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The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of
quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in
the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation
generates a periodic potential in terms of the sigma and pion fields that leads to the formation of
a band structure. The analysis up to three times nuclear matter density shows that soliton matter
undergoes two separate phase transitions: a delocalization of the baryon number density leading to
B = 1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger
densities. This description fits well into the so-called quarkyonic phase where, before deconfinement,
nuclear matter should undergo structural changes involving the restoration of fundamental symmetries
of QCD.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The availability of accurate and precise experimental data from
heavy-ion collisions at relativistic and ultra-relativistic energies
permits to gain more and more insight into the theoretical de-
scription of nuclear matter under extreme conditions. It has been
suggested that during these very high energy collisions, ordinary
hadronic matter undergoes a phase transition, or in general a “sig-
nificant change”, that leads to the formation of the so-called Quark-
Gluon-Plasma [1].

At zero or at least at very low baryon densities, we expect a
smooth transition from a gas of confined hadrons to a plasma of
free gluons and quarks (see the left side of Fig. 1). Experimentally
this area is covered by the LHC collider and it has also been in-
vestigated by RHIC in the past years. From the theoretical point of
view, the description of such a transition at very high energies in-
volves both perturbative and non-perturbative aspects of the exact
underlying theory, Quantum Chromodynamics (QCD). Lattice QCD,
unfortunately only at very low densities, provides precise infor-
mation concerning the deconfinement transition from hadrons to
quarks and gluons [3–5]. Moreover, perturbative techniques [6,7]
are able to provide estimates on the properties of matter formed
above the critical temperature Tc .
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Fig. 1. The phase diagram of strongly interacting matter, taken from [2].

Moving along the μB -axis of the phase diagram, we enter the
area of higher baryon densities where the non-perturbative fea-
tures of QCD are dominant. At the moment little is known from
experiments in heavy-ion collisions and astrophysics, about the
behaviour of QCD at these large densities. The gap between the
underlying theory and the phenomenology in this regime is oc-
cupied by effective theories, whose Lagrangians contain the rel-
evant degrees of freedom at that energy scale implementing the
fundamental symmetries of QCD. Moreover, the intrinsic numeri-
cal difficulties in the evaluation of observables non-perturbatively
leads to the lack of any reliable expansion scheme and one is
forced to resort to model Lagrangians [8–10]. As a result the high
baryon density region allows for various scenarios associated with
the restoration of symmetries such as chiral symmetry or scale in-
variance. For example, it has been suggested, using the limit of
large number of colours Nc [11], that before deconfinement, the
.
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so-called quarkyonic transition will take place, where several sym-
metries are eventually restored leading to a rich set of phases.

One of the most successful theories rooted in large Nc is the
Skyrme model [9,12]. Even though the model does not include
quarks and gluons but only pions, it has been widely used to study
dense matter and in particular the chiral symmetry restoration at
large densities, which should occur not very far from the decon-
finement. The ground state matter built upon this Lagrangian at
low density is described by a crystal of localized single-skyrmions,
as shown by many authors [13–16].

As the density increases the crystal lattice of skyrmions un-
dergoes a phase transition leading to another crystal structure
made of well localized skyrmions but carrying only one half of
the baryon number [17,18]. To be more precise, imagine our sin-
gle skyrmions, each one centered on the vertices of a cubic lattice
(of size L) and the corresponding baryon density profiles peaking
at the same points and going to zero on the links connecting the
skyrmions. As the lattice size decreases (the density, ρB = L−1/3,
increases) the baryon density starts to develop a new local maxi-
mum at the center of the joining links, leading to a delocalization
of the baryon charge and to the so-called half-skyrmion phase. The
Skyrme Lagrangian has been applied to study in detail the chiral
phase transition at finite density [19–23] with the implementation
of the scale invariance in the model by introducing a new scalar
field, the dilaton [24,25]. In these works it has been shown that
in the high density phase, the half-skyrmion phase, described by
cubic-centered half-skyrmion crystal, the expectation value of the
σ field drops to zero signalling the restoration of chiral symmetry.

