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Abstract - -We consider the problem of enumerating spanning trees on lattices. Closed-form ex- 
pressions are obtained for the spanning tree generating function for a hypercubic lattice in d dimen- 
sions under free, periodic, and a combination of free and periodic boundary conditions. Results are 
also obtained for a simple quartic net embedded on two nonorientable surfaces, a M6bius strip and the 
Klein bottle. Our results are based on the use of a formula expressing the spanning tree generating 
function in terms of the eigenvalues of an associated tree matrix. An elementary derivation of this 
formula is given. @ 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

The problem of enumerating spanning trees on a graph was first considered by Kirchhoff [1] in 

his analysis of electrical networks. Consider a graph G = {If, E} consisting of a vertex set V and 

an edge set E. We shall assume that  G is connected. A subset of edges T C E is a spanning tree 

if it has IvI - 1 edges with at least one edge incident at each vertex. Therefore, T has no cycles. 
In ensuing discussions, we shall use T to also denote the spanning tree. 

Number the vertices fi'om 1 to IVI and associate to the edge eij connecting vertices i and j a 

weight zia, with the convention of xii = 0. The enmneration of spanning trees concerns with the 

evaluation of the tree generating function 
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where the summation is taken over all spanning trees T. Particularly, the number of spanning 
trees on G is obtained by setting x~j = 1 as 

NSpT(G) = T(G; 1). (2) 

Considerat ions of spanning tree also arise in statistical physics [4] in the enumeration of close- 
packed dimers (perfect matchings) [51. Using a similar consideration, for example, one of us [6] 

has evaluated the number of spanning trees for the simple quartic, triangular, and honeycomb 

lattices in the limit of IV[ -~ oc. In this letter, we report  new results on the evaluation of the 

generating function equation (1) for finite hypercubic lattices in arbi t rary dimensions. Results 
are also obtained for a simple quartic net embedded on two nonorientable surfaces, the MSbius 
strip and the Klein bottle. As the main formula used in this letter is a relation expressing the 

tree generating function in terms of the eigenvalues of an associated tree matrix, for completeness 
we give an elementary derivation of this formula. 

2. T H E  T R E E  M A T R I X  

For a given graph G = {V, E} consider a fVt x IV[ matrix M(G)  with elements 

IYl 

E X~k' i = j = l , 2 , . . . , I V I ,  

M, j(c) = (3) 
--Xij, if vertices i, j ,  i ¢ j ,  are connected by an edge, 

0, otherwise. 

We shall refer to M ( G )  simply as the tree matrix. It  is well known [7,8] tha t  the tree generating 

flmction, equation (1), is given by the cofactor of any element of the tree matrix, and that  the  
cofactor is the same for all elements. Namely, we have the identity 

T(G; {xij}) = the cofactor of any element of the matr ix  M(G) .  (4) 

The tree generating function can also be expressed in terms of the eigenvalues of the tree 
matr ix  M ( G )  [2, p. 39]. We give here an elementary derivation of this result which we use in 

subsequent sections. 
Let M ( G )  be the tree matr ix  of a graph G = {V, E}. Since the sum of all elements in a row 

of M ( G )  equals to zero, M ( G )  has 0 as an eigenvalue and, by definition, we have 

where 

det ]Mij (G) - ),Sij] = -)~F(A), (5) 

IYr 
F(~)  = I I  ( ~  - ~ ) '  (6) 

i=2 

A2, A3,. - •, AIV I being the remaining eigenvalues. 
Now the sum of all elements in a row of the determinant ]Mij(G) - AS.ij] is -A.  This permits 

us to replace the first column of det]Mij(G) - ASij] by a column of elements - A  without affecting 
its value. Next we carry out a Laplace expansion of the resulting determinant  along the modified 

column, obtaining 
iVl 

det IM~j(O)- A'~jl-- -.X ~ C,,(.X), (7) 
i = 1  

where C i l ( / ~  ) is the cofactor of the (il)  th element of the determinant.  Combining equations 
(5)-(7), we are led to the identity 

Ivl 
e(.x) = c.( ,x) ,  (s) 

i = i  



Nonorientable Surfaces 21 

Now, C~1(0) is precisely the cofactor of the (il) th element of M ( G )  which, by equation t l) .  

is equal to the tree generating function T(G;  {xij}). It  follows that .  after seth'w~ A II iu 

equation (8), we obtain the expression 

1 IVl 

T(G; [I  a,. 
i=2 

(0) 

3 .  H Y P E R C U B I C  L A T T I C E S  

We now deduce the closed-form expression for the tree generating function for a hyl)erc~tbic 

lattice in d dimensions under various boundary conditions. 

