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ABSTRACT 

The main result of this paper is the analogue of the classical diagonal reduction of 
matrices over PIDs, for graded principal ideal domains. A method for diagonalizing 
graded matrices over a graded principal ideal domain is obtained. In Section 2 we 
emphasis on some applications. A procedure is given to decide whether or not a matrix 
defined over an ordinary Dedekind domain (i.e. nongraded), with cyclic class group, is 
diagonalizable. In case the answer is positive the diagonal form can be calculated. This 
can be done by taking a suitable graded PID which has the Dedekind domain as its 
part of degree zero. It turns out that, even in the case where diagonalization of a 
matrix over the part of degree zero is not possible, the diagonal representation over 
the graded ring contains useful information. The main reason for this is that the 
graded ring hasn’t essentially more units than its part of degree zero. We illustrate this 
by considering the problem of von Neumann regularity of a matrix over a Gr-PID and 
to matrices over Dedekind domains with cyclic class group. These problems were the 
original motivation for studying diagonahzation over graded rings. 

0. INTRODUCTION 

For details concerning the theory of graded rings we refer to [5]. We recall 
some definitions, facts, and notation for further use in the text. 

A ring R is said to be a graded ring if there is a family of additive 
subgroups (R,, n E Z} of R such that R = @,,,-zR, and R,R,c Ri+j for 
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i, Jo Z. It follows from this that 1 E R, and that R, is a subring of R. The 
elements of the Ri are called homogeneous elements of R. A left R-module M 
over the graded ring R is said to be a graded left R-module if there is a family 

{M,, n E Z} of additive subgroups of M such that M = CD,, ( z M, and 
RiMjc Mi+jfor ah i, jE Z. The d al i e s of a graded ring R which are graded 
R-modules are called homogeneous ideals, i.e., a homogeneous ideal is gener- 
ated by its homogeneous elements. A graded ring in which all homogeneous 
ideals are generated by one homogeneous element is called a graded principal 
ideal domain (Gr-PID). 

Let M, N be graded modules over a graded ring R. A morphism f: M + N 
is said to be homogeneous of degree p if f( Mi ) c Ni + p for any i E h. 
Morphisms of degree p form an additive subgroup of Horn,,, M, N). A graded 
module M is called graded-free if it has a basis consisting of homogeneous 
elements. 

Two matrices A, B over a ring R are called R-equivalent if there exist 
invertible matrices I’, Q over R such that PAQ = B. denoted bv A - B. The 
following elementary matrices are used: 

, 
A 

D,(u) = 

Pii= 

1 
u 

1 

1 

1 
0 0 ... 0 1 
0 1 0 

6 1 0 
1 0 ... 0 0 

I 
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1. DIAGONAL REDUCTION FOR MATRICES OVER GRADED 
PRINCIPAL IDEAL DOMAINS 

Throughout this section R is a graded principal (left and right) ideal 
domain. 

Let M, N be graded-free (left) R-modules, ( ej)j, i,, ,” a homogeneous basis 
for M, and ( $)i _ 1,, ,m a homogeneous basis for N. Consider a homogeneous 
morphism (Y in Hom,(M, N), say of degree d. Then 

(1) 

de,) = alnh + a2nf2 + . . . + amnfm 

with all a, j homogeneous elements of R, since the fi“s are homogeneous and 
the U(ej)‘s are homogeneous. So, for all i, j, we have 

degcw(ej)=degej+d=deg(ujjf;)=deguij+deg(f;). (2) 

If A = (uij) is the matrix of cy with respect to the basis (ej) and (f,), then for 
all (i, j), (k, 1) the following equalities hold: 

degej-dege,=degUij-degUi,, 

deg$-degfk=degUkj-degUij* 

Together they yield 

deguijfdegUk,=degui,+degUki. (4) 

Conversely, let A = (ui .) be an n X m matrix over R with homogeneous 
entries and such that for alf (i, j), (k, I) the relation (4) holds. Grade the free 
R-modules R”, R” by choosing bases ( ej) in R” and (A) in R” such that 

degej-degel=degUij-degUil, 

deg$-degfk=degUkj-degUij 
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holds for all (i, j), (k, Z), which is possible in view of (4) implies that A can be 
considered as the matrix associated to a homogeneous morphism (Y in 
Hom( R”, R”). 

