and let
a ∈ A then:

1. Step A is called serializable iff

∃B, C ∈ ℘\{∅}(A).B ∪ C = A ∧ B × C ⊆ ser.

Step A is called non-serializable iff A is not serializable. Every non-serializable step is a synchronous step as defined in
Definition 9.

2. Step A is called serializable to the left of a iff

∃B, C ∈ ℘\{∅}(A).B ∪ C = A ∧ a ∈ B ∧ B × C ⊆ ser.

Step A is called non-serializable to the left of a iff A is not serializable to the left of a, i.e., ∀B, C ∈ ℘\{∅}(A).(B ∪ C =
A ∧ a ∈ B) �⇒ B × C � ser.

3. Step A is called serializable to the right of a iff

∃B, C ∈ ℘\{∅}(A).B ∪ C = A ∧ a ∈ C ∧ B × C ⊆ ser.

Step A is called non-serializable to the right of a iff A is not serializable to the right of a, i.e., ∀B, C ∈ ℘\{∅}(A).(B ∪ C =
A ∧ a ∈ C) �⇒ B × C � ser.

Proposition A.5. Let A be a step over a g-comtrace alphabet (E, sim, ser, inl). Then

1. if A is non-serializable to the left of l(α) for some α ∈ A, then α �∗
A β for all β ∈ A,

2. if A is non-serializable to the right of l(β) for some β ∈ A, then α �∗
A β for all α ∈ A,

3. if A is non-serializable, then ∀α,β ∈ A.α �∗
A β .

Before we proceed with the proof, since for all α,β ∈ A, (l(α), l(β)) /∈ inl, observe that

α �A β ⇐⇒ posA(α) � posA(β) ∧ (l(β), l(α)
)

/∈ ser.

Proof of Proposition A.5. 1. For any β ∈ A, we have to show that α �∗
A β . We define the �A -right closure set of α inductively

as follows:

RC0(α) � {α}, RCn(α) �
{
δ ∈ A

∣∣ ∃γ ∈ RCn−1(α) ∧ γ �A δ
}
.

Then by induction on n, we can show that |RCn+1(α)| > |RCn(α)| or RCn(α) = A. So if A is finite, then for some n < |A|,
we must have RCn(α) = A and β ∈ RCn(α). It follows that α �∗

A β .
2. Dually to (1).
3. Since A is non-serializable, it follows that A is non-serializable to the left of l(α) for every α ∈ A. Hence, the assertion

follows. �
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The existence of a non-serializable sub-step of a step A to the left/right of an element a ∈ A can be explained by the
following proposition.

Proposition A.6. Let A be a step over an alphabet Θ = (E, sim, ser, inl) and a ∈ A. Then

1. there exists a unique B ⊆ A such that a ∈ B, B is non-serializable to the left of a, and A �= B �⇒ A ≡ (A \ B)B,
2. there exists a unique C ⊆ A such that a ∈ C, C is non-serializable to the right of a, and A �= C �⇒ A ≡ C(A \ C),
3. there exists a unique D ⊆ A such that a ∈ D, D is non-serializable, and A ≡ xD y, where x and y are step sequences over Θ .

Proof. 1. If A is non-serializable to the left of a, then B = A. If A is serializable to the left of a, then the following set is not
empty:

ζ �
{

D ∈ ℘\{∅}(A)
∣∣ ∃C ∈ ℘\{∅}(A).(C ∪ D = A ∧ a ∈ D ∧ C × D ⊆ ser)

}
.

Let B ∈ ζ such that B is a minimal element of the poset (ζ,⊂). Let B ∈ ζ such that B is a minimal element of the poset
(ζ,⊂). We claim that B is non-serializable to the left of a. Suppose for a contradiction that B is serializable to the left
of a, then there are some sets E, F ∈ ℘\{∅}(()B) such that E ∪ F = B ∧ a ∈ F ∧ E × F ⊆ ser. Since B ∈ χ , there is some set
G ∈ ℘\{∅}(()A) such that G ∪ B = A ∧ a ∈ B ∧ G × B ⊆ ser. Because G × B ⊆ ser and F ⊂ B , it follows that G × F ⊆ ser. But
since E × F ⊆ ser, we have (G ∪ E) × F ⊆ ser. Hence, (G ∪ E) ∪ F = A ∧ a ∈ F ∧ (G ∪ E) × F ⊆ ser. So E ∈ ζ and E ⊂ B . This
contradicts that B is minimal. Hence, B is non-serializable to the left of a.

