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Cre/LoxP has broad utility for studying the function, development, and oncogenic transformation of pancre-
atic cells in mice. Here we provide an overview of the Cre driver lines that are available for such studies. We
discuss how variegated expression, transgene silencing, and recombination in undesired cell types have
conspired to limit the performance of these lines, sometimes leading to serious experimental concerns.
We also discuss preferred strategies for achieving high-fidelity driver lines and remind investigators of the
continuing need for caution when interpreting results obtained from any Cre/LoxP-based experiment per-
formed in mice.
Cre/LoxP and Its Use in Mice
Cre/LoxP is a site-specific recombinase (SSR) system of proven

utility. As for many tissues, Cre/LoxP is frequently used to study

the function, development, and neoplasia of exocrine and endo-

crine cells in the pancreas. The widespread use of Cre/LoxP

arises from its ability to conditionally eliminate or activate

expression of genes in a cell-type- and/or temporal-specific

manner, thereby enabling the cell-, tissue-, and/or develop-

mental-stage-specific functions of genes to be explored within

animal models. While Cre/LoxP is most commonly used in

mice, it and two other SSR systems, Flp/FRT and Dre/Rox,

also have utility in other model organisms (Hoess et al., 1982;

McLeod et al., 1986; Sauer and McDermott, 2004).

Cre, Flp, and Dre, members of the l integrase superfamily of

site-specific recombinases, were cloned from different organ-

isms. Cre is encoded by bacteriophage P1, Flp by the budding

yeast Saccharomyces cerevisiae, and Dre, the most recently

described SSR, by bacteriophage D6. All three recombinases

function as homotetramers and have 34 bp DNA recognition

sequences called LoxP, FRT, and Rox, respectively. The small

size of these recombination recognition sites enables them to

be readily placed within genes where they, in combination with

Cre, Flp, or Dre, enable gene deletions, insertions, inversions,

or translocations.

Over the past two decades, several useful Cre and Flp deriva-

tives have been described. Undoubtedly, the most useful variant

for Cre has been CreER, which prevents Cre from entering the

nucleus in the absence of tamoxifen due to the addition of a

mutated version of the estrogen receptor (ER) hormone-binding

domain (Feil et al., 1996). CreER enables temporal control of

Cre recombination. However, some investigators have found

that efficient tamoxifen-induced recombination is not always

achieved, thereby requiring that multiple doses of tamoxifen be

administered, and that recombination by CreER may occur

weeks after tamoxifen dosing (Reinert et al., 2012). Another use-

ful derivative of Cre is GFPCre, which is a fusion with green fluo-

rescent protein (GFP) that makes it easy to directly identify cells

that express Cre (Gagneten et al., 1997). For Flp, the most useful

derivatives are enhanced Flp (FlpE), which improves thermosta-
bilty, and Flpo, a codon-optimized variant that improves expres-

sion (Buchholz et al., 1998; Raymond and Soriano, 2007).

Although both Flp and Dre also have utility in the mouse, partic-

ularly when used in combination with Cre, hereafter we focus our

comments on Cre.

As illustrated in Figure 1, the conditional inactivation of a gene

using Cre/LoxP requires two different genetic components: (1) a

Cre driver line and (2) a target allele in which a gene segment,

usually containing one or more exons, has been flanked with

tandemly oriented LoxP sites (a so-called floxed allele) (Gu

et al., 1994; Orban et al., 1992). Similarly, the required compo-

nents to conditionally activate gene expression are (1) a Cre

driver line and (2) an allele that has been engineered to contain

a lox-stop-lox (LSL) sequence upstream of the coding se-

quences to be expressed. The ubiquitously expressed

ROSA26 gene locus has been used extensively for this purpose

(Soriano, 1999). Indeed, Cre-dependent activation of ROSA26

alleles containing an LSL upstream of b-galactosidase or

different fluorescent proteins (e.g., Gt[ROSA]26Sortm1Sor, Gt

[ROSA]26Sortm1[EYFP]Cos, and Gt[ROSA]26Sortm2Sho; Mao et al.,

2001; Soriano, 1999; Srinivas et al., 2001) has become a stan-

dard tool in the Cre/LoxP tool chest. Not only do these alleles

enable cell lineage tracing, which is fundamentally important in

studies of developmental biology, they can also be used to

readily assess both the sites and efficiency of Cre-mediated

recombination (Sato et al., 2000).

For many years, the development of new floxed alleles was

the limiting factor in using Cre/LoxP to perform a cell- or

tissue-specific gene knockout study. This was due to the need

to perform gene targeting in mouse embryonic stem cells

(mESCs) and then to introduce themutant allele into the germline

of mice. However, as a result of the combined efforts of many

individual laboratories and the large-scale Knockout Mouse

Project (KOMP) (Austin et al., 2004), the number of floxed alleles

available to investigators has skyrocketed. In contrast, there are

fewer truly accurate and reliable Cre driver lines, as we discuss in

detail below.

Optimal use of the Cre/LoxP depends greatly on the functional

precision of the Cre driver line, which is determined in large part
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Figure 1. Cre-Mediated Recombination in
Mouse Tissues
(A and B) Cre/LoxP can be used to conditionally
eliminate or activate expression of genes. (A)
Conditional gene knockout. A so-called floxed
allele is generated by using gene targeting to flank
a coding exon of a gene of interest with two
tandemly oriented LoxP sites. Ideally, the codon
that is floxed should be of a length that is not
divisible by three since this will cause a frameshift
in the protein being encoded. Intercrossing of a
Cre driver mouse with a floxed-allele mouse will
lead to the excision of the flanked exon and loss of
a functional protein. (B) Conditional gene activa-
tion. A lox-stop-lox (LSL) allele is also generated
by gene targeting. In this case, a gene of interest
(GOI) is engineered to lie downstream of an LSL
cassette containing tandem LoxP sites flanking a
selectable marker, usually neomycin, and multiple
poly(A) signal sequences. Interbreeding of the
LSL-GOI allele to a Cre driver mouse leads to
activation of the GOI in a tissue-specific manner.
This strategy is frequently used to derive reporter
lines whose expression can be activated by Cre.
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by themethod used to derive the line. Moreover, the functionality

of some lines, particularly those made by pronuclear DNAmicro-

injection of short transgenes, can be impaired or destroyed due

to transgene silencing as the lines are passaged. All of these fac-

tors argue for caution when acquiring and using lines, especially

those that do not have a proven history of use. Indeed, when

using any line, investigators need to remain keenly aware of

the limitations of Cre/LoxP itself, in addition to the known defi-

ciencies of a given line, before drawing scientific conclusions

from any experiments that utilize this method.

Pancreas-Specific Cre Driver Lines
An almost certainly incomplete list of Cre driver lines that have

been used in studies of pancreas development and/or function

is shown in Table 1. These 79 driver lines, which were identified

based on either published descriptions or the Beta Cell Biology

Consortium website (www.betacell.org), have been arbitrarily

subdivided into four partially overlapping categories based on

the cell types in which Cre is expressed. Together, these lines

have utilized the promoters of 32 different genes to direct the

expression of Cre.

The first three categories of pancreas-specific Cre driver

genes, endocrine, exocrine, and ductal, reflect the three main

epithelial-derived cell types of the pancreas. These cell types

are easily distinguished by the genes they express. For instance,

peptide hormones have long been used to define individual cells

of the pancreatic islet and digestive enzymes have been used to

mark pancreatic exocrine cells. The fourth category, pancreatic

progenitor cells, is the most diverse since it contains Cre driver

lines that, while they may have been derived for studies of

pancreas development, may also be of utility for studies of

pancreatic function. The utility of this latter group partially stems

from the identification of a series of transcription factors that are

temporally expressed in the pancreatic or prepancreatic endo-

derm during embryogenesis but that later become restricted to

specific adult cell lineages, as illustrated in Figure 2.