It follows from the above that an m x n matrix satisfies the relation (4) iff 
it is homogeneous in a graded matrix ring MF( R), i.e. homogeneous for some 
suitable gradation on M,(R). We therefore make the following 

DEFINITION 1.1. An m X n matrix A over R is graded iff all entries are 
homogeneous elements of R and for all (i, j), (k, 1) the relations 

hold. 

degaij+degakl=degail+degakj (4 

If R is commutative, then A is graded iff all entries and all minors of A are 

homogeneous in R. 

In order to reduce a graded rn x n matrix A over R to a diagonal form, the 
following operations are used [2]: 

I. interchanging rows and columns. This is done by multiplying on the 
left or right by the elementary matrix Pij 

II. Multiplying a column (row) on the right (left) with a unit element of 

R. This is done by multiplying on the right (left) by the elementary matrix 

D,(u), u a unit of R. 

Noting that a unit of R is homogeneous [9], it is clear that the matrices Pi j and 

Di(u) are graded and that the result obtained by operation I and II is again a 

graded matrix. 

III. Replacing the first element in each of two given columns (rows) by 

their highest common left (right) factor (HCLF) and 0 respectively. In this 

case it is not obvious that this can be done by a graded invertible matrix, so 

LEMMA 1.2. Zf A is a graded m X n matrix over R, then operation III can 

be performed by multiplying A by invertible graded matrices. Moreover the 

result obtained by operation III is again a graded matrix. 

Proof. Suppose we want to replace the entries a,$ a,, of A by their 
HCLF and 0 respectively. Consider the 2 X 2 matrix 

alj a11 

i 1 a2j a21 . 
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Since R is a Gr-PID and the a i j’s are homogeneous, we have 

269 

aljR + allR = gR, 

with g a homogeneous HCLF of aij and au. So arj= gu and all = gb with 
aR + bR = R and aR n bR a principal right ideal. Therefore, there exists an 
invertible matrix C with homogeneous (a, b) as its first row, say 

Let 

Operation III can be performed by multiplying A on the right by 

G= 

1 
d’ () . . . 0 -b’ 

0 1 0 

0 1 0 
_-’ 0 . . . 0 a 

1 

1 

It remains to prove that the matrix G and A’ = AG are graded matrices. 
To show that G is a graded matrix it suffices to prove that C - ’ is a graded 

matrix. Since CC - ’ = I, the following relations hold: 

ad’- bc’= 1, 

ba’ = ab’, (5) 

cd’ = dc’, 

da’- cb’= 1. 
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Since there is a homogeneous solution of the equation ax + by = 1, by 
considering the expansion in homogeneous elements of any solution and 
taking the terms of degree zero on both sides of the equation, we see that the 
entries c’, d’ are homogeneous. Therefore the other elements of C - ’ can also 
be taken homogeneous. We then have, in view of (5) 

dega = -degd’, degd = -dega’, 
(6) 

degb = -degc’, degc= -degb’, 

and 

dega-dega’=degb-degb’=degc-degc’ 

= degd -degd’. 

Replacing deg a, deg b in the first equation of (6’) by - deg d’, - deg c’, and 
using (6), we get 

deg a’ + deg d’ = deg b’ + deg c’, 

which shows that C - ’ is a graded matrix. 
For the elements in the jth column of A’ we find 

aij== aijd’- a,,c’; 

for the elements in the Zth column of A’ we find 

a:, = - aijb’+ aila’. 

Now, 

degaij+degd’=degaij-dega=degaij+degg, 

degarj=degail-dega,,+degg=degai,-degb 

= dega,, +degc’, 

and 

=dega-degb=dega’-degb’. 
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This yields that all aik’s are homogeneous. Furthermore, deg aik - deg ail = 

%a,, -dega,,, i.e., it is constant for all i; which shows that A’ is graded. 
Analogous calculation for operations on the rows can be made. n 

Recall that in an integral domain, an element a is said to be a total divisor 
of b * 0, denoted by a II b, if there exists an invariant element c (i.e. 
CR = Rc), such that a I c I b. 

