
Theoretical Computer Science 369 (2006) 211–229
www.elsevier.com/locate/tcs

The complexity of membership problems for circuits
over sets of integers�

Stephen Travers
Theoretische Informatik, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received 7 December 2005; received in revised form 28 July 2006; accepted 17 August 2006

Communicated by Osamu Watanabe

Abstract

We investigate the complexity of membership problems for {∪, ∩, −, +, ×}-circuits computing sets of integers. These problems
are a natural modification of the membership problems for circuits computing sets of natural numbers studied by McKenzie and
Wagner [The complexity of membership problems for circuits over sets of natural numbers, Lecture Notes in Computer Science,
Vol. 2607, 2003, pp. 571–582]. We show that there are several membership problems for which the complexity in the case of integers
differs significantly from the case of the natural numbers: testing membership in the subset of integers produced at the output of a
{∪, +, ×}-circuit is NEXPTIME-complete, whereas it is PSPACE-complete for the natural numbers. As another result, evaluating
{−, +}-circuits is shown to be P-complete for the integers and PSPACE-complete for the natural numbers. The latter result extends
McKenzie and Wagner’s work in nontrivial ways. Furthermore, evaluating {×}-circuits is shown to be NL ∧ �L-complete, and
several other cases are resolved.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Computational complexity; Completeness; Combinational circuits; Arithmetic circuits

1. Introduction

In complexity theory, combinational circuits play an important role. There is a variety of different kinds of circuits,
and those over the boolean semiring certainly belong to the best investigated. Circuits over more general algebraic
structures can be considered as well. A circuit over a universe U with operations o1, . . . , or defined on the elements of
U describes a way to compute an element a ∈ U .

In this paper, we study circuits over the power set of the integers. We allow two different kinds of gates: gates
computing the set operations ∪, ∩, and − (complementation with respect to Z) as well as arithmetical gates + and ×,
which compute addition and multiplication in a set-theoretic sense. The main question is the following:

Given an integer b and a {∪, ∩, −, +, ×}-circuit C with integer inputs, does b belong to the set computed by C?
This is the membership problem MCZ(∪, ∩, −, +, ×) and MFZ(∪, ∩, −, +, ×) is the same problem restricted to

formulas. The notion for other restricted versions of these problems, for example MCZ(−, +), is self-explanatory. The
complexity of such membership problems varies considerably depending on the kinds of gates allowed in the circuit.

� A preliminary version of this paper was presented at the 29th International Symposium on Mathematical Foundations of Computer Science held
in Prague, Czech Republic, in August 2004.

E-mail address: travers@informatik.uni-wuerzburg.de.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.08.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82390744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:travers@informatik.uni-wuerzburg.de


212 S. Travers / Theoretical Computer Science 369 (2006) 211–229

In 2003, McKenzie and Wagner investigated the complexity of analogously defined membership problems for circuits
over sets of natural numbers, and presented their results at STACS 2003 [7]. Their research was partly motivated by
earlier work of Stockmeyer and Meyer, who introduced Integer Expressions as early as in 1973. In our terminology,
Integer Expressions are formulas over sets of natural numbers that use the operations ∪, +, and ×.

We denote membership problems for circuits and formulas over sets of natural numbers with MCN(. . .) and
MFN(. . .).

Changing the universe to the power set of the integers instead of the power set of the natural numbers, we investigate
the complexity of these modified membership problems. As will be seen, for many of these new problems the complexity
coincides with the corresponding problem in the N-case. Interestingly, there also are several membership problems for
which the complexity in the two cases differs significantly. We highlight here some of the differences.

Membership problem N-case (X = N) Z-case (X = Z)

MCX(∪, +, ×) PSPACE-complete NEXPTIME-complete
MCX(×) NL-complete NL∧�L-complete
MCX(−, +) PSPACE-complete P-complete
MFX(−, +) PSPACE-complete L-complete

It turns out that it is not always possible to reduce the N-case to the Z-case, e.g. it holds that MFN(−, +)

does not reduce to MFZ(−, +) and MCN(−, +) reduces to MCZ(−, +) if and only if P = PSPACE.
This paper is organized as follows: Section 2 gives the basic definitions and preliminaries. Section 3 is a digression to

membership problems for circuits over sets of natural numbers. Since the problems MFN(−, +) and MCN(−, +) were
omitted in [7], we provide a proof of their PSPACE-completeness. As an intermediate step, we introduce the problem
Quantified Sum of Subset and prove that it is PSPACE-complete. In Section 4, we analyze differences in complexity
between membership problems in the N-case and the Z-case. Section 5 then presents several membership problems
with the same complexity in both N- and Z-case. Finally, we conclude with several open problems.

A summary of our results can be found in Table 1 at the end of the paper.

2. Preliminaries

We fix the alphabet � = {0, 1}. �∗ is the set of words, and |w| is the length of a word w ∈ �∗. We denote with L,
NL, P, NP, coNP, PSPACE and NEXPTIME the standard complexity classes whose definitions can be found in any
textbook on computational complexity (cf. [8], for example).

Furthermore, we need the function class #L and the complexity classes �L and C=L. For a nondeterministic
logarithmic space machine M, define accM(x) as the number of accepting paths of M on input x. The class #L consists
of precisely these functions. A set A is in �L if there exists f ∈ #L such that x ∈ A ⇔ f (x) ≡ 1 (mod 2) for every
x ∈ �∗. A set A is in C=L if there exist f, g ∈ #L such that x ∈ A ⇔ f (x) = g(x) for every x ∈ �∗. See [1] for a
survey on these counting classes. For complexity classes K and M we define K ∧ M =def {A ∩ B : A ∈ K, B ∈ M}.
For sets A and B we say that A is many-one logspace reducible to B and write A � log

m B if there exists a logarithmic
space computable function f such that x ∈ A ⇔ f (x) ∈ B for every x ∈ �∗.

N denotes the set of the natural numbers including 0, Z denotes the set of the integers. We denote the absolute
value of an integer z with abs(z). For any integer b, let sgn(b) =def 0, if b < 0 and sgn(b) =def 1, otherwise. Like
natural numbers, integers are represented in binary but have an additional sign; 0 does not have a sign. Moreover, we
will sometimes use a more general k-ary representation (k�2) for integers: for z > 0 there exist numbers m�0 and
a0, a1, . . . , am ∈ {0, . . . , k − 1} such that z = ∑m

i=0ai · ki . The k-ary representation of z is amam−1 . . . a1a0. This
representation is—except for leading zeros—unique. Conversely, for b0, . . . , bm ∈ {0, . . . , k − 1} (bmbm−1 . . . b0)k
denotes that integer, whose k-ary representation is bmbm−1 . . . b0. For z < 0, the k-ary representation is defined
analogously with an additional sign.

We extend the arithmetical operations + and · to subsets of Z: for M, N ⊆ Z we define the sum of M and N as
M + N =def {m + n : m ∈ Mand n ∈ N}. For M, N ⊆ Z, we define the product of M and N as M × N =def {m · n :
m ∈ Mand n ∈ N}.

If the complement of a set M is finite, we call M co-finite.



S. Travers / Theoretical Computer Science 369 (2006) 211–229 213

A circuit C = (G, E, gC) is a finite, directed, acyclic graph (G, E), where G is the set of nodes and E is the set of
edges. The graph can contain multi-edges and does not necessarily have to be connected. As we consider circuits, we
will call nodes gates from now on. C contains a specified gate gC , the output gate. Gates with indegree 0 are called
the input gates. Let O ⊆ {∪, ∩, −, +, ×}. An O-circuit C = (G, E, gC, �) is a circuit (C, E, gC), whose gates have
indegree 0, 1, or 2 and are labelled by the function � : G → O ∪ Z in the following way: every input gate is labelled
with an integer, every gate with indegree 1 is labelled with −, and every gate with indegree 2 with ∪, ∩, +, or ×.
For each of its gates g, C computes a set I (G) ⊆ Z, inductively defined as follows:
• If g is an input gate with �(g) = a then I (g) =def {a}.
• If g is a +-gate with predecessors g1, g2 then I (g) =def {a + b : a ∈ I (g1) ∧ b ∈ I (g2)}.
• If g is a ×-gate with predecessors g1, g2 then I (g) =def {a · b : a ∈ I (g1) ∧ b ∈ I (g2)}.
• If g is a ∪-gate with predecessors g1, g2 then I (g) =def I (g1) ∪ I (g2).
• If g is a ∩-gate with predecessors g1, g2 then I (g) =def I (g1) ∩ I (g2).
• If g is a −-gate with predecessor g1 then I (g) =def Z \ I (g1).
The set computed by C is I (C) =def I (gC). If a gate g ∈ G computes a singleton {a}, we will sometimes write
I (g) = a for simplicity. An O-formula is an O-circuit where all gates have maximal outdegree 1.

