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People may more easily specify what they would like to compute if not con-
cerned with how to compute efficiently. Given descriptions that may lead to
inefficient computations, can we systematically obtain efficient algorithms and
implementations? Can we further have efficiency guarantees for them?

We give an overview of a general and systematic method for achieving
efficiency improvement and providing efficiency guarantees. The method is
centered around incrementalization: making computation proceed repeatedly
on small incremented inputs and effectively maintaining and using previously
computed results. The method has three steps: iterate, incrementalize, and
implement. Step 1 determines a minimum step to be taken repeatedly. Step 2
makes each step compute incrementally, particularly by using and maintaining
and appropriate additional values. Step 3 designs appropriate data structures
for storing and accessing the values maintained.

The central step of incrementalization [4] is: given a program f and an
increment operation +, derive an incremental program that computes f(x+y)
efficiently by using the result of f(x) [13], the intermediate results of f(x) [11],
and auxiliary information of f(x) that can be inexpensively maintained [12].
This unifies existing approaches to incremental computation and is generally
applicable; it exploits many existing program analysis and transformation
techniques and can be systematically applied.

The method has been used successfully in optimizing expensive recursive
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functions and recursive data structures [11,12,8,7,10], optimizing loops and
aggregate array computations [3,5], transforming recursion into iteration [6],
implementing sets and fixed points by Paige et al. [14,2,1], and currently
implementing rules [9] and optimizing objects. Example applications include
problems in list processing, graph algorithms, VLSI design, image processing,
program analysis, and database queries.

These optimizations yield drastic algorithmic improvements. For example,
incrementalizing recursive equations allows dynamic programming programs
to be automatically derived [8,7]. Not only are the resulting programs drasti-
cally faster, but the time and space complexities of the resulting programs can
also be much more easily calculated. In particular, in the most recent work
on implementing Datalog rules [9], the time and space complexities of the re-
sulting algorithms can be calculated from the rules. A prototype system, CA-
CHET, for optimizations based on incrementalization has been implemented
and gradually extended.
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