By the way the set ζ is defined, A ≡ (A \ B)B . It remains to prove the uniqueness of B . Let B ′ ∈ ζ such that B ′ is a
minimal element of the poset (ζ,⊂). We want to show that B = B ′ .

We first show that B ⊆ B ′ . Suppose that there is some b ∈ B such that b �= a and b /∈ B ′ . Let α and β denote the event
occurrences a(1) and b(1) in ΣA respectively. Since a ∈ B and b is non-serializable to the left of a and a �= b, it follows from
Proposition A.5(1) that α �[A] β . Hence, by Proposition A.3(2), we have

∀u ∈ [A].posu(α) � posu(β). (A.1)

By the way B ′ is chosen, we know A ≡ (A \ B ′)B ′ and b /∈ B ′ . So it follows that b ∈ (A \ B ′). Hence, we have (A \ B ′)B ′ ∈ [A]
and pos(A\B ′)B ′ (β) < pos(A\B ′)B ′ (α), which contradicts (A.1). Thus, B ⊆ B ′ . By reversing the roles of B and B ′ , we can prove
that B ⊇ B ′ . Hence, B = B ′ .

2. Dually to (1).
3. By (1) and (2), we choose D to be non-serializable to the left and to the right of a. �

Lemma A.1. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl) and G{s} = (Σs,<>,�). Let ≺=� ∪ <>. If
α,β ∈ Σs , then

1.

⎛⎜⎝ (∀u ∈ [s].posu(α) �= posu(β))

∧ (∃u ∈ [s].posu(α) < posu(β))

∧ (∃u ∈ [s].posu(α) > posu(β))

⎞⎟⎠�⇒ α <> β ,

2. (∀u ∈ [s].posu(α) < posu(β)) �⇒ α ≺ β ,
3. (α �= β ∧ ∀u ∈ [s].posu(α) � posu(β)) �⇒ α � β .

Proof. 1. Assume the left-hand side of the implication. Then by Proposition A.2(1), (l(α), l(β)) ∈ inl, which by (10.1) implies
that α <>s β . By Definitions 23 and 25, it follows that α <> β .

2, 3. Since statements (2) and (3) are mutually related due to the fact that ≺⊆�, we cannot prove each statement
separately. The main technical insight is that, to have a stronger induction hypothesis, we need prove both statements
simultaneously.

Assume ∀u ∈ [s].posu(α) � posu(β) and α �= β . Hence, we can choose u0 ∈ [s] where u0 = x0 E1 . . . Ek y0 (k � 1), E1, Ek
are non-serializable, α ∈ E1, β ∈ Ek , and

∀u′
0 ∈ [s].

(
(u′

0 = x′
0 E ′

1 . . . E ′
k′ y′

0 ∧ α ∈ E ′
1 ∧ β ∈ E ′

k′)

�⇒ weight(E1 . . . Ek) � weight(E ′
1 . . . E ′

k′)

)
. (A.2)

We will prove by induction on weight(E1 . . . Ek) that(∀u ∈ [s].posu(α) < posu(β)
) �⇒ α ≺ β, (A.3)(

α �= β ∧ ∀u ∈ [s].posu(α) � posu(β)
) �⇒ α � β. (A.4)
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Base case. When weight(E1 . . . Ek) = 2, then we consider two cases:

• If α �= β , ∀u ∈ [s].posu(α) � posu(β) and ∃u ∈ [s].posu(α) = posu(β), then
– u0 = x0{α,β}y0, or
– u0 = x0{α}{β}y0 ≡ x0{α,β}y0.
But since ∀u ∈ [s].posu(α) � posu(β), in either case, we must have {l(α), l(β)} is not serializable to the right of l(β).
Hence, by Proposition A.5(2), α(�s)

∗β . This by Definitions 23 and 25 implies that α � β .
• If ∀u ∈ [s].posu(α) < posu(β), then it follows u0 = x0{α}{β}y0 and (l(α), l(β)) /∈ ser ∪ inl. This, by (10.3), implies that

α ≺s β . Hence, from Definitions 23 and 25, we get α ≺ β .

Since ≺⊆�, it follows from these two cases that (A.3) and (A.4) hold.

Inductive step. When weight(E1 . . . Ek) > 2, then u0 = x0 E1 . . . Ek y0 where k � 1. We need to consider two cases:
Case (i): If α �= β and ∀u ∈ [s].posu(α) � posu(β) and ∃u ∈ [s].posu(α) = posu(β), then there is some v0 v0 = w0 Ez0

and α,β ∈ E . Either E is non-serializable to the right of l(β), or by Proposition A.6(2) v0 = w0 Ez0 ≡ w ′
0 E ′z′

0 where E ′ is
non-serializable to the right of l(β). In either case, by Proposition A.5(2), we have α �∗

s β . So by Definitions 23 and 25,
α � β .