For O ⊆ {∪, ∩, −, +, ×} we define membership problems for O-circuits and O-formulae over sets of integers by

MCZ(O) =def {(C, b) : C is an O-circuit, b ∈ Z and b ∈ I (C)}

and

MFZ(O) =def {(C, b) : C is an O-formula, b ∈ Z and b ∈ I (C)}

For simplicity, we write MCZ(o1, . . . , or ) instead of MCZ({o1, . . . , or}) and MFZ(o1, . . . , or ) instead of
MFZ({o1, . . . , or}).

We denote membership problems for circuits over sets of natural numbers (see [7] for details) by MCN(O) and
MFN(O), respectively. These problems are defined analogously. The only differences are that we solely allow input
gates with nonnegative labels and that −-gates compute the complement with respect to N. To avoid confusion, we
denote the set computed by a circuit C over sets of natural numbers by IN(C). We assume any appropriate circuit
and formula encoding, where gates are sorted topologically and neighborhoods are readily available. All completeness
results are in terms of many-one logspace reducibility.

Example 1. By defining the circuits Z =def {0} ∪ {0} and ODD =def ({2} × Z) + {1}, we obtain I (Z) = Z and
I (ODD) = {z ∈ Z : z odd}.

Example 2. Consider the circuit Z-POWER2 =def (ODD ∩ {−1} ∪ {1}) × Z. It then holds that I (Z-POWER2) =
{2k : k�0} ∪ {−2k : k�0}.

Example 3. The circuit Z-PRIMES =def C ∩ C × C, where C is a subcircuit defined as {−1} ∪ {0} ∪ {1}, computes
the set {p : p is prime} ∪ {−p : p is prime}.

3. Digression: MFN(−, +) is PSPACE-complete

Before we start our analysis of membership problems over sets of integers, we draw our attention to circuits over sets
of natural numbers. In this section we extend work by McKenzie and Wagner [7] by proving the problem MCN(−, +)

to be PSPACE-complete.
As will be seen later, this result is of importance to us since the case {−, +} is one where the complexity of the

N- and Z-membership problems diverges the most.



214 S. Travers / Theoretical Computer Science 369 (2006) 211–229

As an auxiliary tool, we define a new PSPACE-complete problem by introducing alternation into the well-known
NP-complete sum of subset problem: The problem quantified sum of subset is defined as

QSOS =def

⎧⎪⎨
⎪⎩(a1, . . . , an, b): a1, . . . , an, b ∈ N, n ≡ 1 (mod 2) and

∃c1∈{0,1}∀c2∈{0,1} · · · ∃cn∈{0,1}︸ ︷︷ ︸
strict alternation

(
n∑

i=1
ciai = b

)⎫⎪⎬
⎪⎭ .

It is known that the problem of evaluating quantified boolean formulae (QBF) is PSPACE-complete [11]. QBF is
defined as

QBF =def

⎧⎪⎨
⎪⎩H : H is a boolean formula in 3-CNF with variables x1, . . . , xn,

n ≡ 1 (mod 2) and ∃x1∀x2 · · · ∃xn︸ ︷︷ ︸
strict alternation

(H(x1, . . . , xn) = 1)

⎫⎪⎬
⎪⎭ .

In the following, we will use the notion of a vector. A vector v is a natural number and thus, for every k�2, has a k-ary
representation a1a2 . . . an. Recall that we denote this by v = (a1a2 . . . an)k , where 0�a1, . . . , an < k. When we talk
about vectors, we stress that the focus lies on the representation of the number and not on its value.

Lemma 4. It holds that QBF � log
m QSOS.

Proof. We define a logspace computable function f such that

H ∈ QBF ⇔ f (H) ∈ QSOS.

Let H = ∧m
i=1(zi1∨zi2∨zi3) with zij ∈ {x1, . . . , xn, ¬x1, . . . ,¬xn} be a boolean formula.

The function f is defined as follows:

f (H) =def
(
v1, . . . , vn, 0, v′

1, 0, v′
2, 0, . . . , v′

n, 0, c1, 0, . . . , cm, 0, d1, 0, . . . , dm, b
)
,

where b, c1, . . . , cm, d1, . . . , dm, v1, . . . , vn, v
′
1, . . . , v

′
n are vectors such that

vi =def

⎛
⎝k1k2 . . . km︸ ︷︷ ︸

m

(i)

0 . . . 010 . . . 0︸ ︷︷ ︸
n

⎞
⎠

10

, where kj is the number of

occurrences of literal xi in the j th clause of H,

v′
i =def

⎛
⎝k′

1k
′
2 . . . k′

m︸ ︷︷ ︸
m

(i)

0 . . . 010 . . . 0︸ ︷︷ ︸
n

⎞
⎠

10

, where k′
j is the number of

occurrences of literal ¬xi in the j th clause of H,

ci =def

⎛
⎝ (i)

0 . . . 010 . . . 0︸ ︷︷ ︸
m

0 . . . 00 . . . 0︸ ︷︷ ︸
n

⎞
⎠

10

(balancing vectors),

di =def

⎛
⎝ (i)

0 . . . 020 . . . 0︸ ︷︷ ︸
m

0 . . . 00 . . . 0︸ ︷︷ ︸
n

⎞
⎠

10

(balancing vectors),



S. Travers / Theoretical Computer Science 369 (2006) 211–229 215

b =def

⎛
⎝4 . . . 444 . . . 4︸ ︷︷ ︸

m

1 . . . 11 . . . 1︸ ︷︷ ︸
n

⎞
⎠

10

(target vector).

By defining f in this way, we achieve that all vectors are appropriately quantified in the QSOS-instance: v1, . . . , vn

are quantified in strict alternation and all other vectors are quantified existentially.
In the following, let Ia1,...,an be the interpretation which, for 1� i�n, assigns truth-value ai ∈ {0, 1} to variable xi

in H.
The following equivalences now hold:

H ∈ QBF ⇔ ∃ a1∀a2 · · · ∃an (Ia1,...,an satisfies H)

⇔ ∃ a1∈{0,1}∀a2∈{0,1} · · · ∃an∈{0,1}(Ia1,...,an satisfies each clause of H)

⇔ ∃ e1∈{0,1}∀e2∈{0,1} · · · ∃en∈{0,1}∃k1,...,km∈{1,2,3}⎛
⎝((

n∑
i=1

eivi + (1−ei)v
′
i

))
= k1k2 . . . km 1 . . . 1︸ ︷︷ ︸

n

⎞
⎠

⇔ ∃ e1∈{0,1}∀e2∈{0,1} · · · ∃en∈{0,1}∃l1∈{0,1}∃l2∈{0,1} · · · ∃ln∈{0,1}

∃ k1,...,km∈{1,2,3}

⎛
⎝((

n∑
i=1

eivi

)
+

(
n∑

i=1
liv

′
i

))
= k1 . . . km 1 . . . 1︸ ︷︷ ︸

n

⎞
⎠

⇔ ∃ e1∈{0,1}∀e2∈{0,1} · · · ∃en∈{0,1}∃l1,...,ln∈{0,1}∃r1,...,rm,r ′
1,...,r

′
m∈{0,1}⎛

⎝((
n∑

i=1
eivi + liv

′
i

)
+

(
m∑

i=1
rici + r ′

idi

))
= 44 . . . 4︸ ︷︷ ︸

m

1 . . . 1︸ ︷︷ ︸
n

⎞
⎠

⇔ f (H) ∈ QSOS.

Since f is computable in logarithmic space, our reduction is complete. �

Lemma 5. It holds that QSOS� log
m MFN(−, +).

Proof. Let (a1, . . . , an, b) ∈ Nn+1 for any odd n. It is now easy to see that (a1, . . . , an, b) ∈ QSOS ⇔ (a1, . . . , an, 0,

(
∑n

i=1 ai) + 1, b + (
∑n

i=1 ai) + 1) ∈ QSOS. Hence, without loss of generality, we may assume that b�
∑n−1

i=1 ai .
For i = 1, . . . , n we construct formulas Ai :

Ai =def

{
1 + (ai−1) if ai �1,

0 otherwise.