Endocrine Cell-Type-Specific Driver Lines

Pancreas-specific endocrine cells have long been defined

by the expression of five different hormones: glucagon, insulin,
10 Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc.
somatostatin, ghrelin, and pancreatic polypeptide (PP), which

mark a, b, d, ε, and PP cells, respectively. Thus, genes for

each of these hormones have been used to generate many

different Cre driver lines. Not surprisingly, of the 21 lines that

use endocrine genes to drive Cre expression, 14 utilized an

insulin gene to direct expression to pancreatic b cells. Interest-

ingly, most of the insulin-Cre (Ins-Cre) driver lines have utilized

promoter sequences from species other than mouse. Indeed,

the majority of the reported lines employed the rat Ins2 gene

(often referred to as RIP, rat insulin promoter) (Ahlgren et al.,

1998; Crabtree et al., 2003; Dor et al., 2004; Herrera, 2000; Leiter

et al., 2007; Postic et al., 1999; Ray et al., 1999), but pig (Dahlhoff

et al., 2012) and human (Hamilton-Williams et al., 2003) DNA has

also been used.

The most widely used Ins-Cre driver lines have been

Tg(Ins2-cre)25Mgn, Tg(Ins2-cre)23Herr, and Tg(Ins2-cre/ERT)1Dam.

These lines, all of which are based on the use of short insulin

gene promoter fragments (typically about 0.6 kb), are expressed

in 80% or more of b cells (Dor et al., 2004; Herrera, 2000; Postic

et al., 1999). However, a significant shortcoming of these lines is

that they exhibit leaky expression in the brain and other neuroen-

docrine cell types such as the pituitary gland (Song et al., 2010;

Wicksteed et al., 2010). It is not entirely clear whether the leaky

transgene expression reflects the absence of an essential regu-

latory element or is gene specific, given that Ins2 expression has

been reported in certain types of neurons (Madadi et al., 2008). In

either case, in an effort to increase b cell specificity, several lines

have been derived that utilize longer fragments of DNA contain-

ing the insulin promoter, including Tg(Ins2-cre)1Heed (Ahlgren

et al., 1998) and Tg(Ins2-cre)1Dh(Crabtree et al., 2003). Interest-

ingly, the Tg(Ins2-cre)1Dh line, despite the use of a longer pro-

moter, appears to be expressed in only about 10%–20% of

b cells based on recombination of the Tg(ACTB-Bgeo/ALPP)1Lbe

reporter allele (Crabtree et al., 2003). However, the Tg(Ins1-cre/

ERT)1Lphi line, which utilizes a fragment of the mouse insulin 1

gene, is active in most b cells and does not exhibit expression

in the brain (Wicksteed et al., 2010). Thus, it appears to be the

best cell line available at present for achieving b cell-specific

recombination in a tamoxifen-inducible manner. Because

http://www.betacell.org


Table 1. Pancreas-Specific Cre Driver Lines

MGI Name Common Name Type

Driver Gene (Size if Applicable or Known)/

Expression Site(s) in Pancreas Reference

Endocrine Cell Specific

Tg(Ins2-cre)1Heed RIP1-Cre transgene rat Ins2 (0.7 kb)/b cells Ahlgren et al., 1998

Tg(Ins2-cre)6Fcb RIP-Cre transgene rat Ins2 (0.45 kb)/b cells Ray et al., 1999

Tg(Ins2-cre)7Fcb RIP-Cre transgene rat Ins2 (0.45 kb)/b cells Ray et al., 1999

Tg(Ins2-cre)23Herr RIP-Cre transgene rat Ins2 (0.60 kb)/b cells Herrera, 2000

Tg(Ins2-cre)25Mgn RIP-Cre transgene rat Ins2 (0.66 kb)/b cells Postic et al., 1999

Tg(Ins2-cre/ERT)1Dam RIP-CreER transgene rat Ins2 (0.66 kb)/b cells Dor et al., 2004

Tg(Ins2-cre)1Dh RIP7-Cre transgene rat Ins2 (10 kb)/b cells Crabtree et al., 2003

Tg(INS-cre)2Rms HIP-Cre transgene human INS (1.9 kb)/b cells Hamilton-Williams et al., 2003

Tg(Ins2-cre)3Lt RIP-Cre3 transgene rat Ins2 (0.7 kb)/b cells Leiter et al., 2007

Tg(Ins2-cre)5Lt RIP-Cre5 transgene rat Ins2 (0.7 kb)/b cells Leiter et al., 2007

Tg(Ins2-cre)6Lt RIP-Cre6 transgene rat Ins2 (0.7 kb)/b cells Leiter et al., 2007

Tg(INS-icre)18Msdr PIP-iCre transgene porcine INS (1.5 kb)/b cells Dahlhoff et al., 2012

Ins2tm1(cre/ERT2)Kcmm Ins2CreERT2 knock-in mouse Ins2/b cells Nakamura et al., 2011

Tg(Ins1-cre/ERT)1Lphi MIP-CreER transgene mouse Ins1 (8.5 kb)/b cells Wicksteed et al., 2010

Tg(Slc2a2-cre) pGlut2-Cre BAC transgene mouse Slc2a2/b cells Mounien et al., 2010

Tg(Gck-cre)TG7Gsat Gck-Cre BAC transgene mouse Gck/b cells Gong et al., 2003

Tg(Gcg-cre)1Herr GLUC-Cre transgene rat Gcg (1.6 kb)/a cells Herrera, 2000

Tg(Gcg-cre)1Slib Glu-Cre transgene rat Gcg (2.3 kb)/a cells Shen et al., 2009

Tg(Ppy-cre)1Herr PP-Cre transgene rat Ppy (0.6 kb)/PP cells Herrera, 2000

Ssttm1(cre/ERT2)Zjh Sst-CreER knock-in mouse Sst/d cells Taniguchi et al., 2011

Ssttm2.1(cre)Zjh Sst-Cre knock-in mouse Sst/d cells Taniguchi et al., 2011

Ghrltm2.1(cre/EGFP)Suss GhrlCre-GFP knockin/RMCE mouse Ghrl/ε cells Arnes et al., 2012

Acinar Cell Specific

Tg(Amy2-cre)1Herr SV40/Amy-Cre transgene mouse Amy2a (0.9 kb)/acinar cells Kockel et al., 2006

Tg(Cela1-cre/ERT)1Lgdn BAC-Ela-CreErT BAC transgene mouse Cela1/acinar cells Ji et al., 2008

Tg(Ela1-cre/ERT2)1Stof Ela-CreERT transgene rat Cela1 (0.5 kb)/acinar cells Desai et al., 2007

Tg(Ela1-cre/ERT)1Dam Ela-CreERT transgene rat Cela1 enhancer (0.15 kb)-hsp68

promoter/acinar cells

Murtaugh et al., 2005

Tg(Vil-cre)20Syr Vil-Cre transgene mouse Vil1 (9 kb)/acinar cells el Marjou et al., 2004

Tg(Vil-cre/ERT2)23Syr Vil-CreER transgene mouse Vil1 (9 kb)/acinar cells el Marjou et al., 2004

Tg(Vil-cre)1Mka Vil-Cre transgene mouse Vil1 (9 kb)/acinar cells Chen et al., 2003

Tg(Vil-cre)997Gum Vil-Cre transgene mouse Vil1 (12.4 kb)/acinar cells Madison et al., 2002

Cpa1tm1(cre/ERT2)Dam Cpa1CreERT knockin mouse Cpa1/prepancreatic endoderm,

acinar cells

Zhou et al., 2007

Ductal Cell Specific

Krt19tm1(cre/ERT)Ggu CK19CreERT knockin mouse Krt19/ductal cells Means et al., 2008