Case (ii): If ∀u ∈ [s].posu(α) < posu(β), then it follows u0 = x0 E1 . . . Ek y0 where k � 2 and α ∈ E1, β ∈ Ek . If (l(α), l(β)) /∈
ser ∪ inl, then by (10.3), α ≺s β . Hence, from Definitions 23 and 25, we get α ≺ β . So we need to consider only when
(l(α), l(β)) ∈ ser or (l(α), l(β)) ∈ inl. There are three cases to consider:

(a) If u0 = x0 E1 E2 y0 where E1 and E2 are non-serializable, then since we assume ∀u ∈ [s].posu(α) < posu(β), it follows
that E1 × E2 � ser and E1 × E2 � inl. Hence, there are α1,α2 ∈ E1 and β1, β2 ∈ E2 such that (l(α1), l(β1)) /∈ inl and
(l(α2), l(β2)) /∈ ser. Since E1 and E2 are non-serializable, by Proposition A.5(3), α1 �∗

s α2 and β2 �∗
s β1. Also by Def-

inition 25, we know that α1 <>s β2 and α2 <>C
s β1. Thus, by Definition 25, we have α1 ≺s β2. Since E1 and E2 are

non-serializable, by Proposition A.5(3), α �∗
s α1 ≺s β2 �∗

s β . Hence, by Definitions 23 and 25, α ≺ β .
(b) If u0 = x0 E1 . . . Ek y0 where k � 3 and (l(α), l(β)) ∈ inl, then let γ ∈ E2. Observe that we must have

u0 = x0 E1 . . . Ek y0 ≡ x1 E1 w1 F z1 Ek y1 ≡ x2 E1 w2 F z2 Ek y2

such that γ ∈ F , F is non-serializable, and weight(E1 w1 F ),weight(F z2 Ek) satisfy the minimal condition similarly to
(A.2). Since from the way u0 is chosen, we know that ∀u ∈ [s].posu(α) � posu(γ ) and ∀u ∈ [s].posu(γ ) � posu(β), by
applying the induction hypothesis, we get

α � γ � β. (A.5)

So by transitivity of �, we get α � β . But since we assume (l(α), l(β)) ∈ inl, it follows that α <> β . Hence, (α,β) ∈� ∩ <>=≺.
(c) If u0 = x0 E1 . . . Ek y0 where k � 3 and (l(α), l(β)) ∈ ser, then we observe from how u0 is chosen that

∀γ ∈
⊎

(E1 . . . Ek).
(∀u ∈ [s].posu0

(α) � posu0
(γ ) � posu0

(β)
)
.

Similarly to how we show (A.5), we can prove that

∀γ ∈
⊎

(E1 . . . Ek) \ {α,β}.α � γ � β. (A.6)

We next want to show that

∃δ,γ ∈
⊎

(E1 . . . Ek).
(
posu0

(δ) < posu0
(γ ) ∧ (l(δ), l(γ )

)
/∈ ser

)
. (A.7)

Suppose that (A.7) does not hold, then

∀δ,γ ∈
⊎

(E1 . . . Ek).
(
posu0

(δ) < posu0
(γ ) �⇒ (

l(δ), l(γ )
) ∈ ser

)
.

It follows that u0 = x0 E1 . . . Ek y0 ≡ x0 E y0, which contradicts that ∀u ∈ [s].posu(α) < posu(β). Hence, we have
shown (A.7).
Let δ,γ ∈ ⊎(E1 . . . Ek) be event occurrences such that posu0

(δ) < posu0
(γ ) and (l(δ), l(γ )) /∈ ser. By (A.6), α(� ∪

idΣs )δ(� ∪ idΣs )β and α(� ∪ idΣs )γ (� ∪ idΣs )β . If α ≺ δ or δ ≺ β or α ≺ γ or γ ≺ β , then by S4 of Definition 3,
α ≺ β . Otherwise, by Definitions 23 and 25, we have α �∗

s δ �∗
s β and α �∗

s γ �∗
s β . But since posu0

(δ) < posu0
(γ ) and

(l(δ), l(γ )) /∈ ser, by Definition 25, α ≺s β . So by Definitions 23 and 25, we have α ≺ β .