Note that IN(Ai) = {0, ai}. We now construct a {−, +}-formula F as follows:

Fn =def An,

Fk−1 =def Ak−1 + Fk for 2�k�n,

and

F =def F1.

Claim. We have b ∈ IN(F ) ⇔ ∃a′
1∈IN(A1)

∀a′
2∈IN(A2)

· · · ∃a′
n∈IN(An)

((∑n
i=1 a′

i

) = b
)
.

Proof of the Claim. We prove the claim for all n = 2k + 1, k ∈ N.
(IB) (k = 0) ⇒ n = 1: Since F = A1, we have b ∈ I (F ) ⇔ ∃a′

1∈IN(A1)
(b = a′

1).



216 S. Travers / Theoretical Computer Science 369 (2006) 211–229

(IS) (k → k + 1) ⇒ (n → n + 2): As argued above, we can assume that b�
∑n+1

i=1 ai . Consequently,

F = A1 + A2 + F ′, where F ′ is a {−, +}-formula for which the induction hypothesis is true. We obtain

b ∈ IN(F ) ⇔ ∃ a′
1∈IN(A1)

(
b − a′

1 ∈ IN(A2 + F ′)
)

⇔ ∃ a′
1∈IN(A1)

(
b − a′

1 /∈ IN(A2 + F ′)
)

⇔ ∃ a′
1∈IN(A1)

∀a′
2∈IN(A2)

(b − a′
1 − a′

2 /∈ IN(F ′))
⇔ ∃ a′

1∈IN(A1)
∀a′

2∈IN(A2)
(b − a′

1 − a′
2 ∈ IN(F ′))

(IH)⇔ ∃ a′
1∈IN(A1)

∀a′
2∈IN(A2)

∃ a′
3∈IN(A3)

∀a′
4∈IN(A4)

· · · ∃a′
n+2∈IN(An+2)

((
n+2∑
i=3

a′
i = (b − a′

1 − a′
2

))

⇔ ∃ a′
1∈IN(A1)

∀a′
2∈IN(A2)

· · · ∃a′
n+2∈IN(An+2)

((
n+2∑
i=1

a′
i

)
= b

)
,

which proves the claim. So we conclude that

b ∈ IN(F ) ⇔ ∃ a′
1∈IN(A1)

∀a′
2∈IN(A2)

· · · ∃a′
n∈IN(An)

((
n∑

i=1
a′
i

)
= b

)

⇔ ∃ c1∈{0,1}∀c2∈{0,1} · · · ∃cn∈{0,1}
((

n∑
i=1

ciai

)
= b

)
⇔ (a1, . . . , an, b) ∈ QSOS.

Obviously, the formula F can be constructed in logarithmic space. Hence, MFN(−, +) is PSPACE-hard. �

Theorem 6. (1) MFN(−, +) is PSPACE-complete.
(2) MCN(−, +) is PSPACE-complete.

Proof. This is a direct consequence of Lemma 5 and MCN(∪, ∩, −, +) ∈ PSPACE [7]. �

4. Differences from the case of the natural numbers

We start with some simple observations.

Lemma 7. (1) Let O ⊆ {∪, ∩, +, ×}. Then it holds that MCN(O) � log
m MCZ(O) and MFN(O) � log

m MFZ(O).
(2) For O ⊆ {∪, ∩, −}, MCN(O) ≡log

m MCZ(O) and MFN(O) ≡log
m MFZ(O).

Proof. (1) Let C be an O-circuit over the natural numbers. In the absence of −-gates, all gates of C compute finite sets
of nonnegative integers, thus we have (C, b) ∈ MCN(O) ⇔ (C, b) ∈ MCZ(O) for b ∈ N. obviously, the same holds
for formulas.

(2) Let C be an O-circuit with integer inputs a1, . . . , ak , and b ∈ Z. Let � be any logspace-computable bijective map-
ping from Z to N. We now construct a circuit C′ by replacing C’s inputs with �(a1), . . . , �(ak).
It now holds that (C, b) ∈ MCZ(O) ⇔ (C′, �(b)) ∈ MCN(O), because C and C′ do not contain any arithmeti-
cal gates. Since this construction preserves the circuit structure, the same holds for formulas. The other reduction is
obvious. �

Hence, we can omit MCZ(O) for O ⊆ {∪, ∩, −} from our study, as in these cases the complexity coincides with the
complexity of MCN(O), the corresponding problem over the natural numbers. Furthermore, we can take lower bounds
for membership problems for circuits without complementation from [7].

The well-known graph accessibility problem (GAP) for directed graphs, defined as {(G, s, t): G is a directed graph
with nodes s and t and there is a path from s to t} is NL-complete [10].



S. Travers / Theoretical Computer Science 369 (2006) 211–229 217

Theorem 8. The problem MCZ(×) is NL ∧ �L-complete.

Proof. Inclusion: Observe that MCZ(×) = A ∩ B, where A =def {(C, b): C is a {×}-circuit, b ∈ Z and abs(b) =
abs(I (C))} and B =def {(C, b) : C is a {×}-circuit, b ∈ Z and sgn(b) = sgn(I (C))}. Since A easily reduces to MCN(×)

which is in NL [7], A is in NL. It remains to show that B is in �L. We construct a nondeterministic logarithmic space
machine M working on input (C, b) as follows:

For every path in C from the output gate to an input gate, M produces a computation path. M accepts precisely
on those paths, where the input gate of the corresponding path in C is labelled with a negative integer. If b�0, M
produces an additional accepting path. It now holds that accM((C, b)) ≡ 1(mod 2) ⇔ (C, b) ∈ B. Hence, it follows
that B ∈ �L and we conclude MCZ(×) ∈ NL ∧ �L.

Hardness: Let A ∈ NL ∧ �L, thus there exist sets B ∈ NL and C ∈ �L such that A = B ∩ C. Let x ∈ �∗. GAP
is NL-complete and so is GAP due to [6,12]. Consequently, we can reduce in logarithmic space B to GAP via f. Let
(G, s, t) = f (x). It is easy to construct in logarithmic space a {×}-circuit C1 such that (G, s, t) ∈ GAP ⇒ 1 ∈ I (C1)

and (G, s, t) /∈ GAP ⇒ 0 ∈ I (C1) (see [7, Theorem 8.5]). We obtain x ∈ B ⇔ (G, s, t) ∈ GAP ⇔ (C1, 1) ∈
MCZ(×).

Due to C ∈ �L, there exists a nondeterministic logspace machine M such that x ∈ C ⇔ accM(x) ≡ 1 (mod 2).
Let Cx be the transition graph of M on input x. We transform Cx into a {×}-circuit C2, where accepting and rejecting
nodes in Cx become inputs with labels −1 and 1, respectively, and the node representing the starting configuration
of M becomes the output gate of C2. Observe that Cx and C2 can be constructed in logarithmic space. We obtain
x ∈ C ⇒ I (C2) = −1 and x /∈ C ⇒ I (C2) = 1.

So we can construct in logarithmic space the circuit C3 =def C1 × C2. It now holds that x ∈ A ⇔ (x ∈ B ∧ x ∈
C) ⇔ (I (C1) = 1 ∧ I (C2) = −1) ⇔ (C3, −1) ∈ MCZ(×), which yields the desired reduction. �

Remark 9. Under the assumption �L � NL, MCZ(×) is thus harder than MCN(×). That is in a way surpris-
ing, as at first glance it does not seem more complex to multiply integers than natural numbers. We can in fact
spot the difficulty evaluating {×}-circuits over the integers: if we forbid −1 as a label for the input gates of a
{×}-circuit, the membership problem for these altered circuits is again NL-complete. This is due to the fact that
−1 is the only negative number that can be multiplied by itself many times without its absolute value becoming
large.

Similarly, we obtain:

Theorem 10. (1) The problem MCZ(∩, ×) is hard for C=L ∧ �L.
(2) The problem MCZ(∩, ×) is in P.

In contrast to the N-case, we do not have a completeness result for MCZ(+, ×). The following lemma states that
MCZ(+, ×) is more related to MCN(∩, +, ×), for which no completeness result is known either [7].

Lemma 11. It holds that MCN(∩, +, ×)� log
m MCZ(+, ×).