On the basis of these results obtained in a model with only
meson fields, we decided to understand whether the same delo-
calization mechanism, signalling a phase transition, takes place in
the Chiral Dilaton Model (CDM) where baryons are instead made
of quarks interacting with sigma and pion fields. The model we
consider has been already studied in detail in [26] and the corre-
sponding simplified density Lagrangian [27–31] reads,

L = ψ̄
[
iγ μ∂μ − gπ (σ + iπ · τγ5)

]
ψ

+ 1

2

(
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Here σ is the scalar-isoscalar field, π is the pseudoscalar-
isotriplet meson field, φ is the dilaton field and ψ describes
the isodoublet quark fields. This Lagrangian density, besides be-
ing invariant under chiral symmetry, is also invariant under an-
other fundamental symmetry in QCD, scale invariance, which is
spontaneously broken, and has been implemented above follow-
ing Refs. [32–34].

The dilaton field will be frozen in the present calculation at
its vacuum value φ0. This approximation is based on the results
obtained in [28,31], which showed that at low temperatures the
dilaton remains close to its vacuum value even at large densities.

The constants B and φ0 in the potential are fixed by choosing
a value for the mass of the glueball and for the vacuum energy,
while δ = 4/33 is given by the QCD beta function and it repre-
sents the relative weight of the fermionic and gluonic degrees of
freedom. The vacuum state is chosen, as usually, at σ0 = fπ and
π = 0.

2. The Chiral Dilaton Model at finite density

Recently, it has been shown that the CDM with hadronic de-
grees of freedom provides a good description of nuclear physics at
densities around ρ0 and the gradual restoration of chiral symme-
try at higher densities [31]. In [26] the authors used this model
interpreting the fermions not as nucleons but as quarks and they
showed that, at finite density, the new potential allows to reach
densities higher than the ones obtained in the linear σ -model.

In order to study the CDM at finite density we use the so-called
Wigner–Seitz approximation [35], coming from solid state physics,
which has already been applied to non-topological soliton mod-
els [36–38], chiral soliton models [38–41] and also to the Skyrme
model [42,43]. This approximation consists in replacing the cubic
lattice (as the one used in the Skyrme model) by a spherical sym-
metric one where each baryon is centered on a spherical cell of
radius R . The finite density effects are provided by the requirement
of specific boundary conditions on the fields at the surface of the
sphere. In the literature different sets of boundary conditions are
used depending on which symmetry of the crystal is imposed [38,
41]. In our work we adopted the choice of Ref. [38], which relates
the boundary conditions to the parity operation, r → −r. In this
scheme the odd fields, such as the upper Dirac component and
the pion, are forced to vanish at R , while in the case of the even
fields (upper Dirac component and sigma field) their first deriva-
tive is forced to vanish at the boundary. A detailed description of
the finite density results achieved with the CDM, can be found in
Ref. [26].

The periodic potential generated by the meson field configura-
tions in which the quarks move leads to the formation of a band
structure, with energy bands and gaps, as happens for nearly free
electrons moving in a crystal structure [44]. In solid state physics
the filling of these bands determines the distinct behaviour of in-
sulators, metals and semiconductors. For periodic potentials, the
spinor eigenfunction of the Schrödinger equation must satisfy the
Bloch theorem:

ψk(r) = eik·rΦk(r), (3)

where k is the crystal momentum (which for the ground state is
equal to zero) and Φk(r) is a spinor that has the same periodicity
of the lattice.

The definition of the band width and the filling of the band
are non-trivial [38,45]. We adopt a simple procedure, following
Ref. [36], which obtains the band width by imposing that the lower
Dirac component vanishes at the boundary. In Ref. [38] it is shown
that the eigenvalue corresponding to the top of the band, εtop , ob-
tained within this approximation is an upper limit to the top of
the band and that the true top lies about halfway between this
upper limit and the bottom.

Concerning the filling of the band, when working with chiral
solitons at mean field level, the relevant quantum number is the
grand-spin G and the lower band corresponds to G = 0. The only
degeneracy remaining is color and therefore three quarks per soli-
ton completely fill the band. Comparing with the electron case,
since the band is totally filled, our soliton lattice acts as a color in-
sulator and the quarks are well localized in each cell. In the next
section we describe how this picture changes when we increase
the density.
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Fig. 2. Quark eigenvalue as a function of the cell radius R in the CDM. The shaded
area represents the band estimated following Ref. [36]. The first excited state 1+
and the corresponding lower part of the band are also shown.