Thus, we have shown (A.3) and (A.4) as desired. �
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Lemma 6. Let s be a step sequence over a g-comtrace alphabet (E, sim, ser, inl). Let G{s} = (Σs,<>,�), and let ≺=<> ∩ �. Then for
every α,β ∈ Σs , we have

1. α <> β ⇐⇒ ∀u ∈ [s].posu(α) �= posu(β),
2. α � β ⇐⇒ α �= β ∧ ∀u ∈ [s].posu(α) � posu(β),
3. α ≺ β ⇐⇒ ∀u ∈ [s].posu(α) < posu(β),
4. if l(α) = l(β) and poss(α) < poss(β), then α ≺ β .

Proof. 1. Follows from Proposition A.4(1) and Lemma A.1(1, 2).
2. Follows from Proposition A.4(2) and Lemma A.1(3).
3. Follows from (1) and (2).
4. Follows from Proposition A.1(2). �

Appendix B. Proof of Lemma 8

Lemma 8. Let s, t ∈ S∗ and �s ∈ ext(G{t}). Then G{s} = G{t} .

Proof. To show G{s} = G{t} , it suffices to show that <>t =<>s , ≺t =≺s and �t =�s since this will imply that

G{t} = (Σ,<>t ∪ ≺t,�t ∪ ≺t)
�� = (Σ,<>s ∪ ≺s,�s ∪ ≺s)

�� = G{s}.
(<>t =<>s) Trivially follows from Definition 25.
(�t =�s) If α �t β , then by Definitions 23 and 25, α � β . But since �s ∈ ext(G{t}), we have α ��

s β , which implies
poss(α) � poss(β). But since α �t β , it follows by Definition 25 that (l(β), l(α)) /∈ ser ∪ inl. Hence, by Definition 25, α �s β .
Thus,

�t ⊆�s . (B.1)

It remains to show that �s ⊆�t . Let α �s β , and we suppose that ¬(α �t β). Since α �s β , by Definition 25, poss(α) �
poss(β) and (l(β), l(α)) /∈ ser ∪ inl. Since we assume ¬(α �t β), by Definition 25, we must have post(β) < post(α). Hence, by
Definitions 23 and 25, β ≺t α and β ≺ α. But since �s ∈ ext(G{t}), we have β �s α. So poss(β) < poss(α), a contradiction.
Thus, �s ⊆�t . Together with (B.1), we get �t =�s .

(≺t =≺s) If α ≺t β , then by Definitions 23 and 25, α ≺ β (of G{t}). But since �s ∈ ext(G{t}), we have α �s β , which
implies

poss(α) < poss(β). (B.2)

Since α ≺t β , by Definition 25, we have(
l(α), l(β)

)
/∈ ser ∪ inl

∨ (α,β) ∈<>t ∩ ((�∗
t )� ◦ <>C

t ◦ (�∗
t )�
)

∨
⎛⎝ (l(α), l(β)) ∈ ser

∧ ∃δ,γ ∈ Σt .

(
post(δ) < post(γ ) ∧ (l(δ), l(γ )) /∈ ser

∧ α �∗
t δ �∗

t β ∧ α �∗
t γ �∗

t β

)⎞⎠ .

We want to show that α ≺s β . There are three cases to consider:

(a) When (l(α), l(β)) /∈ ser ∪ inl, it follows from (B.2) and Definition 25 that α ≺s β .
(b) When (α,β) ∈<>t ∩ ((�∗

t )� ◦ <>C
t ◦ (�∗

t )�), then α <>t β and there are δ,γ ∈ Σ such that α(�∗
t )�δ <>C

t γ (�∗
t )�β .

Since �t =�s and <>t =<>s , we have α <>s β and α(�∗
s )

�δ <>C
s γ (�∗

s )
�β . Thus, it follows from (B.2) and Definition 25

that α ≺s β .
(c) There remains only the case when (l(α), l(β)) ∈ ser and there are δ,γ ∈ Σt such that(

post(δ) < post(γ ) ∧ (l(δ), l(γ )) /∈ ser

∧ α �∗
t δ �∗

t β ∧ α �∗
t γ �∗

t β

)
.

Since �t =�s , we also have α �∗
s δ �∗

s β ∧ α �∗
s γ �∗

s β . Since (l(δ), l(γ )) /∈ ser, we either have (l(δ), l(γ )) ∈ inl or
(l(δ), l(γ )) /∈ ser ∪ inl.
• If (l(δ), l(γ )) ∈ inl, then poss(δ) �= poss(γ ). Thus, (poss(δ) < poss(γ ) ∧ (l(δ), l(γ )) /∈ ser) or (poss(γ ) < poss(δ) ∧

(l(γ ), l(δ)) /∈ ser). So it follows from (B.2) and Definition 25 that α ≺s β .
• If (l(δ), l(γ )) /∈ inl, then (l(δ), l(γ )) /∈ ser ∪ inl. Hence, by Definition 25, δ ≺t γ , which by Definitions 23 and 25, δ ≺ γ .