3 . 1 .  F r e e  B o u n d a r y  C o n d i t i o n s  

TItEOREM 1. Let  Zd be a d-dimensional  hypercubic  lattice of  size N 1 × N2 × " '"  × :\rd with edge 
weights  x i  along the ith direction, i = 1, 2 , . . . .  d. The  tree generating f lmet ion fbr Z,t is 

T(Zd; {*J) - N t 
hi=0 n,~=0 Li=I 

(n~,..., ~ )  ¢ (0,..., 0), 

where  iV" = N 1 N 2 . . .  N d. 

PROOF. The  tree matr ix  of Za assumes the form of a linear combination of direct products of 
smaller matrices, 

d 

M(Zd)  = E xi  [2IN, ® iN2 ® " "  ® I:<, 
"~.=1 

- - I N 1  @ " '"  @ IN, , ~ HN~ ~<; I,\%~ *Z: . . . .  *.~, I:\ , , ! ,  

(11) 

where IN is an N x N identity matr ix  and HN 

1 1 0 

1 0 1 

0 1 0 
H N  : : : : 

0 0 0 

0 0 0 

It  is readily verified tha t  H N  is diagonalized 

is the N × N tri-diagonal matr ix  

0 0 0 

0 0 0 

0 0 0 

.. 1 0 1 

. .  0 1 1 

by the similarity t ransformation 

S N H N S N  1 = AN,  

w h e r e  S N and SN 1 are N x N matrices with elements 

S - I  = ( 

, t2)  

(l:~) 

\ 2 N / J  ' 

'm,,n = 0, 1 , . . . ,  N 1, 

(io) 

This result can also be deduced by considering tile tree matrix of a graph obtained frolu C I)y 
adding an auxiliary vertex connected to all vertices with edges of weight :r. tbllowed by taking 

the limit of x --+ 0 [9]. 
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and AN is an N x N diagonal mat r ix  with diagonal elements 

nTr 
A n = 2 C O S - ~ - ,  n = 0 , 1  . . . .  , N - 1 .  (15) 

Here 5m,  n is the Kronecker  delta. I t  follows tha t  M ( Z d )  is diagonalized by the similarity trans-  

format ion  

SAYM (Zg) SAf 1 = n a y  , (16) 

where 

S.hf ~- SN 1 @ SN 2 @ " "  @ SNd, 

and AAY is an N" x A f  diagonal matr ix  with diagonal elements 

(17) 

A~, ..... ,,<, = 2  x i  1 - c o s  NiJ' ni = O , 1 , . . . , N ~ -  l. (18) 

Now, we have An1 ..... na = 0 for n l  = n2 . . . . .  n d =  0. This establishes Theorem 1 after using 
equat ion (9). II 

REMARK. The  result equat ion (18) generalizes the d = 2 eigenvalues of M(Z2)  for x, = 1 reported 

in [2, p. 74]. 

3 . 2 .  P e r i o d i c  B o u n d a r y  C o n d i t i o n s  

In applicat ions in physics, one often requires periodic boundary  condit ions depicted by the 

condit ion tha t  two "boundary"  vertices at coordinates  ( . . . ,  n i = 1 , . . .  ) and ( . . . ,  n~ = N / , . . .  ), 
i = 1, 2 , . . . ,  d, are connected by an extra  edge. This leads to a lattice Zd Per which is a regular 

g raph  with degree 2d at all vertices. For d = 2, for example, Z Per can be regarded as being 

embedded  on the surface of a torus. 

THEOREM 2. Let  Z Per be a hypercubic  lattice in d dimensions o f  size N1 x N2 x . . .  x Nd with 

edge weights  xi along the i TM direction, i = 1 , 2 , . . . ,  d with periodic boundary  conditions. The  

tree generat ing funct ion for Z Per is 

(zPer. T t d , { X i } )  - -  1 - [ -  I I  xi 1-cos , 

,~,=o ,~,,=o i=1 N,  ) J  

( n l , . . . , n d )  :)~ ( 0 , . . . , 0 ) .  