Proof. In [7], McKenzie and Wagner showed that the equivalence problem EQN(+, ×), defined as {(C1, C2): C1
and C2 are {+, ×}-circuits over sets of natural numbers and IN(C1) = IN(C2)} is many-one logspace equivalent to
MCN(∩, +, ×). Let C1, C2 be {+, ×}-circuits over sets of natural numbers. We construct the {+, ×}-circuit C =def
C1 + (C2 × (−1)) and obtain (C1, C2) ∈ EQN(+, ×) ⇔ I (C1) = I (C2) ⇔ I (C1) − I (C2) = 0 ⇔ I (C) = 0 ⇔
(C, 0) ∈ MCZ(+, ×). �

4.1. NEXPTIME-hard membership problems

It is known that MCN(∪, +, ×) is PSPACE-complete [13,14]. In this section we will show that the corresponding
problem over the integers is complete for NEXPTIME. Intuitively, the difficulty when evaluating {∪, +, ×}-circuits
with integer labels is, that—unlike in the N-case—we have to deal with very large (up to exponential in length)
numbers: our target number has polynomial length, but adding a very small and a very large integer can result in a



218 S. Travers / Theoretical Computer Science 369 (2006) 211–229

number with a small absolute value. In the N-case, numbers can only become smaller when multiplied by 0. It is not
difficult to see that due to this fact it suffices to compute numbers in the length of the target number when evaluating
such a circuit.

The more difficult part of proving that MCZ(∪, +, ×) is NEXPTIME-complete is the hardness-part. This is done
by a generic reduction in Lemma 15. Definition 13 as well as Lemma 14 provide some technical details for the proof
of the former.

Remark 12. According to the nature of generic reductions, the proof of Lemma 15 is somewhat lengthy. So we give
an outline of the proof first:

To prove that MCZ(∪, +, ×) is NEXPTIME-hard, we consider a nondeterministic exponential time Turing machine
M deciding a language L. For an input x we show how to construct in logarithmic space a {∪, +, ×}-circuit C such
that x ∈ L ⇔ (C, 0) ∈ MCZ(∪, +, ×). Similar to Cook’s famous proof of the NP-completeness of SAT, there exists
a (now exponentially long) boolean formula Fx such that Fx is satisfiable if and only if there exists an accepting
computation path of M on input x. Due to its exponential length, we can neither construct Fx in logarithmic space nor
test its satisfiability directly.
Nevertheless, the key is to realize that we can assume Fx to be a formula that has a highly regular structure. In fact,
one part of our proof can be seen as a reduction from (a restricted) Succinct-SAT to Succinct-SOS (see [2] for a survey
on succinct problems).

Furthermore, we can even assume that each variable in Fx only occurs in a constant number of clauses only depending
on the machine M. Moreover, these occurrences follow a strict pattern. Quite similar to the proof of Lemma 4, we
construct for each boolean variable �i in Fx vectors vi, v

′
i . These vectors describe occurrences of positive and negative

literals of �i in clauses of Fx such that there is a subset of vectors whose sum has a certain value b if and only if Fx is
satisfiable. Recall that Fx contains an exponential number of variables and clauses, thus we have to create exponentially
many different vectors and each vector has exponential length. Due to the high regularity of Fx , the vectors we have
to construct have a very regular structure as well. For this reason, we can construct a polynomial size circuit which
creates the vectors corresponding to the variables in Fx . Roughly speaking, we then construct a circuit which computes
all sums of valid subsets and adds −b to that set. Then we ask whether 0 is an element of the resulting set.

Care is needed to ensure that only correct subsets—those corresponding to a satisfying assignment of truth-values to
the variables in Fx—have the target subset sum b. In order to obtain the same subset sum for all satisfying assignments,
we need to construct circuits computing appropriate balancing vectors.

For the proofs of Lemmas 14 and 15, we need sets of special vectors. Recall that when we say a digit at position j
of vector v has value i, we mean that the jth digit (starting from the left) of the k-ary representation of vector v has
value i.

Definition 13. For k > 2 and n�1 we define sets Ak,n of vectors of length n or less, where at precisely one position
there is a digit from {1, . . . , k − 1}, and all other positions are 0:

Ak,n =def {a · kl : 0� l < n, 1�a < k}.

Hence, the k-ary representation of a vector v = a · kl ∈ Ak,n is 00 . . . 0a

l︷ ︸︸ ︷
00 . . . 0︸ ︷︷ ︸

n

.

Lemma 14. (1) For k�2 and n�1, let s = (a1a2 . . . an)k with 0�a1, . . ., . . . , an < k be the sum of (n − 1)

(not necessarily distinct) vectors from Ak,n. Then there exists i�n such that ai = 0.
(2) For k�2 and n�1, let s = (a1a2 . . . an)k be the sum of the (not necessarily distinct) vectors v1, . . . , vn ∈ Ak,n

such that 1�a1, . . . , an < k. Then there are no three vectors among the addends which have a value unequal to 0 at
the same position.

Proof. Let k�2 and n�0. For any natural number s, we define wk,n(s) to be the number of nonzero digits among the
n lowest order digits in the k-ary expansion of s.



S. Travers / Theoretical Computer Science 369 (2006) 211–229 219

(1) Clearly, for any s�0, l�0 and 0�a < k, it holds that

wk,n(s + (a · kl))�wk,n(s) + 1.

It follows by induction that a sum s of m�0 numbers from Ak,n satisfies wk,n(s)�m. This implies the first statement
by setting m = n − 1.

(2) To see that the second statement holds, let s be a sum of n > 0 numbers from Ak,n such that wk,n(s) =
n. Note that for any l�0 and 1�a, b, c < k, the number (a + b + c) · kl can be expressed as d · kl+1 + e ·
kl with 0�d, e < k. Hence, if three of the numbers summing to s have the form a · kl for the same l, then s
can be expressed as a sum of n − 1 numbers from Ak,n. Hence, wn,k(s)�n − 1 by our previous argument, which
contradicts wk,n(s) = n. �

Lemma 15. The problem MCZ(∪, +, ×) is NEXPTIME-hard.

Proof. Let L ∈ NEXPTIME and M be a nondeterministic Turing machine which decides L and has time bound 2p(|x|)
for a suitable polynomial p. For an input x ∈ �∗ we show how to construct in logarithmic space a {∪, +, ×}-circuit
CSOS such that

x ∈ L ⇔ (CSOS, 0) ∈ MCZ(∪, +, ×).

Without loss of generality, we assume that M is normalized in the following way:
• M starts its work on input x in the initial state s0. The machine head is on cell 0 of the working tape; this cell contains

the first symbol of the input x.
• On input x, M performs precisely 2p(|x|) steps. M never moves the machine head on a cell left from cell 0.
• In each step, M branches and continues its work on precisely two computation paths.
• If M accepts x, it is in the sole accepting state s1 and the computation halts with the machine head on cell 0. The rest

of the tape is empty.
Let x = x1 . . . xn ∈ �∗ and N =def p(|x|). A configuration of M on input x at a certain time consists of the contents of
the working tape and the number of the state the machine is currently in. We use this number to mark the position of
the machine head on the working tape. Hence, we can encode a configuration of M on input x in a string with
length 2N + 1.

For instance, the string c0 =def
s0
x1 x2 . . . xn�2N−n� represents the initial configuration of M on input x = x1, . . . , xn.

Each computation path z of M on input x can be thought of as a (2N + 1) · (2N + 1) computation table T (M, x, z).
In this table, the (i, j)th entry represents the jth symbol of the configuration M is in after i steps (on path p). We

call a computation table accepting if the last row of the computation table is the accepting configuration
s1
1 �2N−1�.

Hence, an accepting computation table of M on input x corresponds to an accepting computation path of M on input x.
Fig. 1 depicts a computation table.

We will see that we can use the concept of a computation table to describe the structure of a highly regular formula
Fx in conjunctive normal form (CNF) for which the following holds:

x ∈ L ⇔ on input x, M develops an accepting path z

⇔ there is an accepting computation table T (M, x, z)

⇔ Fx is satisfiable.

For i = 0, . . . , 2N, j = 0, . . . , 2N , boolean variables xi,j,1 . . . xi,j,r encode the jth symbol of the ith configuration. Fx

is a formula in these variables. We will use xi,j as an abbreviation for a vector of variables, i.e. xi,j stands for variables
xi,j,1 . . . xi,j,r .