But since �s ∈ ext(G{t}), we have δ�s γ , which implies poss(δ) < poss(γ ). Since poss(δ) < poss(γ ) and (l(δ), l(γ )) /∈ ser,
it follows from (B.2) and Definition 25 that α ≺s β .
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Thus, we have shown that α ≺s β . Hence,

≺t ⊆≺s . (B.3)

It remains to show that ≺s ⊆≺t . Let α ≺s β . Suppose that ¬(α ≺t β). Since α ≺s β , by Definition 25, we need to consider
three cases:

(a) When (l(α), l(β)) /∈ ser ∪ inl, we suppose that ¬(α ≺t β). This by Definition 25 implies that post(β) � post(α). By
Definitions 23 and 25, it follows that β �t α and β � α. But since �s ∈ ext(G{t}), we have β ��

s α, which implies
poss(β) � poss(α), a contradiction.

(b) If (α,β) ∈<>s ∩ ((�∗
s )

� ◦ <>C
s ◦ (�∗

s )
�), then since <>s =<>t and �s =�t , we have (α,β) ∈<>t ∩ ((�∗

t )� ◦ <>C
t ◦

(�∗
t )�). Since α <>t β , we have post(α) < post(β) or post(β) < post(α). We claim that post(α) < post(β). Suppose

for a contradict that post(β) < post(α). Since (α,β) ∈<>t ∩ ((�∗
t )� ◦ <>C

t ◦ (�∗
t )�) and <>t is symmetric, we have

(β,α) ∈<>t ∩ ((�∗
t )� ◦ <>C

t ◦ (�∗
t )�). Hence, it follows from Definitions 23 and 25 that β ≺t α and β ≺ α. But since�s ∈ ext(G{t}), we have β �s α, which implies poss(β) < poss(α), a contradiction. Thus, post(α) < post(β).

Since (α,β) ∈<>t ∩ ((�∗
t )� ◦ <>C

t ◦ (�∗
t )�), we get α ≺t β .

(c) There remains only the case when (l(α), l(β)) ∈ ser and there are δ,γ ∈ Σs such that(
poss(δ) < poss(γ ) ∧ (l(δ), l(γ )) /∈ ser

∧ α �∗
s δ �∗

s β ∧ α �∗
s γ �∗

s β

)
.

Since �s =�t , we have α �∗
t δ �∗

t β and α �∗
t γ �∗

t β , which by Definition 25 and transitivity of � implies that
post(α) � post(δ) � post(β) and post(α) � post(γ ) � post(β). Since (l(δ), l(γ )) /∈ ser, we either have (l(δ), l(γ )) ∈ inl or
(l(δ), l(γ )) /∈ ser ∪ inl.
(i) If (l(δ), l(γ )) ∈ inl, then post(δ) �= post(γ ). This implies that (post(δ) < post(γ ) ∧ (l(δ), l(γ )) /∈ ser) or (post(γ ) <

post(δ) ∧ (l(γ ), l(δ)) /∈ ser). Since post(δ) �= post(γ ) and post(α) � post(δ) � post(β) and post(α) � post(γ ) � post(β),
we also have post(α) < post(β). So it follows from Definition 25 that α ≺t β .

(ii) If (l(δ), l(γ )) /∈ inl, then (l(δ), l(γ )) /∈ ser ∪ inl. We want to show that post(δ) < post(γ ). Suppose that poss(δ) �
poss(γ ). Since (l(δ), l(γ )) /∈ ser ∪ inl, by Definitions 23 and 25, we have γ �t δ and γ � δ. But since �s ∈ ext(G{t}),
we have γ ��

s δ, which implies poss(γ ) � poss(δ), a contradiction. Since post(δ) < post(γ ) and post(α) � post(δ) �
post(β) and post(α) � post(γ ) � post(β), we have post(α) < post(β). Hence, we have post(α) < post(β) and(

post(δ) < post(γ ) ∧ (l(δ), l(γ )) /∈ ser ∪ inl

∧ α �∗
t δ �∗

t β ∧ α �∗
t γ �∗

t β

)
.

So it follows that α ≺t β by Definition 25.

Thus, we have shown ≺s ⊆≺t . This and (B.3) imply ≺t =≺s . �
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