Tg(CA2-cre)1Subw CAII-Cre transgene human CA2 (1.6 kb)/ductal cells Inada et al., 2008

Tg(CA2-cre/Esr1*)1Subw CAII-CreER transgene human CA2 (1.6 kb)/ductal cells Inada et al., 2008

Muc1tm1.1(cre/ERT2)Lcm Muc1IRES-CreERT2 knockin mouse Muc1/acinar, ductal cells Kopinke and Murtaugh, 2010

Progenitor Cell Specific

Foxa2tm1(cre)Heli Foxa2Cre knockin mouse Foxa2/endoderm Uetzmann et al., 2008

Foxa2tm1.1(icre)Hri Foxa2T2AiCre knockin mouse Foxa2/endoderm Horn et al., 2012

Foxa2tm2.1(cre/Esr1*)Moon Foxa2Cre-ER knockin mouse Foxa2/endoderm Park et al., 2008

Tg(Foxa3-cre)1Khk Foxa3-cre YAC transgene mouse Foxa3/endoderm Lee et al., 2005

Sox17tm1(icre)Heli Sox172A-iCre knockin mouse Sox17/endoderm Engert et al., 2009

Sox17tm2(EGFP/cre)Mgn Sox17GFPCre knockin/RMCE mouse Sox17/endoderm Choi et al., 2012

Cldn6tm1(cre/ERT2)Dam Cldn6CreER knockin mouse Cldn6/endoderm Anderson et al., 2008

(Continued on next page)
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Table 1. Continued

MGI Name Common Name Type

Driver Gene (Size if Applicable or Known)/

Expression Site(s) in Pancreas Reference

Tg(Ipf1-cre)1Tuv Pdx1-Cre transgene mouse Pdx1 (4.5 kb)/prepancreatic

endoderm

Hingorani et al., 2003

Tg(Pdx1-cre)6Cvw Pdx1-Cre transgene mouse Pdx1 (4.5 kb)/prepancreatic

endoderm

Gannon et al., 2000

Tg(Pdx1-cre)1Herr Pdx1-CreLate transgene mouse Pdx1 (4.5 kb)/prepancreatic

endoderm

Herrera, 2000

Tg(Pdx1-cre)1Heed Ipf1-Cre transgene mouse Pdx1 (4.5 kb)/prepancreatic

endoderm

Steneberg et al., 2005

Tg(Pdx1-cre)PBMga Pdx1PB-Cre transgene mouse Pdx1 enhancer (1 kb PstI-BstbII

fragment, areas I and II)-Hsp68 promoter/

embryonic and adult endocrine cells

Wiebe et al., 2007

Tg(Pdx1-cre)XBMga Pdx1XB-Cre transgene mouse Pdx1 enhancer (1.1 kb XhoI-BglII

fragment, area III)-Hsp68 promoter fusion/

prepancreatic endoderm, endocrine cells

Wiebe et al., 2007

Tg(Pdx1-cre/Esr1*)1Mga Pdx1PB-CreERTM transgene mouse Pdx1 enhancer (1 kb PstII-BstEI

fragment, areas I and II)-Hsp68 promoter/

embryonic and adult endocrine cells

Zhang et al., 2005

Tg(Pdx1-cre)89.1Dam Pdx1-CreEarly transgene mouse Pdx1 (5.5 kb)/prepancreatic

endoderm

Gu et al., 2002

Tg(Pdx1-cre/Esr1*)35.6Dam Pdx1-CreER transgene mouse Pdx1 (5.5 kb)/prepancreatic

endoderm

Gu et al., 2002

Tg(Pdx1-cre/Esr1*)35.10Dam Pdx1-CreER transgene mouse Pdx1 (5.5 kb)/prepancreatic

endoderm

Gu et al., 2002

Tg(Pdx1-cre/Esr1*)#Dam Pdx1-CreER transgene mouse Pdx1 (5.5 kb)/prepancreatic

endoderm

Gu et al., 2002

Ptf1atm1(cre)Hnak Ptf1aCre(ex1) knockin mouse Ptf1a/prepancreatic endoderm,

acinar cells

Nakhai et al., 2007

Ptf1atm1.1(cre)Cvw Ptf1aCre knockin/RMCE mouse Ptf1a/prepancreatic endoderm,

acinar cells

Kawaguchi et al., 2002

Ptf1atm2(cre/ESR1)Cvw Ptf1aCre-ERTM knockin/RMCE mouse Ptf1a/prepancreatic endoderm,

acinar cells

Kopinke et al., 2012

Tg(Sox9-cre/ERT2)1Msan Sox9-CreER BAC transgene mouse Sox9/prepancreatic endoderm,

ductal cells

Kopp et al., 2011

Sox9tm1(cre/ERT2)Haak Sox9CreERT2 knockin mouse Sox9/prepancreatic endoderm,

ductal cells

Soeda et al., 2010

Sox9tm3(cre)Crm Sox9-Cre knockin mouse Sox9/prepancreatic endoderm,

ductal cells

Akiyama et al., 2005

Tg(Hnf1b-cre/ERT2)1Jfer Hnf1b-CreER transgene mouse Hnf1b/prepancreatic endoderm,

ductal cells

Solar et al., 2009

Tg(Neurog3-cre)1Dam Ngn3-Cre transgene mouse Neurog3 (6.5 kb)/pre-endocrine

cells

Gu et al., 2002

Tg(NEUROG3-cre)1Herr NGN3-Cre transgene human NEUROG3 (5.7 kb)/pre-endocrine

cells

Desgraz and Herrera, 2009

Tg(Neurog3-cre)24Syos Ngn3-Cre transgene mouse Neurog3 (23 kb)/pre-endocrine cells Yoshida et al., 2004

Tg(Neurog3-cre)C1Able Ngn3-Cre BAC transgene mouse Neurog3/pre-endocrine cells Schonhoff et al., 2004

Tg(Neurog3-cre/Esr1*)1Dam Ngn3-CreER transgene mouse Neurog3 (6.5 kb)/pre-endocrine

cells

Gu et al., 2002

Neurog3tm1.1(cre/ERT)Ggu Neurog3CreERT knockin mouse Neurog3/pre-endocrine cells Wang et al., 2008b

Tg(Nkx2-2*-cre)1Mtse Nkx2.2-Cre transgene mouse Nkx2.2 (1.2 kb)/prepancreatic

endoderm, b cells

Wang et al., 2011

Tg(Nkx2-2-cre/ERT2)1Wdr Nkx2.2-CreER BAC transgene mouse Nkx2.2/prepancreatic endoderm, b

cells

Tsai et al., 2012

(Continued on next page)
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Table 1. Continued

MGI Name Common Name Type

Driver Gene (Size if Applicable or Known)/

Expression Site(s) in Pancreas Reference

Mnx1tm4(cre)Tmj Hb9-Cre knockin mouse Mnx1/prepancreatic endoderm,

endocrine cells

Yang et al., 2001

Myt1tm1(EGFP/icre)Ldh Myt1GFP-Cre knockin mouse Mnx1/prepancreatic endoderm,

endocrine cells

Hudson et al., 2011

Tg(Neurod1-cre)RZ24Gsat Neurod1-Cre BAC transgene mouse Neurod1/endocrine cells Gong et al., 2003

Tg(Pax4-cre)1Dam Pax4-Cre transgene mouse Pax4/endocrine cells Greenwood et al., 2007

Tg(Pax4-cre,GFP)1Pgr Pax4-Cre transgene mouse Pax4 (0.4 kb)/endocrine cells Brink and Gruss, 2003