220 S. Travers / Theoretical Computer Science 369 (2006) 211–229

2N

x3 xn0

i

2N

0 j

?

x4 x5x2

Fig. 1. Computation table T (M, x, z).

On the structure of Fx :
For i = 1, . . . , 2N − 1, j = 1, . . . , 2N − 1 the following holds:

• The symbol encoded by xi,j only depends on the program of M and the symbols encoded by xi−1,j−1, xi−1,j

and xi−1,j+1.
For a symbol at position (i, j), this is realized by a formula H in CNF such that

H(xi,j , xi−1,j−1, xi−1,j , xi−1,j+1)︸ ︷︷ ︸
=:Fi,j

≡
R∧

l=1

(x
�l,1
i,j,1∨x

�l,2
i,j,2∨ · · · ∨x

�l,4r

i−1,j+1,r )︸ ︷︷ ︸
=:Hi,j,l

.

• It holds that Fi,j =def H(xi,j , xi−1,j−1, xi−1,j , xi−1,j+1) = 1 ⇔ (if M is in configuration c after i − 1 steps
and c contains the symbols encoded by xi−1,j−1, xi−1,j and xi−1,j+1 on positions j − 1, j, j + 1, then there is a
configuration c′ which is an immediate successor to configuration c and contains the symbol encoded by xi,j on
position j).

Observe that �l,k as well as r and R do not depend on i, j or the input x, but only on the program of M. In the following,
we assume that R is a power of 2 and that r �2 is a divisor of R.

Consequently, for i, j ∈ {1, . . . , 2N − 1}, formulas Fi,j describe valid transitions in a computation table of M on
input x. We need special formulas for the borders of a computation table (see Fig. 1): the symbol encoded at the first
position in each row only depends on two other symbols. The same holds for the symbol encoded at the last position in
each row. Nevertheless, these formulas have a similarly regular structure. The formulas for the first row have to ensure
that their variables encode the initial configuration. Since we are only interested in accepting computation tables, the
formulas for the last row have to ensure that their variables encode the accepting configuration. Observe that for the
first row, only the formulas for positions 1, 2, . . . , |x| depend on x, and that the formulas in the last row do not depend
on x at all. Let F0,0, . . . , F0,2N be the formulas for the first row of the computation table, and let F2N ,0, . . . , F2N ,2N be
the formulas for the last row.

Without loss of generality, we assume that all special formulas are in CNF and consist of R clauses with 4r boolean
variables each.

We now have

Fx ≡
∧

i,j∈{0,...,2N }
Fi,j

and

Fx is satisfiable ⇔ x ∈ L.



S. Travers / Theoretical Computer Science 369 (2006) 211–229 221

Hence, we can assume that

Fx = F0,0 ∧ F0,1 ∧ · · · ∧ F0,2N−1 ∧ F0,2N

∧ F1,0 ∧ F1,1 ∧ · · · ∧ F1,2N−1 ∧ F1,2N

...

∧ F2N ,0 ∧ F2N ,1 ∧ · · · ∧ F2N ,2N−1 ∧ F2N ,2N .

We now take a closer look at the structure of formulas Fi,j :
For i ∈ {1, . . . , 2N − 2} and j ∈ {2, . . . , 2N − 2} literals xi,j,k and ¬xi,j,k occur in formulas Hi,j,1, . . . , Hi,j,R,

Hi+1,j−1,1, . . . , Hi+1,j−1,R , Hi+1,j,1, . . . , Hi+1,j,R and Hi+1,j+1,1, . . . , Hi+1,j+1,R and nowhere else. Observe that,
in which of the clauses of a formula Fi,j a literal xi,j,k occurs, only depends on k.

Hence, there exist �k1, . . . , �kR ∈ {0, 1} for k ∈ {1, . . . , r} such that for all i ∈ {1, . . . , 2N −2}, j ∈ {2, . . . , 2N −2}
and all l ∈ {1, . . . , R} it holds that

�kl = 1 ⇔ Literal xi,j,k occurs in the lth clause of Fi,j .

In the same way, there exist �k1, . . . , �k(3R) ∈ {0, 1} for k ∈ {1, . . . , r}, such that for all i ∈ {1, . . . , 2N − 2},
j ∈ {2, . . . , 2N − 2}, l ∈ {1, . . . , R} and all m ∈ {0, 1, 2} it holds that

�k(l+m·R) = 1 ⇔ Literal xi,j,k occurs in the lth clause of Fi+1,j−1+m.

Analogously, we define �′
k1, . . . �

′
kR ∈ {0, 1} and �′

k1, . . . , �
′
k(3R)∈ {0, 1} for the occurrences of literals ¬xi,j,k .

Quite similar to the proof of Lemma 4, we construct vectors vi, v
′
i for each boolean variable �i in Fx . These vectors

describe occurrences of positive and negative literals of �i in clauses of Fx such that there is a subset of vectors whose
sum has a certain value b if and only if Fx is satisfiable. Recall that Fx contains an exponential number of variables
and clauses, thus we have to create exponentially many different vectors and each vector has exponential length. Due
to the high regularity of Fx , the vectors we have to construct have a very regular structure as well.

We now show how to construct vectors for the variables in formulas Fi,j with i ∈ {1, . . . , 2N − 2} and j ∈
{2, . . . , 2N − 2}:

For a literal xi,j,k we construct a vector vi,j,k . Let r ′ =def 4r + 2.
Then, vi,j,k has the r ′-ary representation

0 . . . 0︸ ︷︷ ︸
l1

�k1 . . . �kR 0 . . . 0︸ ︷︷ ︸
l2

�k1 . . . �k3R 0 . . . 0︸ ︷︷ ︸
l3︸ ︷︷ ︸

for clauses

0 . . . 0︸ ︷︷ ︸
l4

(r ′−1) . . . (r ′−1)︸ ︷︷ ︸
R
r

0 . . . 0︸ ︷︷ ︸
l5︸ ︷︷ ︸

for variables

,

where

l1 =def R · i · (2N + 1) + R · j,

l2 =def R · (2N − 1),

l3 =def R · (2N − j − 1) + R · (2N − i − 1)(2N + 1),

l4 =def R · i · (2N + 1) + R · j + (k − 1) · R

r

and

l5 =def (r − k) · R

r
+ R · (2N − j) + R · (2N − i)(2N + 1).

The first l1 + R + l2 + 3R + l3 digits mark the clauses in F in which literal xi,j,k occurs. The remaining l4 +
(R/r) + l5 digits encode the indices of the literal: the position of the (r ′ − 1)-block in the variable part of the
vector encodes i, j and k. The vectors are constructed in such a way that (r ′ − 1)-blocks of distinct vectors do
not overlap.



222 S. Travers / Theoretical Computer Science 369 (2006) 211–229

Observe that R + l2 + 3R + l3 + l4 + R

r︸ ︷︷ ︸
l6

= R · (22N + 2N+1 + 1) + k · R
r

.

Obviously, we can ignore the l1 preceding zeros when constructing the vectors. Our construction ensures that the
first l6 digits of the vectors do not depend on i or j but only on k. Let Mk denote these l6 most significant digits. Thus,
l5—the number of zeroes to the right of Mk—encodes i and j.

Notice that Mk only contains a constant number of digits unequal to 0. Furthermore, the first l6 digits do not depend
on i, j as stated above. Hence, it is easy to construct circuits C′

1 . . . , C′
r in logarithmic space such that I (C′

k) = (Mk)r ′
holds for k ∈ {1, . . . , r}.

It remains to annex zeros in order to complete the variable part. In logarithmic space, it is possible to construct
{∪, +, ×}-circuits C1, . . . Cr such that the following holds for k ∈ {1, . . . , r}:

I (Ck) = I (C′
k) × r ′(r−k)·R/r × (r ′R)2·(2N+1) × {(r ′R)

l
: l ∈ D},

where

D =def {a + b · (2N + 1) : a ∈ {2, . . . , 2N − 2} and b ∈ {0, . . . , 2N − 3}}.
To see how to construct the circuit taking care of the rightmost factor in I (Ck), it is useful to observe that, given a
{∪, +}-circuit E1 and a {+, ×}-circuit E2 computing {a}, it is easy to construct in logarithmic space a {∪, +, ×}-circuit
computing the set {ai : i ∈ I (E1)}.