(19) 

PROOF. The  tree matr ix  assumes the form 

d 
M ( Z  Per) = E Xi  [2ZN 1 (~ I N  2 @ " "  @ IN, ,  --  /N1 ( ~ ' ' "  

i=1 

®Ig,_~ ® GN~ ® Ig~+~ ® " "  ® IN,~] , 

(20) 

where GN is the N x N cyclic mat r ix  

G N  = 

/ 0  1 0 0 . . .  0 0 1 
1 0 1 0 . . .  0 0 0 
0 1 0 1 . . .  0 0 0 
: : : : ". .  : : : 

0 0 0 0 . . .  1 0 1 
1 0 0 0 . . .  0 1 0 

(21) 
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As in equation (16), the  ma t r ix  Per M ( Z  d ) can be diagonalized by a sinfilaritv transform~tt ion 

genera ted  l)y 

R Iv" = R,% @, RN2 @ . . . .  ~'# 1Lv,,, (22) 

where  I~N is an N x N ma t r ix  with e lements  

--1 * 1 \ T - - l / 2 c i 2 ~ m ~ / ' \ :  ( R , , , ) , , , , ~  = ( ~ , , , )  . . . . .  = , ( : ~ s ;  

where * denotes  the complex  c o n j u g a t e  yielding eigenvalues of GN as 

27t7 
k~=2cos N ' n , = ( ) , l  . . . . .  N 1. (24) 

This  es tabl ishes  T h e o r e m  2 after using equat ion (9). 

3.3. Periodic Boundary Conditions Along m < el Directions 

• Z Per(m) COHOL1,ARY L e t  d t)e a hypercul) ic  lat t ice in d d imensions  o f  size ;\;~ x IV 2 x • . .  × N,/ wi th  

f;~riodic I)oundary condi t ions in directions 1, 2 , . . . ,  m, < d and ti~e I)olmdaries iu the  r~'mz)i, tin~ 

d - 'm directions.  The  tree generat ing  f~mction is 

( ) 2.N'_l NI-1 N,,-1 - £  Q '2H.,~ 
r - Ac I-[ ' I 1  1-co.  ,v, ; 

hi=0 n,s=0 L = 

+ ~ x, 1 - c o s  ~ - j  , (" , t , . . . , 'n , , , )  / ((} . . . .  (}1. 
' i = m + l  

4. T H E  M O B I U S  S T R I P  A N D  T H E  K L E I N  B O T T L E  

Due to the in terplay wi th  the  conformal  field theory  [10], it is of currell t  interest  in st~ttis- 

t ical physics to s tudy  lat t ice sys tems on nonorientable  surfaces [11,12]. Here, we consider two 

Stlch surfaces,  the  M6bius s t r ip  and tile Klein bott le,  and obta in  the respective tt>e g(ql(!rating 

t~ met.ions. 

4.1. The MSbius Strip 

'['HEOREM 3. Let  Z} 'l°b be an M x N s imple  quartic  ne t  embedded  on a 'M61)i~l,~ s tr ip  tbrming  

, hliSt)ius ne t  o f  wid th  M and twis ted  in the direction N ,  wi th  edge weights  :*'1 and :u2 along 

direct ions A f  and N ,  respectively.  The  tree generat ing  funct ion for Z~ *°b is 

¢, (z},*o,,; {.~:~, :,:,_,}) - 1-I :~, 1 - c o ~  W 
k i N  .,,~=o ,,=0 

COS ,2-~7 , ( n u n )  ~ (0,0).  

q2~) 

PI~OOF. Specifically, let the  the  two vertices at  coordinates  {re, l} and { M - -  m.. N } ,  m. = 

1 , 2 , . . . ,  AJ be connected with  a lat t ice edge of weight x,2. Then  tile tree ma t r ix  assmncs  the 
form 

M Mob (Z 2 ) 2 0 : 1 + x 2 ) I M ® I N - . c 1 H , w G ,  I~, -x,e[I~l :>~FN +JM :<'N~~. ~27) 