Pax4tm1(cre/ERT2)Sosa Pax4CreER knockin mouse Pax4/endocrine cells Wang et al., 2008a

Tg(Pax6-cre,GFP)1Pgr Pax6-Cre transgene mouse Pax6 (6.5 kb)/endocrine cells Ashery-Padan et al., 2000

Rfx6tm1.1(EGFP/cre)Mger Rfx6eGFPcre knockin mouse Rfx6/endoderm, endocrine cells Smith et al., 2010

Isl1tm1(cre)Sev Isl1Cre knockin mouse Isl1/endocrine cells Yang et al., 2006

Isl1tm1(cre)Tmj Isl1Cre knockin mouse Isl1/endocrine cells Srinivas et al., 2001

Isl1tm1(cre/Esr1*)Krc Isl1Cre-ERT knockin mouse Isl1/endocrine cells Laugwitz et al., 2005
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many of the most efficient Ins-Cre driver lines exhibit leaky

expression in neural tissues, some investigators have turned to

the use of Pdx1-Cre, as discussed below, in lieu of an Ins-Cre

driver. However, this can only be done when the gene being

knocked-out exhibits b cell-specific expression since the Pdx1

promoter also drives expression in some regions of the brain,

though to a lesser extent than the insulin promoter.

Fewer lines exist for other islet endocrine cell types. For a cells,

the rat glucagon promoter-driven transgenes have been used to

derive two lines, Tg(Gcg-cre)1Herr and Tg(Gcg-cre)1Slib, both of

which have been reported to efficiently cause recombination in

glucagon-positive cells (Herrera, 2000; Kawamori et al., 2009;

Shen et al., 2009). However, some investigators have noted

lower efficiencies of recombination than reported, perhaps sug-

gesting transgene silencing. For PP cells, a rat PP-driven trans-

gene has been used in Tg(Ppy-cre)1Herr. Lineage tracing with this

PP driver and reporter lines driven by insulin, glucagon, and PP

genes indicate that this driver line causes recombination in

both PP and b cells (Herrera, 2000). Driver lines for d and ε cells

have been generated by knocking Cre into the Sst orGrhl genes,

respectively (Arnes et al., 2012; Taniguchi et al., 2011). Interest-

ingly, GhrlGFPCre marks a large proportion of ε and a cells, and

5% of PP cells, but none of the b or d cells in the adult islet, sug-

gesting that ghrelin-expressing pancreatic progenitor cells

contribute to several cell lineages during development (Arnes

et al., 2012). Also, it should be kept in mind that glucagon,

somatostatin, PP, and ghrelin are all normally expressed in non-

pancreatic enteroendocrine cells, and some of these genes are

also expressed in the brain, so Cre driver lines using these genes

should be expected to exhibit multiple sites of recombination.

Acinar Cell Driver Lines

Cre driver lines for pancreatic acinar cells have generally used

transgenes containing the promoter regions of genes for

digestive enzymes such as elastase and amylase, but the perfor-

mance of these lines has frequently been less than optimal. For

instance, the Tg(Ela1-cre/ERT2)1Stof line made using the rat elas-

tase promoter to express CreER is reported to achieve only about

30%–40% recombination after administration of tamoxifen

(Desai et al., 2007; Means et al., 2005). Use of a transgene con-
taining a fusion of elastase 1 enhancer to theHsp68promoter has

yielded the somewhat better-performing Tg(Ela1-cre/ERT)1Dam

line, which results in at least 50%of cells undergoing recombina-

tion after tamoxifen induction (Murtaugh et al., 2005). The highest

performing line in this group appears to be that made using a

bacterial artificial chromosome (BAC)-based Cela1-CreER trans-

gene, since nearly 100% of acini exhibits recombination of a

ROSA26 reporter allele after tamoxifen treatment (Ji et al.,

2008). The Tg(Amy2-cre)1Herr line, which utilized a fragment

from the Amy2a gene, also efficiently marks acinar cells. How-

ever, due to the expression of Amy2a at early developmental

stages, this driver line also results in recombination in many

ductal and islet cells (Kockel et al., 2006).

The Tg(Vil-cre/ERT2)23Syr line, made using the intestinal-

specific villin gene, has also been shown to mark acinar cells.

This appears to be due to recombination in visceral endoderm,

which results in sufficient residual Cre activity to cause scattered

recombination in the intestine, kidney, and pancreas; however,

in pancreatic tissues, recombination is seen only in acinar cells

and not in endocrine or ductal cells (el Marjou et al., 2004; Means

et al., 2005). In addition, both the Ptf1a- and Cpa1-driven CreER

lines can be used to target adult acinar cells. Although both of

these genes are expressed in pancreatic multipotent progenitor

cells (MPCs) during development, they exhibit expression that is

restricted to acinar cells within the pancreas of adult animals

(Kopinke et al., 2012; Zhou et al., 2007).

Ductal Cell Driver Lines

In contrast to pancreatic endocrine and exocrine cells, the iden-

tification of genes that can be used to derive ductal cell-specific

Cre driver lines has been more of a challenge. The Krt19 (CK19),

Muc1, and Car2 (CA2) genes, which have all been used in an

attempt to derive ductal-specific Cre driver lines, exhibit recom-

bination in other pancreatic cell types besides ductal cells.

For instance, Tg(CA2-cre)1Subw causes recombination in adult

ductal, acinar, and a small percentage of endocrine cells (5%)

(Inada et al., 2008). Similarly, a Muc1CreER knockin allele

(Muc1tm1.1(cre/ERT2)Lcm) causes recombination in ductal as well

as acinar cells in adult tissue (Kopinke and Murtaugh, 2010).

The CK19CreERT knockin allele exhibits recombination that is
Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc. 13



Figure 2. Highly Simplified Scheme of
Pancreas Development
The pancreas is an endodermally derived organ
that arises in a stepwise, progressive manner that
involves the specification and differentiation of
definitive endoderm (DE) into specific cell types.
First, DE is specified intoprepancreaticmultipotent
progenitor cells (MPCs). Second, the pancreatic
MPCs are specified into either an acinar, ductal, or
endocrine cell lineage. Third, the endocrine cell
lineage is further specified into five different
endocrine cell types. On account of this progres-
sive cellular differentiation, Cre driver lines that are
expressed early in development will result in
recombination across multiple cell lineages. In
addition, genes that have been used to drive Cre
expression in specific lineages and/or cell types
are indicated in the boxes. For example, the
expression of Ptf1a-Cre, since it is expressed in
pancreaticMPCs during development, will result in
a recombined allele in all threemain pancreatic cell
types in adult animals. Similarly, the expression of
Ngn3-Cre in pre-endocrine progenitor cells will
result in recombined allele being present in all five
endocrine cell types.
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considerably more specific for ductal cells (Means et al., 2008).

However, this line also marks hepatic ducts, stomach, and intes-

tine when tamoxifen is administered after birth. Nonetheless,

nearly 45% of pancreatic ducts are recombined with the labeling

of only a few (<1%) acinar and endocrine cells. CreER lines driven

by the Sox9 andHnf1b genes can also be used to achieve ductal

cell-specific recombination in adult animals. In both cases, up to

40%–70% of adult ductal cells have been shown to undergo

recombination with only an occasional labeling of acinar and

endocrine cells after activation of CreER by tamoxifen (Kopp

et al., 2011; Solar et al., 2009).

Driver Lines Based on Genes Expressed in Progenitor

Cells

Genes encoding transcription factors that play critical roles in the

development of pancreatic cells, and that are expressed in

specific progenitor cell populations, have been used to derive

44 different Cre driver lines. However, only a few can be put to

practical use in mature animals due to the highly varied nature

of the timing and cell-type specificity of these genes.