Consequently, each circuit Ck computes the set of SOS-vectors for literals xi,j,k with i ∈ {1, . . . , 2N − 2} and
j ∈ {2, . . . , 2N − 2}. The definition of D ensures that no vectors for variables in formulas at the borders of the
computation table are created.

Analogously, we can construct circuits C¬
1 . . . C¬

r which compute the vectors v′
i,j,k for the occurrences of literals

¬xi,j,k . The only difference is that we use �′
ki and �′

ki instead of �ki and �ki for M ′
k .

Hence, the {∪, +, ×}-circuit C′
vectors =def

⋃r
i=1 Ci ∪C¬

i can be constructed in logarithmic space. Similarly, we can
construct circuits which compute vectors for the rest of the variables in F: the structure of the formulas for the first n
symbols in the computation table and thus also that of the corresponding vectors depend on the input x. For each digit
of x, it is easy to construct a circuit which computes the corresponding vectors. The structure of the remaining formulas
is independent from the input and highly regular, thus we can create these vectors by using a similar construction as
presented above.

Let Cvectors be the {∪, +, ×}-circuit which computes the set of all vectors for variables in F. Since there are two
vectors for each variable, I (Cvectors) computes precisely 2 · r · (2N + 1)2 vectors. Let V =def r · (2N + 1)2, hence
V = 22N+log r + 2N+1+log r + 2log r . Let v ∈ I (Cvectors). The r ′-ary representation of v has (possibly with leading
zeros) length 2 ·V ·R/r . The first V ·R/r digits form the clause part and the remaining V ·R/r digits form the variable
part.

Observe that every two vectors which describe the positive and negative occurrences of literals of the same variable
have identical variable parts. This means that the (r ′ − 1)-blocks in such two vectors are located at the same positions,
because l5 only depends on i, j, k.

As can be seen in Fig. 2, we now construct in logarithmic space a {∪, +, ×}-circuit Csums which computes all possible
sums of vectors from I (Cvectors) which have precisely V addends.

Let v1, . . . , vV and v′
1, . . . , v

′
V be vectors such that, for i = 1, . . . , V , vector vi describes the positive occurrences

and vector v′
i describes the negative occurrences of the ith variable in F.

Claim. Let v ∈ I (Csums) with |v|�V · R/r and W =def |v| − V · R/r . Then it holds:

v =

⎛
⎜⎜⎝a1 . . . aW (r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸

V · R
r

⎞
⎟⎟⎠

r ′

⇔ ∃c1,...,cV ∈{0,1}
V∑

i=1

(
civi + (1 − ci)v

′
i

) = v.

Proof of the claim. The implication “⇐’’ is a direct consequence of the construction of the vectors and thus evident.
We obtain the implication “⇒’’ from Lemma 14 and the following argument: if the last V · R/r digits of the r ′-ary



S. Travers / Theoretical Computer Science 369 (2006) 211–229 223

Cvectors

log r2N+log r N+1+log r

Fig. 2. Circuit Csums.

representation of v are all equal to (r ′ − 1), there cannot have been carries when v was computed. Suppose to the
contrary that there was a carry. Let then j be the rightmost position in the right part of v, for which more than one vector
with value (r ′ − 1) on position j in the right part were added. Therefore, at least (r ′ + 1) of such vectors must have
been added to obtain the value (r ′ − 1) on position j of v. By Lemma 14.2, the right part of v must contain at least one
digit which is 0. This is a contradiction. �

We now know that all vectors in I (Csums), whose right parts only consist of digits (r ′ − 1), were created by a valid
choice of vectors from I (Cvectors). A valid choice means that for each of the two vectors which belong to the same
variable, precisely one was used in the sum. In other words, in the corresponding assignment of truth-values to the
variables in F, each variable was assigned exactly one truth-value.

Since each clause of Fx contains exactly 4r variables, any assignment of truth-values to variables in F can make at
most 4r literals true in each clause.

Hence, all vectors in I (Csums), which were created by a valid choice of vectors from I (Cvectors), have the r ′-ary
representation

a1a2 . . . a
(V · R

r
)
(r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸

V · R
r

,

with 0�a1, a2, . . . , a(V ·R/r) �4r = r ′ − 2. From now on, we will call such vectors valid vectors.



224 S. Travers / Theoretical Computer Science 369 (2006) 211–229

By defining K =def V · R/r , we obtain

x ∈ L ⇔ Fx is satisfiable

⇔ there exists an assignment of variables in Fx, which makes at least one literal true in each clause

⇔ there exists a valid vector v=(a1 . . . aK(r ′−1) . . . (r ′−1))r ′ with 1�a1, . . . , aK �4r in I (Csums).

We now construct a circuit CA which computes a set of balancing vectors such that the following holds:⎛
⎝There exist 1�a1, . . . , aK �4r = r ′ − 2 such that

⎛
⎝a1a2 . . . aK (r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸

K

⎞
⎠

r ′

∈ I (Csums)

⎞
⎠

⇔
⎛
⎝(r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸

K+K

⎞
⎠

r ′

∈ I (Csums) + I (CA).

In logarithmic space we can construct a {∪, +, ×}-circuit C′
A with I (C′

A) = {1, 2, . . . , r ′ −2}×{(r ′)K+i : 0� i < K}.
We use this circuit to construct a circuit CA which computes all possible sums with precisely K addends from I (C′

A).
This can be done by a circuit which is very similar to that in Fig. 2.

Claim. For all z ∈ I (CA) with z = (a1 . . . aK 0 . . . 0︸ ︷︷ ︸
K

)r ′ , it holds that

∃i∈{1,...,K}ai = (r ′ − 1) ⇒ ∃i∈{1,...,K}ai = (0). (�)

Proof of the Claim. Let z = (a1 . . . aj−1(r
′ − 1)aj+1 . . . aK 0 . . . 0︸ ︷︷ ︸

K

)r ′ ∈ I (CA) with 0 < a1, . . . , aK �r ′ − 1.

Let v1, . . . , vK ∈ I (C′
A) be vectors with

∑K
i=1 vi = z.

The vectors in I (C′
A) have the r ′-ary representation (

K︷ ︸︸ ︷
0 . . . 0a0 . . . 0

K︷ ︸︸ ︷
0 . . . 0)r ′ with 1�a�r ′ − 2. Since we assumed

that the leftmost K digits from z are unequal to 0, K vectors must have been used to fill up these positions by Lemma
14.1. By this lemma we also know that the following holds for the addends: for each of the leftmost K digits from z,
there are at most two addends which have a value unequal to 0 at the appropriate position. Hence, there can be no
carries greater than 1.

We now consider the three different possibilities how digit (r ′ − 1) on position j of z was created:
(1) There are vectors u, v ∈ {v1, . . . , vK} such that u has digit s on position j and v has digit t on position j with

1�s, t �r ′ − 2 and s + t = r ′ − 1.
(2) There are vectors u, v ∈ {v1, . . . , vK} such that u has digit s on position j and v has digit t on position j with

1�s, t �r ′ − 2, s + t = r ′ − 2 and there is a carry from the right.
(3) There are vectors u, v ∈ {v1, . . . , vK} such that u has digit s on position j −1 and v has digit t on position j −1 with

1�s, t �r ′ − 1. Hence, a carry occurs. Furthermore, there is a vector w ∈ {v1, . . . , vK} which has digit (r ′ − 2)

on position j.
In cases 1 and 2 u′ =def ((

∑K
i=1 vi) − u) is a vector, whose leftmost K digits are unequal to 0. Nevertheless, u′ is

the sum of K − 1 vectors from I (C′
A). This is a contradiction to Lemma 14.1. Similarly, in case 3 it also holds that the

leftmost K digits of u′ =def ((
∑K

i=1 vi) − w) are unequal to 0. Again, this contradicts Lemma 14.1. Hence, there has
to be one digit with value 0 among the first K digits of z. This proves our claim. �

This property of the balancing vectors ensures that every balancing vector which contains a digit with value (r ′ − 1)

in the left part of its r ′-ary representation does also contain a digit with value 0. We will see that, consequently, such a
vector cannot balance all digits of a vector which has a digit with value 0 among the first K digits.



S. Travers / Theoretical Computer Science 369 (2006) 211–229 225

For a valid vector v ∈ I (Csums) = (
a1 . . . aK(r ′−1)(r ′−1) . . . (r ′−1)

)
r ′ with 1�a1, . . . , aK �r ′ − 2 observe that

there exists a balancing vector a ∈ I (CA) such that v + a = ((r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸
2K

)r ′ .