THEOREM 1.3. Let R be a Gr-PID, and let A be an m X n graded matrix 
over R. Then we can find graded invertible matrices P E GL,(R) and 
Q~GI,(R)suchthatPAQ=diag(e, ,..., e,,O ,..., 0)and 

e, II e,+l, e, * 0. (*> 

Proof Since all homogeneous elements have a finite number of factors 
(R being a Gr-PID), it follows, by induction on the number of factors and on 
max(m, n), from Lemma 1.2, that a graded matrix may be reduced to a 
diagonal form; say diag(a,, . . . ,a,,O,. . . , 0). (Compare with the classical proce- 
dure of reducing matrices over a PID.) This form can be reduced to a 
diagonal form satisfying (*), in the following way. 

For all d E R,, with h an arbitrary element of Z, we have 

Again applying Lemma 1.2 (i.e. operation III), 
’ 
can diminish the length of 

a2 (i.e. its number of factors) unless a, is a le 
f& 

.’ tor of da, for all d E R,, 
i.e., unless a,R 1 R,a2. But then a,R 2 R,a,R. Let c be the homogeneous 
invariant generator of Ra,R, i.e. Rc = CR = Ra,R; then for all n E h, 

Rha2Rn = CR h+dega,+n - degc 

(because a2, c are homogeneous elements). 
Take n = degc - h -dega,; then from Rha2Rn = CR, it follows that 

c E Rha,R c a,R, and thus a, I c. By definition of c, c(a,, yielding a, II a2. 
By repeating the argument, we finally construct P, Q invertible matrices such 
thatPAQ=diag(e, ,..., e,,O ,..., O)ande,IIe,+i,e,.*O. 

We still have to prove that P and Q are graded matrices. Let A, = A and 
A, be the reduction of A after n steps in the procedure, and P,, Q, the 
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invertible matrices such that P,, AQ,, = A,,, i.e. a$;) = C, ,pi:)u,,q$y). We 
’ claim that P,, Q,, have homogeneous elements and that 

deg ~$7) = deg pi:) + deg a,, + deg 4:;) (7) 

for all t, r, from which it follows that P,, and Qn are graded. If n = 1, P, (or 
Qi) is either of the form Pia Dj(u) (u a unit of R), or G(u’, b’, c’, d’) with 
a’, b’, c’, d’ satisfying the relations (5). Straightforward calculations shows 
that all these matrices are graded and that (7) is fulfilled in this case. 

Suppose the claim is true for n = 1. Since A,, is obtained by applying the 
first step (n = 1) to A,, _ i, we obtain 

&g a$;) = deg pik( C pK - “U,,.9$ - “) 9lj = deg Pi,tuE - “9lj 

for all k, 1, t, r. The induction hypothesis yields that 

&g ~$1) = deg pik + deg pc - ‘) + deg a,, + deg 4’ ~ ‘) + deg 9lj 

for all k, 1, t, r. It follows that CkpikpJnel) and C19!;-1’91j have homogeneous 
terms of the same degree, i.e., 

PiJ”) = c p;kpjn - l) and 9;;) = c &’ - 1)91j 
k 1 

are homogeneous, and (7) follows from the above calculations of deg ~$7’. 
Finally we have to verify products of the form 

It is easy to see that in order to obtain a graded matrix P,,, 1 it is necessary 
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and sufficient to take d E Rdegpl;j _ +G:,‘. This is possible because in the proof 
d was chosen in some arbitrarily chosen R,. 

2. APPLICATIONS AND EXAMPLES 

I. The Case R,[X,X-‘,cpJ 
Let R, be a PID. The skew polynomial ring R = R,[X, X - ‘, cp], where X 

is a variable and ‘p is an automorphism of R,, is a graded PID. This follows 
immediately from the observation that every homogeneous ideal of R is 
generated by its part of degree zero [8]. The diagonalization procedure in that 
case may be reduced to the classical procedure over a PID. This follows from 
the following result. 

LEMMA 2.1. Any graded matrix over R = R,[X, X-l, 93, where R, is a 

PID., is equivalent to a matrix over R,. 

Proof. Let A = (ai j) be a graded matrix over R. Multiplying the ith 
column by ui, with deg ui = - deg ali (e.g. ui = x - degoll), and multiplying 
the jth row, j* 1, by a unit vB where deg vi = - deg a jj - deg uj, gives a 
matrix 

A’= 

allul ..* a171u” 

vza21u1 . . . vZa2nun 

%a mlUl ... m mn% vu 

\ 

= : (“ii), 

I 

which is graded and equivalent to A. Since A’ is graded, it follows, consider- 
ing the 1st jth rows and the jth kth columns, that 

deg a 1 j + deg aik + deg uj + deg uk + deg Vj 

= deg a jj + deg ark + deg uj + deg uk + deg vi. 