3. The Chiral Dilaton Model at high density

The phase diagram for the Skyrme model at moderate temper-
atures and large densities exhibits a two phase scenario described
by a crystal of well localized skyrmions at low density and a crys-
tal of half-skyrmions at high density in which chiral symmetry is
restored. Is there a similar scenario in a model with quarks?

In the skyrmion description, as the system reaches high densi-
ties, a delocalization of baryon number takes place. We can imag-
ine that this mechanism translates into a sort of modification of
the baryon density profile in the CDM. In Fig. 2 we plot the quark
eigenvalue for the CDM as a function of the cell radius R . The
line labeled εtop corresponds to the estimate of the top of the
band proposed by Birse in Ref. [36], while the dashed line rep-
resents the eigenvalue for the first excited state. Proceeding from
lower densities, namely larger values of R , the system behaves as a
lattice of well localized solitons with quarks and meson fields con-
fined in each cell. As the radius of the cell shrinks, the band gets
wider and quarks from neighbouring sites, previously enclosed in
their cell, become free to move along the lattice. Moreover, quarks
also are able to move between the lower band and the excited
band. This happens in a range of cell radii going from approxi-
mately 0.8–1.2 fm, corresponding to a baryon density of roughly
ρB/ρ0 ≈ 0.85–3, where ρ0 is nuclear saturation density.

If we look with more detail, the figure shows two distinct phe-
nomena, both correlated to the presence of a band structure. On
one hand the exchange of quarks between the lower band G = 0+
and the first excited one G = 1+ occurring at densities larger than
3ρ0 can be interpreted as a signal of deconfinement, since the
crystal becomes a color conductor [40]. On the other hand, the
plunging of the excited state into the lower band and the sharing
between neighbouring cells, as will be shown next, is the origin of
a delocalization of the baryon number carried here only by quarks,
leading to an apparent B = 1/2 phase. A word of caution, this
phase should not be confused with the half-skyrmion phase de-
scribing a rigid crystal structure [23], although we suspect that the
delocalization mechanism is the seed for the quarkyonic interpre-
tation of the half-skyrmion phase.

The modification of the baryon density profile is shown in
Fig. 3. We plot, for several values of the cell radius R , the baryon
density profile inside one cell in three cases: a G = 0+ state, a state
at the top of the band and an excited G = 1+ state.

At very low densities (for R = 2 fm, ρB ≈ 0.2ρ0) the solitons
are well localized inside the cell, all the quarks occupy the lower
state, as can be seen in the left panel of Fig. 3. The baryon density
at the top of the band almost coincides with that at the bottom,
and is clearly peaked at the center of the cell vanishing at the
edges. As the radius shrinks, the band gets wider (middle panel
of Fig. 3) as the G = 1+ state plunges into the lower band (see
Fig. 2). Now, the quarks are free to move to the excited state whose
baryon density profile shows a valley at the center of the cell and
Fig. 3. Baryon density profiles inside the Wigner–Seitz cell, for several values of R . The profiles are shown for the ground state 0+ (black line), the top of the lower band
(blue line) and the first excited state G = 1+ (red line). The three panel are chosen in order to show, going from the left to right, the confined B = 1 phase (R � 2 fm),
the delocalized B = 1/2 phase (R � 1.2 fm) and finally the deconfined phase (R � 0.9 fm). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this Letter.)
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Fig. 4. Representation of the delocalization process. In the upper part, the quarks
in the B = 1 soliton lie in the ground state 0+ and the baryon density presents a
maximum at the center of the cell (upper panel in Fig. 3). As the radius shrinks,
some quarks may jump into the first excited level 1+ , leading to a delocalization of
baryon number as shown in the lower part of the figure. At the same time, as the
radius decreases, the band gets wider and quarks are shared between neighbouring
cells. The interplay between these two mechanisms leads to the B = 1/2 phase.

two bumps close to the edges. We can imagine a B = 1 soliton
with one quark in the G = 1+ state and the other two lying in
the lower band. This mechanism provides a delocalization of the
baryon number from the center of the cell to the edges and leads
to a B = 1/2 scenario as shown in Fig. 4. In our calculation, scale
invariance cannot be restored due to the frozen dilaton’s dynamics,
and therefore chiral symmetry restoration cannot take place.