Conversely, let w = (w1 . . . w2K)r ′ ∈ I (Csums) + I (CA) with wi = (r ′ − 1) for all i�2K . Hence, w = v + b

with b = (b1 . . . bK00 . . . 0)r ′ ∈ I (CA) and v = (
a1 . . . aK(r ′ − 1)(r ′ − 1) . . . (r ′ − 1)

)
r ′ is a valid vector in I (Csums),

because the balancing vector b has no influence on the rightmost K digits of w. Hence, 0�a1, . . . , aK �r ′ − 2. Let us
assume that a carry occurred while adding v and b. Then there exists a greatest l�K , such that al +bl > (r ′ −1). Since
this is the rightmost carry, we have wl �= (r ′−1), which is a contradiction. Consequently, it holds that ai +bi = (r ′−1)

for all 1� i�K . Assume that there exists i�K with ai = 0. Then bi = (r ′ − 1), and due to (�) there exists 1�j �K

with bj = 0. Since aj �r ′ − 2 and wj = (r ′ − 1), this is a contradiction.
Since all circuits constructed so far can be constructed in logarithmic space, this also holds for the {∪, +, ×}-circuit

CSOS which is defined by

CSOS =def (Csums + CA) +
⎛
⎝{−1} ×

⎧⎨
⎩
⎛
⎝(r ′−1)(r ′−1) . . . (r ′−1)︸ ︷︷ ︸

2K

⎞
⎠

r ′

⎫⎬
⎭
⎞
⎠ .

Altogether, we have

x ∈ L ⇔ on input x, M develops an accepting path z

⇔ there exists an accepting computation table T (M, x, z)

⇔ Fx is satisfiable

⇔ there exists a valid vector v = (
a1 . . . aK(r ′ − 1) . . . (r ′ − 1)

)
with 1�a1, . . . , aK �4r = r ′ − 2 in I (Csums)

⇔
⎛
⎝(r ′ − 1)(r ′ − 1) . . . (r ′ − 1)︸ ︷︷ ︸

2K

⎞
⎠

r ′

∈ I (Csums) + I (CA)

⇔ 0 ∈ I (CSOS)

This completes the proof. �

Theorem 16. The problems MCZ(∪, +, ×) and MCZ(∪, ∩, +, ×) are complete for NEXPTIME.

Proof. Hardness follows directly from Lemma 15. Let C be a {∪, ∩, +, ×}-circuit, and let b ∈ Z. In exponential
time, we can unfold C into a (possibly exponentially larger) formula F. Let p be a polynomial such that |F |�2p(|C|).
Observe that for any integer i computed in a gate of F, it holds that −2p(|C|) � |i|�2p(|C|). Hence, we can guess
nondeterministically an integer with length �2p(|C|) for every gate of F and then check whether these integers really
prove that b ∈ I (F ) = I (C). �

We do not have any decidable upper bound for the unrestricted versions of the membership-problems. As the next
example shows, there is evidence suggesting that MFZ(∪, ∩, −, +, ×)—and thus also MCZ(∪, ∩, −, +, ×)—might
be undecidable:

Example 17. A prime p is called a Fermat–Prime if there exists k > 0 such that p = 22k +1. The only known Fermat–

Primes are 22k + 1 for k = 0, 1, 2, 3, 4. It is currently known that 22k + 1 is composite for 5�k�32 [3]. Moreover, it
is conjectured that the number of Fermat–Primes is finite with 224 + 1 = 65537 being the largest Fermat–Prime (see,
for example, [5]). There is a simple {∪, ∩, −, +, ×}-formula FERMAT having the property that 0 ∈ I (F ) if and only

if there is no Fermat–Prime greater than 224 + 1. 1 Hence, a decision procedure for MFZ(∪, ∩, −, +, ×) could test
whether there exists a sixth Fermat–Prime. This would be surprising.

1 In an earlier version, we used a weak variant of Goldbach’s Conjecture as evidence. Holger Petersen (Stuttgart) observed [9] that this can be
improved to the statement about Fermat–Primes.



226 S. Travers / Theoretical Computer Science 369 (2006) 211–229

We construct the circuit FERMAT out of several subcircuits: recall circuits Z, Z-PRIMES and Z-POWER2 from
Section 2. We now define the circuits N-POWER8 =def Z-POWER2 ∩ (({7} × Z) + {1}) and N-POWER2 =def
{1, 2, 4} × N-POWER8. Observe that I (N-POWER8) = {8k: k�0} and thus I (N-POWER2) = {2k : k�0}.
The circuit Z-PRIMES′ =def Z-PRIMES ∩ {3} ∪ {5} ∪ {17} ∪ {257} ∪ {65537} computes the set of positive and nega-
tive primes minus the set of known Fermat–Primes. All circuits constructed so far can easily be unfolded into formulas.

Finally, we define FERMAT as(
Z-PRIMES′ ∩ (N-POWER2 + {1}))×{0}

and obtain

There is no Fermat–Prime greater than 224 + 1 ⇔ 0 ∈ I (FERMAT).

The implication “⇒’’ follows directly from the construction. To see “⇐’’, note that the following is known from the
literature: for k�0, if 2k + 1 is prime, then there exists i�0 such that k = 2i . This can easily be seen: assume that
2k + 1 is prime and k contains an odd factor b, that means 2k + 1 = (2a)b + 1. Then 2a + 1 is a factor of 2k + 1 because
we can write 2k + 1 as (2a + 1) · (2a(b−1) − 2a(b−2) + 2a(b−3) − . . . + 1). Hence, 2k + 1 cannot be prime, which leads
to a contradiction.

As an immediate consequence of Lemma 15, we obtain:

Corollary 18. The problem MCZ(∪, ∩, −, +, ×) is NEXPTIME-hard.

4.2. Complementation as the only set operation

In this section, we analyze membership problems for circuits with addition, whose only set operation is complemen-
tation. We will see that sets computed by such circuits have a very simple structure.

Lemma 19. Let C = (G, E, gC, �) be a {−, +}-circuit. For every g ∈ G, there exists an ag ∈ Z such that I (g) ∈{{ag}, Z \ {ag}, Z, ∅}.

Proof. Observe that for {{a}, Z \ {a}, Z, ∅}, the complement of each member still is in the set. For a, b, c, d ∈ Z we
have {a} + {b} = {a + b}, (Z \ {a}) + {b} = Z \ {a + b}, (Z \ {a}) + (Z \ {b}) = Z + (Z \ {c}) = Z + {d} = Z.
Adding ∅ always results in ∅. �

We say that I (g) is of type I, II, III or IV if I (g) = {a}, Z \ {a}, Z, ∅, respectively.

Theorem 20. (1) The problem MCZ(−, +) is P-complete.
(2) The problem MFZ(−, +) is in L.

Proof. (1) Inclusion: Let C = (G, E, gC, �) be a {−, +}-circuit and b ∈ Z. Note that, by using the above calculation
rule, we can determine in polynomial time what the type of I (gC) is. The following polynomial time algorithm works
on input (C, b) and decides MCZ(−, +). If I (gC) is of type III or IV we accept or reject, accordingly. Otherwise, we
eliminate all −-gates from C and obtain a {+}-circuit C′. Since MCZ(+) ∈ C=L ⊆ P (Theorem 21), we can decide
(C′, b)∈MCZ(+) in polynomial time. If I (gC) is of type I, we accept if and only if (C′, b) ∈ MCZ(+). If I (gC) is of
type II, we accept if and only if (C′, b) /∈ MCZ(+).

Hardness: We show that the P-complete monotone boolean circuit value problem [4] can be reduced to MCZ(−, +).
To do so, we transform a monotone boolean circuit C into a {−, +}-circuit C′ of basically the same structure. Every input

gate in C with boolean value 0 is replaced by a sub-circuit computing Z, e.g 0 + 0, every input gate in C with boolean

value 1 is replaced by a sub-circuit computing ∅, e.g 0 + 0. Every ∨-gate in C is replaced by a +-gate and every ∧-gate in
C with predecessors g1, g2 is replaced by a sub-circuit g1 + g2. For every gate g in C′ we now have either I (g) = Z or ∅.
Observe that for every +-gate g in C′ with predecessors g1, g2 it now holds that I (g) = ∅ ⇔ (I (g1) = ∅∨I (g2) = ∅)



S. Travers / Theoretical Computer Science 369 (2006) 211–229 227

and I (g) = Z ⇔ (I (g1) = Z ∧ I (g2) = Z). We obtain (C evaluates to 0) ⇔ I (C′) = Z ⇔ 0 ∈ I (C′) ⇔ (C′, 0) ∈
MCZ(−, +).