By construction it follows that the left hand side is equal to deg aik and the 
right hand side is equal to zero, so deg a> = 0 for all j, k. n 
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For completeness sake we give a characterization of Gr-PIDs which are 
skew polynomial rings. 

LEMMA 2.2. A Gr-PID R is of the form R,[X, X-‘, cp], where X is an 

homogeneous element of lowest strict positive degree in R, if and only if there 

is a unit element in every Ri * 0 and R, is a PID. 

Proof. The “only if” part is trivial. 
Let R be a graded PID for which every R, * 0 contains an invertible 

element. We first show that R, is a PID. If I, is any right ideal in R, then Z,R 

is a homogeneous right ideal in R, so it is principal, say Z,R = aR. Take a unit 
element u of degree equal to - deg a. Then uaR = aR = I, R and ua is an 
element of R,; therefore uaR, = I,. The same argument holds for left ideals. 
Now choose a unit element of smallest strict positive degree in R, say u with 
deg u = s. Since R(R,u) = R, u being a unit, it follows that R,, = ROum for 
all m E h. If s t n, say n = s9 + r, 0 * r < s; then R must be zero, for 
otherwise it would contain a unit element v, and this implies that vu _ 4 is a 
unit of degree r < s, which contradicts the assumption on U. It follows that 
every element of R may be written as a polynomial in u and u - ‘. In order to 
have R z R,[u, u-l, cp], we must verify the multiplication rule. Since R,u = 

uR, = Rs, we have for every a E R, that au = uav for some aq E R,. It is 
easy to verify that the map ‘p : R 0 + R 0: a * a9 defines an automorphism of 
R,. A straightforward calculation now shows that R ? R[ X, X -I, cp], where 
the isomorphism is defined by sending u c* X. 

II. Generalized Rees Rings 

There is an important class of Gr-PIDs which are not of the form 
R,[X, X - ‘, cp]. Let R, be a (commutative) Dedekind domain with cyclic 
class group, i.e., every ideal J of R, is equal to I” (a) for some fixed ideal Z of 
R,, a E K. If K is the quotient field of R, then consider the subring 
R=@ nCzZnX” of K[X, X-l], X a variable. 

Note that I” is defined for negative n, since every ideal .Z of a Dedekind 
domain is invertible, its inverse being J _ ’ = {r E K 1r.l c R,}. For more 
details about Dedekind domains and class groups we refer to [3]. The rings 
R=@ nE ,Z”X” were introduced in [S] where they are called generalized 
Rees rings. There it is shown that generalized Rees rings are graded Dedekind 
domains (i.e., the homogeneous ideals form a multiplicative group), and that 
the homogeneous ideals are generated by their part of degree zero. 

In the case where the class group of R is cyclic, as assumed, we claim that 
R=@ .,,Z”X” is a Gr-PID. For, since ZZ’X-’ c R, we have I-‘X-‘I C 
RI, so RX-’ c RI. But (RI)_,= R_,Z = I-‘X-‘I = R,X-l; therefore 
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Rz=R(Rz)_,=RX-‘, i.e., RI is a principal ideal in R. Now if J is any 
homogeneous ideal of R, then J= RJ,; therefore J= RZR,a = RX -‘ROa = 
RX - ‘a, i.e., J is also a principal ideal of R. 

In view of Lemma 2.2 it is clear that R is not of the form R,[X, X - ‘1, 
unless R, is a PID, which is not necessarily the case. 

ZZZ. Diagonulization of Matrices over Dedekind Domains with Cyclic 
Class Group 

If R, is a Dedekind domain, then it is not possible to diagonalize every 
matrix over R. Indeed, let Z be an ideal of R, which is not principal; then 
Z = R,a + R,b [31]. Consider the matrix (a b). It is not possible to diagona- 
lise this matrix, since otherwise Z would be a principal ideal. 

Even if a matrix is diagonalizable, there is no way to obtain a diagonaliza- 
tion, since pairs of elements do not allow greatest common divisors. We now 
show that, using graded techniques, it is possible to obtain a diagonal form for 
matrices over Dedekind domains with cyclic class group. 