Global Endoderm Deleters

During embryogenesis, the pancreas arises from the definitive

endoderm, which is marked by the expression of the Foxa genes

(Foxa1, Foxa2, and Foxa3) and Sox17. Of the three Foxa genes,

Foxa3 is the most endoderm specific and, unlike Foxa1 and

Foxa2, is not expressed in the notochord, floorplate, or ventral

forebrain (Monaghan et al., 1993). For this reason, the

Tg(Foxa3-cre)1Khk line,made using a yeast artificial chromosome

(YAC)-derived transgene, causes recombination throughout the

entire gut endoderm, including in the prepancreatic region (Lee

et al., 2005; Xuan et al., 2012). Foxa2Cre and Foxa2CreER knockin

alleles have also been used to achieve Cre recombination in the

endoderm as well as in other sites of Foxa2 expression such as

the notochord and floorplate (Horn et al., 2012; Park et al., 2008;

Uetzmann et al., 2008). A Sox17GFPCre knockin allele can be used

to achieve recombination throughout the definitive endoderm.

However, Sox17 is also expressed in hemogenic endothelial

cells beginning around embryonic day 9.5 (E9.5), so it too is

not entirely endodermal specific (Choi et al., 2012). A Cldn6CreER
14 Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc.
knockin allele is also available for achieving recombination in

definitive endoderm (Anderson et al., 2008).

Pancreas-wide Deleters

The Pdx1 gene is expressed in prepancreatic endoderm starting

at E8.5. As development proceeds, it becomesmore abundant in

b cells, with lower levels in acinar and other endocrine cells

(Jonsson et al., 1994; Offield et al., 1996). Accordingly, Pdx1-

Cre driver lines, such as Tg(Pdx1-cre)89.1Dam, mark all pancreatic

cell types during lineage tracing. However, when the same Pdx1

promoter fragment is used with CreER, such as in Tg(Pdx1-cre/

Esr1*)#Dam in adult animals, recombination is observed only in

the islet and acinar cells (Gu et al., 2002). Most Pdx1-Cre driver

lines, including Tg(Pdx1-cre)6Cvw/Tg(Ipf1-cre)1Tuv, Tg(Pdx1-cre)

1Herr, and Tg(Pdx1-cre)1Heed, have utilized an �4.5 kb Pdx1 pro-

moter fragment and have been found to exhibit mosaic expres-

sion within the Pdx1 expression domain (Gannon et al., 2000;

Herrera, 2000; Steneberg et al., 2005). Interestingly, some of

these Cre drivers exhibit significant differences in terms of their

temporal and spatial activity. Tg(Pdx1-cre)89.1Dam, termed

Pdx-CreEarly, displays early and robust Cre recombinase activity,

while the other Tg(Pdx1-cre)1Herr, termed Pdx-CreLate, has

slightly delayed and more mosaic Cre expression (Heiser et al.,

2006). It is worth noting that besides marking pancreas, Pdx1

driver alleles also cause recombination in the duodenum, antral

stomach, bile duct, and, as recently shown, hypothalamus and

inner ear (Honig et al., 2010; Schonhoff et al., 2004; Song

et al., 2010; Wicksteed et al., 2010; Yoshida et al., 2004).

By utilizing different enhancer fragments derived from regula-

tory regions located upstream of the Pdx1 promoter, additional

lines have been derived that express Cre in a more restricted,

but still pancreas-specific, manner. The Tg(Pdx1-cre)PBMga

line, which fuses a 1 kb DNA fragment (Pdx1PB) containing regu-

latory areas I and II to the Hsp68 promoter, causes Cre expres-

sion not only in b cells, but also to some extent in all endocrine

cells (Wiebe et al., 2007). Conversely, Tg(Pdx1-cre)XBMga, a Cre

driver transgene containing regulatory area III (Pdx1XB)

mediates recombination throughout the developing pancreas

similar to the 4.5 kb Pdx1 promoter (Wiebe et al., 2007). The
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tamoxifen-inducible Tg(Pdx1-cre/Esr1*)1Mga line (also known as

Pdx1PB-CreER) allows spatial and temporal control of gene

manipulation specifically in pancreatic islets (Zhang et al., 2005).

Ptf1a is another gene that is crucial for pancreatic organogen-

esis. Unlike Pdx1, the expression of Ptf1a within the developing

gut is restricted to cells that only give rise to the pancreas, so it

does not cause recombination in the distal stomach or proximal

gut. Lineage tracing experiments using a Ptf1aCre knockin allele

have demonstrated recombination in all three main pancreatic

cell types (Kawaguchi et al., 2002), consistent with the expres-

sion of Ptf1a in pancreatic MPCs. In addition to being

expressed in the pancreas, Ptf1a is also expressed in the devel-

oping cerebellum and retina (Nakhai et al., 2007).

Highly specific, pancreas-wide gene knockouts have been

achieved using driver mice derived using the Cpa1, Sox9,

and Hnf1b genes. For instance, the Cpa1-CreER allele

(Cpa1tm1[cre/ERT2]Dam), due to the expression of Cpa1 in pancre-

atic MPCs early during pancreas development, results in recom-

bination in all three pancreatic lineages. However, tamoxifen

must be administered before E14.5 for this outcome to be

achieved (Zhou et al., 2007). Similarly, Sox9 and Hnf1b, which

are expressed in the pancreatic epithelium beginning at E10.5,

cause recombination in endocrine, acinar, and duct cells (Kopp

et al., 2011; Solar et al., 2009). Thus, provided that tamoxifen

is administered after E13.5, theHnf1b-CreER driver linewill cause

recombination only in ductal and endocrine cells, not in acinar

cells (Solar et al., 2009).

Endocrine Lineage-Specific Deleters

The emergence of pancreatic endocrine cells from pancreatic

endoderm is triggered by the expression of Neurog3 (Ngn3)

beginning around E13.5 (Gradwohl et al., 2000). Several Ngn3-

Cre driver lines have been described, some of which utilize

CreER. Lineage tracing studies using Tg(Neurog3-cre)1Dam and

Tg(Neurog3-cre/Esr1*)1Dam have shown high-efficiency recom-

bination in all endocrine cell types in the islet (Gu et al., 2002).

In addition, several other Ngn3-Cre driver lines have also been

used to mark endocrine cells in the pancreas. These include

Tg(NEUROG3-cre)1Herr, which utilizes a 5.7 kb fragment of the

human NEUROG3 gene (Desgraz and Herrera, 2009),

Tg(Neurog3-cre)24Syos, which is driven by a 23 kb fragment of

the Ngn3 gene (Yoshida et al., 2004), the BAC transgenic line

Tg(Neurog3-cre)C1Able (Schonhoff et al., 2004), and a Ngn3CreER

knockin allele (Neurog3tm1.1(cre/ERT)Ggu; Wang et al., 2008b).

Since expression of Neurog3 is not restricted to pancreatic

endocrine cells, these driver lines also cause recombination in

gastrointestinal cells, the neural system, and testis (Schonhoff

et al., 2004; Song et al., 2010; Yoshida et al., 2004). Prudent

use of Neurog3-Cre driver lines requires consideration of the

fact that Neurog3 is expressed in a narrow developmental time

window, and recombination may occur in cells that no longer

express Neurog3 due to the perdurance of Cre. Indeed, this

consideration should be applied to all Cre lines driven by tran-

siently expressed genes.

Other proendocrine transcription factor genes that have been

used to drive Cre expression includeNeurod1, Pax4,Myt1, Rfx6,

Isl1, Nkx2.2, Pax6, and Mnx1. All are characterized by recombi-

nation in other sites besides the pancreatic endocrine cells as

well as major differences in their timing of expression. For

instance, Pax4-Cre efficiently labels all four pancreatic endo-
crine cell lineages, whereas Rfx6-Cre causes recombination in

all tissues derived from endoderm, presumably due to expres-

sion at an earlier time during development (Smith et al., 2010).