(2) For a {−, +}-formula F, determining the type of I (F ) can be done in logarithmic space, and MCZ(+) is in L,
thus MFZ(−, +) is in L. �

Contrary to these results, we already know that {−, +}-circuits over sets of natural numbers can compute very
complex sets (recall Section 3).

5. Similarities between Z-case and N-case

In this section, we present several results where the complexity in the two cases coincides.

Theorem 21. The problem MCZ(+) is complete for C=L.

Proof. By Lemma 7, it is sufficient to prove that MCZ(+) is in C=L. Let C = (G, E, gC, �) be a {+}-circuit and
b ∈ Z. Defining C′ =def C + (−b), we obtain b ∈ I (C) ⇔ 0 ∈ I (C′). We then further modify C′:
• Add a new input gate g− with label −1.
• Add a new input gate g+ with label 1.
• Replace each input gate g ∈ G with �(g) < 0 with a {+}-circuit which computes �(g) solely from the input gate

g−.
• Replace each input gate g ∈ G with �(g)�0 with a {+}-circuit which computes �(g) solely from the input gate g+.
Let C′′ be the circuit resulting from the above modifications. It clearly holds that I (C) − b = I (C′) = I (C′′).
We define f−(C′′) as the number of paths in C′′ from g− to the output gate of C′′ and f+(C′′) as the number of
paths in C′′ from g+ to the output gate of C′′. It is easy to see that f− and f+ are #L-functions. We now have
(C, b) ∈ MCZ(+) ⇔ I (C) = b ⇔ I (C′′) = 0 ⇔ f−(C′′) = f+(C′′). Consequently, MCZ(+) is in C=L. �

In contrast to {×}-circuits, evaluating {+}-circuits is not harder in the Z-case than it is in the N-case.

Theorem 22. The problems MFZ(∪, ∩, −, +) and MCZ(∪, ∩, −, +) are complete for PSPACE.

Proof. The inclusion can be shown by a simple modification of the proofs for the corresponding problems in the N-case
(cf. [7]).

For PSPACE-hardness, observe that the PSPACE-complete problem QSOS can be reduced to MFZ(∪, ∩, −, +) by
adapting the proof of Lemma 5: for i = 1, . . . , n, define formulas Ai as 0 ∪ ai . The rest of the proof is analogous. �

Theorem 23. The problems MFZ(∪, ∩, −, ×) and MCZ(∪, ∩, −, ×) are complete for PSPACE.

Proof. With respect to the inclusion, the same as above holds. We here sketch a reduction of the PSPACE-complete
problem MFN(∪, ∩, −, ×) [7] to MFZ(∪, ∩, −, ×). Let F be a {∪, ∩, −, ×}-formula over sets of natural numbers.
A {∪, ∩, −, ×}-formula F ′ is obtained by replacing every input gate g of F with a formula (�(g) ∪ (�(g) × {−1})).
Arguing by induction on the number of gates in F, we obtain I (F ′) = IN(F ) ∪ (IN(F ) × {−1}). Therefore, it now
holds for all b ∈ N that b ∈ IN(F ) ⇔ b ∈ I (F ′). This yields the desired reduction. �

For the complexity of the remaining membership problems in our analysis, we also have the same upper and lower
bounds as McKenzie and Wagner have for the corresponding problems in the N-case. The proofs for the Z-case bounds
only require straightforward modifications applied to those in the N-case (see [7]). The results for these membership
problems are also included in Table 1, but lack a reference to a theorem or lemma in this paper.

6. Conclusion and open problems

Table 1 summarizes our results. Several open problems are apparent from it. The central open problem is find-
ing a decidable upper bound for the complexity of the unrestricted versions of the membership problems, namely



228 S. Travers / Theoretical Computer Science 369 (2006) 211–229

Table 1
Membership problems for circuits over subsets of Z

O MCZ(O) MCZ(O) Th. MFZ(O) MFZ(O) Th.
lower bound upper bound L. lower bound upper bound L.

∪, ∩, −, +, × NEXPTIME ? T18 PSPACE ?
∪, ∩, +, × NEXPTIME NEXPTIME T16 NP NP
∪, +, × NEXPTIME NEXPTIME T16 NP NP

∩, +, × P coNP L DLOGCFL
+, × P coNP L11 L DLOGCFL

∪, ∩, −, + PSPACE PSPACE T22 PSPACE PSPACE T22
∪, ∩, + PSPACE PSPACE NP NP
∪, + NP NP NP NP

−, + P P T20 L L T20
∩, + C=L C=L L L

+ C=L C=L T21 L L
∪, ∩, −, × PSPACE PSPACE T23 PSPACE PSPACE T23
∪, ∩, × PSPACE PSPACE NP NP
∪, × NP NP NP NP

∩, × C=L ∧ �L P T10 L L
× NL ∧ �L NL ∧ �L T8 L L

∪, ∩, − P P L7 L L L7
∪, ∩ P P L7 L L L7
∪ NL NL L7 L L L7

∩ NL NL L7 L L L7

MCZ(∪, ∩, −, +, ×) and MFZ(∪, ∩, −, +, ×), or proving them to be undecidable. As the corresponding problems in
the N-case share that fate, we are very interested in how the complexities of the problems MCZ(∪, ∩, −, +, ×) and
MCN(∪, ∩, −, +, ×) compare.

Related to this, there is a further open question: is there a circuit over sets of integers computing precisely the set
N? If such a circuit exists, it would immediately follow that MCN(∪, ∩, −, +, ×)� log

m MCZ(∪, ∩, −, +, ×). Holger
Petersen (private communication) was the first to observe that there exists a circuit C having the property that I (C)∩N

is infinite while I (C) ∩ −N is finite (see Section 4.1).
Furthermore, if one could show MCZ(+, ×) ∈ P, then it would follow that the problems MCZ(+, ×), MCZ(∩, +, ×),

and MCN(∩, +, ×) are all P-complete (cf. [7]).

Acknowledgments

The author is grateful to Klaus W. Wagner, Christian Glaßer, Daniel Meister, Bernhard Schwarz (Würzburg) and
Holger Petersen (Stuttgart) for very useful discussions and important hints. Furthermore, the author would like to thank
the anonymous referees for their helpful comments.

References

[1] E. Allender, Making computation count: arithmetic circuits in the nineties in the complexity theory column, SIGACT NEWS 28 (4) (1997)
2–15.

[2] J.L. Balcázar, A. Lozano, J. Torán, The complexity of algorithmic problems in succinct instances, Computer Science, Plenum Press, New York,
1992.

[3] R.E. Crandall, E.W. Mayer, J.S. Papadopoulos, The twenty-fourth fermat number is composite, Math. Comput. 72 (2003) 1555–1572.
[4] L.M. Goldschlager, The monotone and planar circuit value problems are logspace complete for P, SIGACT NEWS 9 (1977) 25–29.
[5] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 1979.
[6] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988) 935–938.
[7] P. McKenzie, K.W. Wagner, The complexity of membership problems for circuits over sets of natural numbers, Lecture Notes in Computer

Science, Vol. 2607, 2003, pp. 571–582.
[8] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[9] H. Petersen, Bemerkungen zu ganzzahligen Ausdrücken, private communication, 2004.



S. Travers / Theoretical Computer Science 369 (2006) 211–229 229

[10] W.J. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput. System Sci. 7 (1973) 389–403.
[11] L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time, in: Proc. Fifth ACM Symp. on the Theory of Computing, 1973,

pp. 1–9.
[12] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Artificial Intelligence 26 (1984) 279–284.
[13] K.W. Wagner, The complexity of problems concerning graphs with regularities, in: Proc. 11th Mathematical Foundations of Computer Science,

Lecture Notes in Computer Science, Vol. 176, 1984, pp. 544–552.
[14] K. Yang, Integer circuit evaluation is PSPACE-complete, in: Proc. 15th Conference on Computational Complexity, 2002, pp. 204–211.