Let R = @ n E zZ”X”, Z a generator of the class group of R,. We saw that 
R is a Gr-PID. Consider now any matrix A = ( ai j) over R,. This is obviously a 
graded matrix over R, so it is possible to diagonalize it over R. There are two 
possibilities: 

(1) The matrix A is R-equivalent to a diagonal matrix over R,. 
(2) The matrix A is not R-equivalent to a diagonal matrix over R,. 

We first show that in the first case the matrix is also Ra-equivalent to the 
diagonal matrix. 

PROPOSITION 2.3. Let R, and R be as above. A matrix A over R, is 
R,-equivalent to a diagonal matrix over R iffit is R-equivalent to a diagonal 
matrix over R,. 

Proof. We use the following known result for matrices over Dedekind 
domains: 

(**) Given an m X n matrix A over a Dedekind domain S, let MA denote 
the Ssubmodule of SC”) generated by the rows of A; and let NA = S(“)/MA. 
Then for m x n matrices A and B over S, A is equivalent to B iff NA = Nn as 
Smodules [4], Theorem 1.11. 

Since the “only if” part is trivial we only have to prove that if 
A ; diag(a, ,..., a,,0 ,..., 0) with a, E R,, then A - diag(a, ,..., a,,0 ,..., 0). 

RO 
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As in the nongraded case, it follows that NA = R(“)/MA is graded isomor- 
phic to a direct sum of cyclic matrices, say R/arm z,@ . . . CB R/arm z,, 
where ann zi = Ra i. If the entries of A as well as the ai are of degree zero, it 
follows that (R(“)/M,), = R’,“)/(M,), and (R/arm zi),, = R/(ann xi&; 
therefore R’,“)/(M,), = R,/ann z,@ . . . @R,/ann z,. But since the latter is 
also isomorphic to R$,“)/M dmg(a,,. ..,a,,O,. ..,O) it follows from (**) that 
A - diag(a, ,..., a,,0 ,..., 0). n 

R0 

EXAMPLE. Consider iZ[\T--1. This is a Dedekind domain which is not a 
PID; its class group is B/2Z. The ideal I = (3,1+ 2&?) is not a principal 
ideal of Z[m]; therefore it generates the class group of Z [J--l, i.e. 
(1) = Cl(Z [J-5]). It is now possible to reduce the matrix 

A= 
i 

3 1+2J-5 

l-2&5 3 i 

to a diagonal matrix of R = CB, E ,Z”X”. 

Zst step. Since 3R + (1 + 2\r_5)R = X _ ‘R, X - ’ is the HCF of 3 and 

1 + 2G. We now look for a solution of 3a + (1-t 2&%)p = 1 with a, /3 E 
I-‘. Then cllX_‘,fiX-’ are elements of R and a solution of the equation 
3x2, + (1 + zJ--sxz, = 1, with zi, za E R. Take a = 77/( 1+2&5), /3 = 
10 + 2G; then p is trivially in Z - ‘, since it is in iZ[J-5]. Since 

21 has two decompositions in irreducible factors, namely 3 x 7 
=(1+2-)(l-2&%), it follows that ax3=7~21/(1+2&?)= 

7(1-~&%)EZ[~X] and (~(1+2~)=77~Z[~], so FEZ-‘. In 

i 

3 1+2J--s 

l-2&5 3 
11 

1+;+i 1+2J-5 x 

(10+2-)x-’ -3 x 

i 

X-l 
= - 119-26J-- 

3 

We call the last matrix A,. 

_ 
view of the general method used in Lemma 1.2, we obtain 
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2nd step. We now simplify A,: 
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I -119-26Gx_, 3 X-l l2x 0 I( g-2 1 0 I----- 34=+ 3 1 ii 0 1 

i 

X-l 0 
zz -ll+lo~x_, l2x . 