Moreover, many proendocrine factors are also expressed in neu-

ral and other organ systems, making it necessary to consider

whether nonpancreatic sites of expression will impact experi-

mental design and interpretation. Pax6, for instance, is ex-

pressed in the eye lens, and Isl1 is expressed in the mesoderm

and plays an important role in heart development (Ashery-Padan

et al., 2000; Gong et al., 2003; Hudson et al., 2011; Wang et al.,

2011; Yang et al., 2001, 2006). Because of their more complex

expression patterns, these lines are not widely used in meta-

bolism-oriented studies in adult animals.

Limitations of Short Promoter Fragment Transgenes
Of the driver genes listed in Table 1, 45 (well over half) weremade

using relatively short driver gene (promoter) fragments, and the

other 34 drivers were made by BAC transgenesis (8) or gene

targeting (26). This is a vitally important consideration since the

pronuclear microinjection of DNA results in both randomly inte-

grated DNA fragments and variable transgene copy numbers,

both of which can negatively impact the accuracy and duration

of Cre expression. Moreover, short driver DNA fragments may

lack key cis-regulatory elements important to obtain precise

cell- or tissue-specific gene expression.

Randomly inserted transgenes are characterized not only by

inexact expression patterns, but sometimes also by the silencing

of gene transcription. These expression artifacts are due either to

position effect variegation (PEV) or position effect silencing, a

phenomenon that was first described in studies using

Drosophila. PEV was first described as variable gene silencing

of the white gene (which is responsible for red eye color) when

it was translocated into a heterochromatic region of DNA.

Silencing of the white gene resulted in easily discernible red

and white patches in the mature Drosophila eye due to subpop-

ulations of cells that exhibited a mosaic pattern of gene expres-

sion (Henikoff, 1992). Studies of this phenomenon led to the

conclusion that alterations in chromatin-associated proteins

can have a dramatic effect on the expression of genes, both

positively and negatively, whether they are endogenous or a

randomly inserted transgene (Ebert et al., 2006; Karpen, 1994;

Reuter and Spierer, 1992).

Gene silencing, which is analogous to PEV, has since been

observed in yeast, plants, and mammals (Fischer et al., 2006;

Tham and Zakian, 2002). Factors governing the silencing

of transgenes include the integration site, the number of copies

of transgene in an integrated array, and the components of a

transgene (Martin and Whitelaw, 1996). Furthermore, both DNA

methylation and epigenetic modifications are known to silence

gene expression, with the expression of transgenes integrated

near heterochromatic regions being inhibited (Law and

Jacobsen, 2010; Meyer, 2000). Similarly, the integration of trans-

genes near telomeres may also affect the extent of variegation.

Tissues with more heterochromatin also exhibit a higher degree

of transgene silencing.

Transgene copy number is well known to contribute to trans-

gene silencing, with an inverse relationship between copy num-

ber and expression level often observed. The fact that high-copy

number lines are often transcriptionally inactive is thought to be
Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc. 15
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due to the presence of repetitive sequences in such arrays.

However, the existence of some transgenes with copy-number-

dependent expression argue for the existence of regulatory ele-

ments, e.g., locus control regions (LCRs), that may prevent this

repeat-induced silencing. Other components of transgenes,

such as enhancers and matrix attachment regions (MARs), can

positively influence expression (Harraghy et al., 2008; Kioussis

and Festenstein, 1997). Conversely, the presence of plasmid

sequences, as well as bacterial genes such as LacZ (which are

CpG-rich and prone to methylation), have long been known to

impair transgene expression, as have viral DNA sequences

such as long terminal repeats (LTRs). In addition, patterns of

transgene expression are sometimes affected by age and

genetic background of the mice. Silencing of transgene ex-

pression can occur within a single generation or more gradually

over several generations. Finally, the genetic background may

also influence the extent of variegation, perhaps due to chromo-

somal differences between inbred strains of mice (Allen et al.,

1990).

Approaches for Obtaining High-Fidelity Cre Driver Line
Expression
Due to the deficiencies of transgenes containing short driver

DNA fragments, two other strategies have gained favor for

deriving Cre driver lines that exhibit expression patterns that

closely match that of the driver gene. The first strategy involves

the use of BACs (Wang et al., 2009). The advantage of using

BAC-derived transgenes to make tissue- or cell-type-specific

Cre driver lines lies in the large size of DNA fragments that

BAC clones contain: typically over 100 kb and sometimes even

more than 200 kb. As the amount of flanking DNA increases so

does the prospect for faithful reproduction of endogenous

expression patterns (Giraldo and Montoliu, 2001). Even so,

some BAC-derived Cre transgenes may lack key regulatory

elements and may fail to fully mimic expression of the endoge-

nous gene. Methods for manipulating BAC DNA, referred to

as BAC recombineering, have been described that are simple

and reliable to perform. In addition, indexed BAC libraries

from the genomic DNA of several commonly used strains of

mice have been available for years (Osoegawa et al., 2000;

Sharan et al., 2009). While BAC-derived transgenes may be

less susceptible to position effects than more conventional

transgenes, variegated expression and silencing of BAC-derived

transgenes has nonetheless been reported (Alami et al., 2000).

This suggests that some BAC transgenes, despite their long

length, may still fall under the influence of the surrounding

chromatin environment.

The second method for deriving new Cre driver lines, and the

one which we generally prefer, is to perform gene targeting in

mouse ESCs to place Cre in a fully native genetic context (e.g.,

a gene knockin). This strategy results in Cre being expressed

in a manner that reflects all endogenous regulatory elements,

even those that are located a long distance from the transcrip-

tional start site. However, while this method is almost certain

to result in a high-fidelity expression pattern, it has three draw-

backs. First, it is time consuming to perform gene targeting in

mESCs. Second, unless the gene is engineered to maintain

expression of the gene that is targeted, haploinsufficiency will

occur. Third, breeding a Cre driver allele to homozygosity causes
16 Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc.
the knockout of genes that are often essential for the develop-

ment or life of the animal. While these issues can be overcome

by the careful engineering of a Cre-expressing allele to retain

expression of the endogenous gene, it adds additional technical

complexity when designing a targeting vector. Nonetheless, we

believe that the high-fidelity expression of Cre that is nearly

always achieved outweighs these limitations.

The derivation of new Cre knockin mouse lines can be

facilitated by two other technologies. The first is recombinase-

mediated cassette exchange (RMCE), which allows Cre-medi-

ated insertion of a target cassette into a predefined genomic

locus, or a loxed cassette acceptor (LCA) allele, that contains in-

verted (Feng et al., 1999) or heterotypic LoxP sites (Araki et al.,

2002). The principal advantage of this method is that it allows

multiple allelic variants to be made at a defined genetic location

with greater ease than can be achieved by repetitive gene target-

ing. Thus, once a genomic locus has been converted into a LCA

allele, it becomes possible to readily generate lines of mice that

express, for instance, Cre, CreER, or GFPCre. As an effort within

the Beta Cell Biology Consortium, we (and others) have gener-

ated mESCs containing LCAs for over a dozen genes, many of

which are useful for deriving driver alleles for expressing SSRs,

the reverse tetracycline transactivator (rtTA), or various fluores-

cent protein (FP) reporters. The genes for which LCA alleles

have been derived include Pdx1 (Potter et al., 2012), Ptf1a (Bur-

lison et al., 2008), Nkx2.2 (Papizan et al., 2011), Sox17 (Choi

et al., 2012), Neurog3, Insm1, Ghrl (Arnes et al., 2012), Sst, and

Ins2, and several of these LCA alleles have already been used

to derive new Cre or CreER drivers (Arnes et al., 2012; Choi

et al., 2012; Kopinke et al., 2012).