24 W.-J .  TZENG AND F. Y. W u  

where 

FN = 

/0  1 0 0 
1 0 1 0 

0 1 0 1 

0 0 0 0 
0 0 0 0 

. . .  0 0 0 

. . .  0 0 0 

. . .  0 0 0 

. .  1 0 1 

. .  0 1 0 

J M  = 

0 0 

0 0 

0 0 

0 1 

1 0 

. . .  0 0 1 ~ 

. . .  0 1 0 

..  1 0 0 

• . : : : 

. .  0 0 0 

. .  0 0 0 

K N -~  

tO 0 0 . . .  0 1 

0 0 0 . . .  0 0 

0 0 0 . . .  0 0 

0 0 0 . . .  0 0 

1 0 0 . . .  0 0 

Since HM and J~I commute, they can be simultaneously diagonalized by applying the similarity 
transformation equation (13)• The transformed matrix S H M ( Z f ° b ) s )  1 is block diagonal with 
N x N blocks 

2 x l - 9 2 1 c o s  - ~  + x 2  I N - - x 2 ( F N  + ( - - 1 ) m K N ) ,  m = 0 , 1 , . . . , 2 / 4 - -  1. (28) 

Now, the eigenvalues of G N  = F N  + K N  and F N  - - K N  are, respectively, 2 cos[20z + 1)~r/N] and 
2 cos[(2~z + 1)Tr/N], ~t = 0, 1 , . . . ,  N - 1. Theorem 3 is established by combining these results with 

equation (9)• | 

REMARK. For M = 2 and zl  = z2 = 1, equation (26) gives the number of spanning trees on 
a 2 x N M6bius ladder as 

- 3 -  ( - 1 )  j - 2cos 
N S P T  2 - -N  j = l  

(29) 
[2 + (2 + v )N + (2 - ,/5) N] 

These two equivalent expressions have previously been given by [2, p. 218] and by Guy and 
Harary [3], respectively. 

4.2. T h e  K l e i n  B o t t l e  

The embedding of an M x N simple quartic net on a Klein bottle is accomplished by further 
imposing a periodic boundary condition to Z~ 1°b in the M direction, namely, by connecting 
vertices of Z~ l°b at coordinates {1,n} and {M, n}, n = 1, 2 , . . . ,  N with an edge of weight 92~. 
This leads to a lattice Z K~in of the topology of a Klein bottle• 

THEOREM 4. T h e  tree g e n e r a t i n g  f u n c t i o n  for  Z~ l~in ( d e s c r i b e d  in t h e  a b o v e )  is 

1-cos 

X I ' I  1 - I  X 1 1 - - C O S  .~./ . ]-[-922 X - - c o s - -  
m = l  n=O 

~_i1 2 3 2 1  - -  z2 1 - cos N 
X n=0 

1, for  M odd ,  

where [~z] is t h e  i n t e g r a l  p a r t  o f  n .  

(30) 
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PROOf'. The tree matr ix  of Z Klein a s s u m e s  the form 

M (Z Klein) = 2 (351 + X2) I ~ 1  @ I N - -  XlGM ® IN -- x2 [IM ® FN + JM ® I (N ] .  (31) 

l b  obtain its eigenvalues, we first apply the similarity transformation generated by RM in the 
3I subspace. While this diagonalizes GM with eigenvalues 2cos(2mrc /M) ,  m = O, 1 , . . . ,  M - 1, 

it transforms the tree matrix M ( Z  Klein) into 

Ao + Bo 0 0 . . .  0 0 0 \ 

0 A1 0 . . .  0 0 B1 

) 

0 0 A2 . . .  0 B2 0 
• . , . . .  " , 

0 0 B - 2  . . .  0 A-,2 0 
0 B_~ 0 . . .  0 0 A_ 

(32) 

where Am and Bm are N x N matrices given by 

A m = 2  Xa + X2 -- Xl COS --~-j  IN -- X2FN, 

Bm= --e2'~im/Mx2KN, m = O, 1 , . . . ,M  - 1. 

A m B m  
The matr ix  equation (32) is block diagonal with blocks A0 + Bo, (B ..... A ..... ), 17~, = 1 ,2  . . . . .  

[(M - 1)/2] and, for m = even, AM~2 + Bt~U2. The eigenvalues of individual blocks can be 
deduced from those of FN ± I£N, We are led to the theorem after using equation (9)• | 
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