3 I 

3rd step. We have to calculate the HCF of 

z-lx-‘+R 
-ll+lo~x_,=l 

3 

Since 

and since RX _ ’ is a graded maximal ideal, the HCF is either 1 or X - ‘. A 
straightfonvard calculation shows that X - ’ is not possible, so 

RX-‘+zi -ll+lo~x_, + 
3 

Again we have to solve the equation 

ax-‘+/3 
-ll+lo~x_,_l - 

3 

with OL, p E R, i.e., 

X+Y 
11+1oG =l 

3 
with x,y~Z. 
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The solution (Y = [ - 15 + 5(1+2-)1X, /3 = -3X will do. Then 

1 

-15+5(1+2-) X -3x X-l 0 

-11+104=5 x-’ _x-’ -11+1oJ-5 
12x 

3 11 3 

zzz 
( 

1 -36X2 
0 i -12 ’ 

and this matrix is denoted A,. 
4th step. Since the 2nd entry of the first row of A, is a multiple of the 

1st entry of this row, we finally obtain 

1 
0 -3;;2)( :, 36:2) = (:, -1;) 

Conclusion: The result obtained is a diagonal matrix over Z [&%I, and 
by Proposition 2.3 it follows that 

A - diag(1, - 12). 
v-1 

Indeed, it was found with a computer by K. Coppieters that 

-8-t&5 2+4=5 

-1+m 1 

-8-m 

2-J-s 

REMARKS. 

(1) Note that in this first case the method only allows you to find the 
diagonal form of the matrix over the ground ring (in this case z [&%I) and 
not the matrices P and Q over the ground ring for which PAQ = diag(e,, . . . , 
e,,O ,..., 0). 

(2) If the matrix A over R, is not R-equivalent to a diagonal matrix over 
R,, we do find a reduction of A over R = CD,, E zZnXn, which can be useful in 
some cases, illustrated by the following application. 
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IV. Von Neumann Regular Inverses of Graded Matrices over Gr-PIDs and 
of Matrices over Dedekind Domains with Cyclic Class Group 

An m x n matrix A over a ring R is called von Neumann regular iff there 
exists an n x m matrix X over R such that AXA = A. In the general case it is 
well known that the m X n matrix A is von Neumann regular iff KerA and 
Im A are direct summands of R”, Rm respectively. In case A is R-equivalent 
with a diagonal matrix D, then it is easy to see that A is von Neumann regular 
iff D is von Neumann regular. 

If now A is a graded m X n matrix over a Gr-PID R, then there exist 
invertible graded matrices P and 0 such that PAQ = diag( e,, . . . , e,, 0,. . . ,O). 
Since R has no zero divisors different from zero, A is von Neumann regular iff 
the e,‘s are unit elements of R. Since unit elements are homogeneous, there 
exists a von Neumann regular inverse which is graded. We therefore have: 

A graded m X n matrix over a Gr-PID R has a graded von Neumann 
regular inverse iff A is R-equivalent to the matrix Z,@O, with I, the r X r unit 
matrix. Moreover, all graded von Neumann regular inverses of A are given by 

if P and Q are given by 

1, 0 PAQ= o o 

i 1 
with U,V, W arbitrarily chosen such that 1, u 

i i v w 
is graded. 

As we have seen, matrices over Dedekind domains R, with cyclic class 
group can be considered as graded matrices over generalized Rees rings R. 
Although the ring R is very complicated, it is possible to determine all its 
units. It turns out that the new units can be easily calculated from the units in 
R,. A unit in a graded domain must be a homogeneous element, so if z is a 
unit in R, then z = ax” for some n and a E R,. Then z-l =a’X-” and 
aa’= 1, with a E I” and a’ E I -n (or vice versa). Therefore a’Z” c R and 
I” c Ra, but also Ra c I”, i.e., I” is a principal ideal. So n must be a multiple 
of e, the order of the class group of R,. It follows that U(R) = {uuneXnejn E B, 
u E U(R,) and aR = I”}. So the degree of a unit in R is always a multiple of 
e. [If the class group is of infinite order, then U(R) = U(R,).] 
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EXAMPLES. The matrix 

i l-2J-5 3 0 0 0 0 1+2J-5 3 0 

is equivalent over R and R, to the matrix 

So, since - 12 is not invertible in B[J-~], the matrices are not 
von Neumann regular. 

The matrix 

/ 1+24=5 0 3 1+24x 0 3 0 0 0 

is not von Neumann regular, since the diagonal form 

i 

X-l 

0 (2s-4°fl)x 0” 

0 0 0 1 

has diagonal entries of degree - 1 and + 1, which are not multiples of 2 (the 
order of the class group of R, = H [ J-51 ), so they can not be units in R. 
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