While RMCE can facilitate the generation of new Cre driver

alleles, this technology may soon be superseded by the use

of zinc finger nucleases (Urnov et al., 2010), transcription

activator-like effector nucleases (TALENs) (Joung and Sander,

2013), and the clustered regularly interspaced short palindromic

repeats/CRISPR-associated (CRISPR/Cas) system (Cong et al.,

2013). These emerging technologies greatly improve the effi-

ciency of gene targeting, thereby making it possible to more

readily engineer loci to express any of the SSRs or their deriva-

tives (Cui et al., 2011).

Despite the existence of a seemingly large number of Cre

driver lines, there remains a need for more high-fidelity driver

lines, not only for Cre, but also for other SSRs. Indeed, given

that some mouse models require the simultaneous activation

and/or knockout of two different genes, reliable Flpo and Dre

drivers will likely also be of value. Thus, we encourage efforts

directed at deriving new SSR driver lines whose expression

patterns are accurately defined.

A Continuing Need for Caution
While Cre/LoxP has become an indispensible tool for performing

genetic manipulations in the mouse, the experience of many in-

vestigators has also taught us about some of the limitations of

the system. For instance, it is important to not extrapolate from

one recombination event to another since recombination at

one floxed allele in a cell does not always mean that a second

floxed allele in the same cell will have also recombined

(Liu et al., 2013). This is due to apparent differences in the sus-

ceptibility of alleles to Cre-mediated recombination (Vooijs
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et al., 2001). Indeed, the efficiency of deletion of a floxed allele in

given cell type may differ from that in a second cell type, even

when the amount of Cre in the cell is the same (Long and Rossi,

2009). Also, even when a driver line is of high efficiency and

specificity, recombination at a given floxed allele may vary due

to differences in the background strains used.

Both the timing and efficiency of Cre recombination can also

greatly influence an experimental outcome. For example, the

use of different Pdx1-Cre deleter mice in studies ofWnt signaling

during early pancreas development led to markedly different

experimental conclusions (Dessimoz et al., 2005; Heiser et al.,

2006; Murtaugh et al., 2005), an outcome that emphasizes the

continuing need for caution, particularly with respect to data

interpretation. Indeed, we believe it is prudent to maintain

some skepticism about all published descriptions of Cre reporter

lines and to occasionally reassess both the efficiency and spec-

ificity of Cre recombination. Finally, it may be vital to use a Cre-

only control to exclude any unexpected phenotypes caused by

Cre itself, as described in the accompanying perspective by

Harno et al. (2013).
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tation expression patterns indicate a role for themouse forkhead/HNF-3 alpha,
beta and gamma genes in determination of the definitive endoderm, chorda-
mesoderm and neuroectoderm. Development 119, 567–578.

Mounien, L., Marty, N., Tarussio, D., Metref, S., Genoux, D., Preitner, F.,
Foretz, M., and Thorens, B. (2010). Glut2-dependent glucose-sensing controls
thermoregulation by enhancing the leptin sensitivity of NPY and POMC neu-
rons. FASEB J. 24, 1747–1758.

Murtaugh, L.C., Law, A.C., Dor, Y., and Melton, D.A. (2005). Beta-catenin is
essential for pancreatic acinar but not islet development. Development 132,
4663–4674.

Nakamura, K., Minami, K., Tamura, K., Iemoto, K., Miki, T., and Seino, S.
(2011). Pancreatic b-cells are generated by neogenesis from non-b-cells after
birth. Biomed. Res. 32, 167–174.

Nakhai, H., Sel, S., Favor, J., Mendoza-Torres, L., Paulsen, F., Duncker, G.I.,
and Schmid, R.M. (2007). Ptf1a is essential for the differentiation of
GABAergic and glycinergic amacrine cells and horizontal cells in the mouse
retina. Development 134, 1151–1160.

Offield, M.F., Jetton, T.L., Labosky, P.A., Ray, M., Stein, R.W., Magnuson,
M.A., Hogan, B.L., and Wright, C.V. (1996). PDX-1 is required for pancreatic
outgrowth and differentiation of the rostral duodenum. Development 122,
983–995.

Orban, P.C., Chui, D., and Marth, J.D. (1992). Tissue- and site-specific DNA
recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6861–6865.

Osoegawa, K., Tateno, M., Woon, P.Y., Frengen, E., Mammoser, A.G.,
Catanese, J.J., Hayashizaki, Y., and de Jong, P.J. (2000). Bacterial artificial
chromosome libraries for mouse sequencing and functional analysis. Genome
Res. 10, 116–128.

Papizan, J.B., Singer, R.A., Tschen, S.I., Dhawan, S., Friel, J.M., Hipkens, S.B.,
Magnuson, M.A., Bhushan, A., and Sussel, L. (2011). Nkx2.2 repressor com-
plex regulates islet b-cell specification and prevents b-to-a-cell reprogram-
ming. Genes Dev. 25, 2291–2305.

Park, E.J., Sun, X., Nichol, P., Saijoh, Y., Martin, J.F., and Moon, A.M. (2008).
System for tamoxifen-inducible expression of cre-recombinase from the
Foxa2 locus in mice. Dev. Dyn. 237, 447–453.

Postic, C., Shiota, M., Niswender, K.D., Jetton, T.L., Chen, Y., Moates, J.M.,
Shelton, K.D., Lindner, J., Cherrington, A.D., and Magnuson, M.A. (1999).
Dual roles for glucokinase in glucose homeostasis as determined by liver
and pancreatic beta cell-specific gene knock-outs using Cre recombinase.
J. Biol. Chem. 274, 305–315.

Potter, L.A., Choi, E., Hipkens, S.B., Wright, C.V., and Magnuson, M.A. (2012).
A recombinase-mediated cassette exchange-derived cyan fluorescent protein
reporter allele for Pdx1. Genesis 50, 384–392.

Ray, M.K., Fagan, S.P., Moldovan, S., DeMayo, F.J., and Brunicardi, F.C.
(1999). Development of a transgenic mouse model using rat insulin promoter
to drive the expression of CRE recombinase in a tissue-specific manner. Int.
J. Pancreatol. 25, 157–163.

Raymond, C.S., and Soriano, P. (2007). High-efficiency FLP and PhiC31 site-
specific recombination in mammalian cells. PLoS ONE 2, e162.

Reinert, R.B., Kantz, J., Misfeldt, A.A., Poffenberger, G., Gannon,M., Brissova,
M., and Powers, A.C. (2012). Tamoxifen-Induced Cre-loxP Recombination Is
Prolonged in Pancreatic Islets of Adult Mice. PLoS ONE 7, e33529.

Reuter, G., and Spierer, P. (1992). Position effect variegation and chromatin
proteins. Bioessays 14, 605–612.

Sato, M., Yasuoka, Y., Kodama, H., Watanabe, T., Miyazaki, J.I., and Kimura,
M. (2000). New approach to cell lineage analysis in mammals using the Cre-
loxP system. Mol. Reprod. Dev. 56, 34–44.

Sauer, B., andMcDermott, J. (2004). DNA recombination with a heterospecific
Cre homolog identified from comparison of the pac-c1 regions of P1-related
phages. Nucleic Acids Res. 32, 6086–6095.
Schonhoff, S.E., Giel-Moloney, M., and Leiter, A.B. (2004). Neurogenin
3-expressing progenitor cells in the gastrointestinal tract differentiate into
both endocrine and non-endocrine cell types. Dev. Biol. 270, 443–454.

Sharan, S.K., Thomason, L.C., Kuznetsov, S.G., and Court, D.L. (2009).
Recombineering: a homologous recombination-based method of genetic
engineering. Nat. Protoc. 4, 206–223.