As we reach higher densities, a new scenario takes place, as
shown in the right panel in Fig. 3, the band broadens and the
baryon densities for both the G = 0+ band and the top of the
band do not vanish anymore at the boundaries of the cell, allowing
a continuous flow of quarks between all cells. This scenario rep-
resents the deconfinement of quarks, since they are now free to
migrate everywhere in the lattice. This happens before the break-
down of the solution, which indicates that beyond a critical density
the field equations of the model only admit a trivial solution, i.e.
plane waves propagating in the crystal [45]. As clearly stated in
Ref. [45], the loss of non-trivial solutions at large densities is asso-
ciated with the Wigner–Seitz approximation.

The Wigner–Seitz approximation, although very useful and
widely used, shows also limitations compared to the skyrmion
lattice, since it does not take into account the long-correlation be-
tween neighbouring baryons coming from the presence of pions
and does not allows the inclusion of different isospin configura-
tions.

4. Conclusions and outlook

We used a Lagrangian with quarks degrees of freedom and me-
son fields based on chiral and scale invariance to analyse the possi-
ble presence of a B = 1/2 phase at large baryon densities, similarly
to what happens in skyrmionic matter [17,18,24,25]. In the Skyrme
model, since the baryon number is carried by the skyrmion, the
half-skyrmion phase is strictly connected to the topological modi-
fication of the pion fields inside the lattice, as the system reaches
high densities. In this work, motivated by the so-called quarkyonic
phase [11], we have shown that a similar mechanism occurs in a
model like the CDM, which contains explicit fermionic degrees of
freedom. In our case the baryon number is carried only by quarks
and the B = 1/2 or half-skyrmion phase is achieved by a delocal-
ization of the baryonic charge, i.e. by a modification of the baryon
density profile, as we move to high densities.

To describe the CDM at large densities we have adopted the
Wigner–Seitz approximation, in which solitonic matter is described
by a lattice of spherical cells of radius R and finite density ef-
fects are obtained by imposing boundary conditions on fields at
the boundaries of the cells. The presence of a periodical poten-
tial generated by the sigma and the pion fields leads to a band
structure, in which quarks move. As the cell radius decreases, the
baryon density increases, we have shown that the development of
the quark band gives rise to two separate phenomena. As the sys-
tem approaches densities around ρ0, the band starts to get wider
and the quarks, still in the lowest state, are free to move inside
the cell. As the quarks get squeezed inside the cell, they get ex-
cited and as the first excited state G = 1+ plunges into the lower
band, some quarks will move into it. At this moment the baryon
density profile inside the cell, which was initially peaking at the
center as corresponds to a well localized soliton, begins to change.
The appearance of one excited quark within the cell leads to a
modification of the baryon density distribution, which develops a
minimum at the center of the cell and two bumps on each side.
This mechanism suggests, with the caveat expressed above, a tran-
sition to the B = 1/2 quarkyonic phase at intermediate densities.
This suggested relation is in line with the close connection found
between the discrete half-skyrmion symmetry and the continuous
chiral symmetry [46].

Summarizing, the bosonized half-skyrmion phase, from the
point of view of a fermionic description, is characterized by the
fact that there are two types of quarks according to their spatial
distribution, those which are in the G = 0+ band and those which
are in the G = 1+ band.

At densities larger than ρ0, the band keeps broadening and
before the breakdown of solution takes place, the upper and the
lower bands merge. The quarks are now free to populate also the
excited states and therefore free to move everywhere in the lat-
tice, this being the behavior of the deconfined phase as discussed
in Ref. [40].

We recall that we have kept the dilaton field frozen at its vac-
uum value and have not allowed for quantum fluctuations. It has
been shown, that the full implementation of scale invariance in
chiral models allows for a better description of the interaction at
higher densities and temperatures, and defines an interplay be-
tween scale and chiral symmetry which leads to an orthodox de-
scription of the restoration of chiral symmetry, i.e., the vanishing
of the expectation value of the σ field [24,25,31].

The analysis presented here is built upon a series of approx-
imations, but we are certain that the delocalization mechanism
will survive more sophisticated analyses because it is physically
very intuitive. The main result of our discussion is that inside
the quarkyonic phase scenario, within the structural changes that
nuclear matter could undergo before deconfinement, the half-
skyrmion phase arising from bosonized QCD might take place
along with the restoration of QCD symmetries. The fact that we are
not considering in our approximations the effect of the long range
tale of the interaction might have an influence on the detailed val-
ues of the density at which the phase transition takes place but we
do not expect any qualitative change in the mechanism explored.
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