Shen, H.C., Adem, A., Ylaya, K., Wilson, A., He, M., Lorang, D., Hewitt, S.M.,
Pechhold, K., Harlan, D.M., Lubensky, I.A., et al. (2009). Deciphering von
Hippel-Lindau (VHL/Vhl)-associated pancreatic manifestations by inactivating
Vhl in specific pancreatic cell populations. PLoS ONE 4, e4897.

Smith, S.B., Qu, H.Q., Taleb, N., Kishimoto, N.Y., Scheel, D.W., Lu, Y., Patch,
A.M., Grabs, R., Wang, J., Lynn, F.C., et al. (2010). Rfx6 directs islet formation
and insulin production in mice and humans. Nature 463, 775–780.

Soeda, T., Deng, J.M., de Crombrugghe, B., Behringer, R.R., Nakamura, T.,
and Akiyama, H. (2010). Sox9-expressing precursors are the cellular origin
of the cruciate ligament of the knee joint and the limb tendons. Genesis 48,
635–644.

Solar, M., Cardalda, C., Houbracken, I., Martı́n, M., Maestro, M.A., De Medts,
N., Xu, X., Grau, V., Heimberg, H., Bouwens, L., and Ferrer, J. (2009). Pancre-
atic exocrine duct cells give rise to insulin-producing beta cells during embryo-
genesis but not after birth. Dev. Cell 17, 849–860.

Song, J., Xu, Y., Hu, X., Choi, B., and Tong, Q. (2010). Brain expression of Cre
recombinase driven by pancreas-specific promoters. Genesis 48, 628–634.

Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter
strain. Nat. Genet. 21, 70–71.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M.,
and Costantini, F. (2001). Cre reporter strains produced by targeted insertion
of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4.

Steneberg, P., Rubins, N., Bartoov-Shifman, R., Walker, M.D., and Edlund, H.
(2005). The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and
impaired glucose homeostasis in mouse. Cell Metab. 1, 245–258.

Taniguchi, H., He, M., Wu, P., Kim, S., Paik, R., Sugino, K., Kvitsiani, D., Fu, Y.,
Lu, J., Lin, Y., et al. (2011). A resource of Cre driver lines for genetic targeting of
GABAergic neurons in cerebral cortex. Neuron 71, 995–1013.

Tham, W.H., and Zakian, V.A. (2002). Transcriptional silencing at Saccharo-
myces telomeres: implications for other organisms. Oncogene 21, 512–521.

Tsai, H.H., Li, H., Fuentealba, L.C., Molofsky, A.V., Taveira-Marques, R.,
Zhuang, H., Tenney, A., Murnen, A.T., Fancy, S.P., Merkle, F., et al. (2012).
Regional astrocyte allocation regulates CNS synaptogenesis and repair.
Science 337, 358–362.

Uetzmann, L., Burtscher, I., and Lickert, H. (2008). A mouse line expressing
Foxa2-driven Cre recombinase in node, notochord, floorplate, and endoderm.
Genesis 46, 515–522.

Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. (2010).
Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11,
636–646.

Vooijs, M., Jonkers, J., and Berns, A. (2001). A highly efficient ligand-regulated
Cre recombinase mouse line shows that LoxP recombination is position
dependent. EMBO Rep. 2, 292–297.

Wang, Q., Elghazi, L., Martin, S., Martins, I., Srinivasan, R.S., Geng, X., Slee-
man, M., Collombat, P., Houghton, J., and Sosa-Pineda, B. (2008a). Ghrelin
is a novel target of Pax4 in endocrine progenitors of the pancreas and duo-
denum. Dev. Dyn. 237, 51–61.

Wang, S., Hecksher-Sorensen, J., Xu, Y., Zhao, A., Dor, Y., Rosenberg, L.,
Serup, P., and Gu, G. (2008b). Myt1 and Ngn3 form a feed-forward expression
loop to promote endocrine islet cell differentiation. Dev. Biol. 317, 531–540.

Wang, Y., Tripathi, P., Guo, Q., Coussens,M., Ma, L., and Chen, F. (2009). Cre/
lox recombination in the lower urinary tract. Genesis 47, 409–413.

Wang, H., Lei, Q., Oosterveen, T., Ericson, J., and Matise, M.P. (2011). Tcf/Lef
repressors differentially regulate Shh-Gli target gene activation thresholds to
generate progenitor patterning in the developing CNS. Development 138,
3711–3721.
Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc. 19



Cell Metabolism

Perspective
Wicksteed, B., Brissova, M., Yan, W., Opland, D.M., Plank, J.L., Reinert, R.B.,
Dickson, L.M., Tamarina, N.A., Philipson, L.H., Shostak, A., et al. (2010). Con-
ditional gene targeting in mouse pancreatic ß-Cells: analysis of ectopic Cre
transgene expression in the brain. Diabetes 59, 3090–3098.

Wiebe, P.O., Kormish, J.D., Roper, V.T., Fujitani, Y., Alston, N.I., Zaret, K.S.,
Wright, C.V., Stein, R.W., and Gannon, M. (2007). Ptf1a binds to and activates
area III, a highly conserved region of the Pdx1 promoter that mediates early
pancreas-wide Pdx1 expression. Mol. Cell. Biol. 27, 4093–4104.

Xuan, S., Borok, M.J., Decker, K.J., Battle, M.A., Duncan, S.A., Hale, M.A.,
Macdonald, R.J., and Sussel, L. (2012). Pancreas-specific deletion of
mouse Gata4 and Gata6 causes pancreatic agenesis. J. Clin. Invest. 122,
3516–3528.

Yang, X., Arber, S., William, C., Li, L., Tanabe, Y., Jessell, T.M., Birchmeier, C.,
and Burden, S.J. (2001). Patterning of muscle acetylcholine receptor gene
expression in the absence of motor innervation. Neuron 30, 399–410.
20 Cell Metabolism 18, July 2, 2013 ª2013 Elsevier Inc.
Yang, L., Cai, C.L., Lin, L., Qyang, Y., Chung, C., Monteiro, R.M., Mummery,
C.L., Fishman, G.I., Cogen, A., and Evans, S. (2006). Isl1Cre reveals a
common Bmp pathway in heart and limb development. Development 133,
1575–1585.

Yoshida, S., Takakura, A., Ohbo, K., Abe, K., Wakabayashi, J., Yamamoto, M.,
Suda, T., and Nabeshima, Y. (2004). Neurogenin3 delineates the earliest
stages of spermatogenesis in the mouse testis. Dev. Biol. 269, 447–458.

Zhang, H., Fujitani, Y., Wright, C.V., and Gannon, M. (2005). Efficient recombi-
nation in pancreatic islets by a tamoxifen-inducible Cre-recombinase. Genesis
42, 210–217.

Zhou, Q., Law, A.C., Rajagopal, J., Anderson, W.J., Gray, P.A., and Melton,
D.A. (2007). A multipotent progenitor domain guides pancreatic organogen-
esis. Dev. Cell 13, 103–114.


	Pancreas-Specific Cre Driver Lines and Considerations for Their Prudent Use
	Cre/LoxP and Its Use in Mice
	Pancreas-Specific Cre Driver Lines
	Endocrine Cell-Type-Specific Driver Lines
	Acinar Cell Driver Lines
	Ductal Cell Driver Lines
	Driver Lines Based on Genes Expressed in Progenitor Cells
	Global Endoderm Deleters
	Pancreas-wide Deleters
	Endocrine Lineage-Specific Deleters

	Limitations of Short Promoter Fragment Transgenes
	Approaches for Obtaining High-Fidelity Cre Driver Line Expression
	A Continuing Need for Caution
	Acknowledgments
	References


