
Journal of Applied Logic 8 (2010) 153–172

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Journal of Applied Logic

www.elsevier.com/locate/jal

Complete axiomatizations for XPath fragments

Balder ten Cate a, Tadeusz Litak b,∗, Maarten Marx c

a INRIA, ENS de Cachan, 61, avenue du President Wilson, 94235 Cachan Cedex, France
b Department of Computer Science and Information Systems, Birkbeck College, University of London, Malet Street, Bloomsbury, London, WC1E 7HX, UK
c Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 22 September 2009

Keywords:
XML
XPath
Query rewriting
Axiomatization
Modal logic

We provide complete axiomatizations for several fragments of Core XPath, the
navigational core of XPath 1.0 introduced by Gottlob, Koch and Pichler. A complete
axiomatization for a given fragment is a set of equivalences from which every other
valid equivalence is derivable; equivalences can be thought of as (undirected) rewrite
rules. Specifically, we axiomatize single axis fragments of Core XPath as well as full
Core XPath. Our completeness proofs use results and techniques from modal logic.

© 2009 Elsevier B.V. All rights reserved.

XPath [36] is the W3C standard language for navigating through XML documents. It lies at the core of most XML
processing technologies, such as XML Schema, XQuery and XSLT. Because of the central rôle that XPath plays in many
XML-related formalisms, the static analysis of XPath expressions has been a prominent subject of research. The complexity
of containment and satisfiability has been determined for many fragments of XPath (cf. [29] and references therein). Query
optimization plays a key part in most XML processing engines, and is typically implemented by means of rewrite rules (cf.
for example [1,18]).

In this paper, we present complete axiomatizations for fragments of XPath. By a complete axiomatization, we mean a set
of valid equivalence schemes between XPath expressions, from which every other valid equivalence is derivable. An example
of a valid equivalence scheme is A[φ ∨ ψ] ≡ A[φ] ∪ A[ψ]. No matter which path expression is substituted for A and which
node expressions are substituted for φ and ψ , the resulting pair of path expressions will be equivalent.

From the point of view of query optimization, the equivalence schemes can be thought of as undirected rewrite rules.
Completeness, then, means that whenever an expression Γ is equivalent to another expression �, then � can be obtained
from Γ by a sequence of applications of these rewrite rules. Thus, a complete axiomatization provides a good starting
point for obtaining an effective set of rewrite rules. Of course, having a complete axiomatization is not enough for query
optimization: one also needs a good rewriting strategy. This is another topic, which we will not pursue here.

In this paper, we study Core XPath, which was introduced in [8,9] to capture the navigational core of XPath 1.0. We
present finite complete axiomatizations for all single axis fragments of Core XPath. The completeness holds both for node
expressions and for path expressions. We also obtain complete axiomatizations for node expressions and path expressions
of the full Core XPath language. The latter axiomatization is non-orthodox, i.e., requires introducing an additional inference
rule breaking the chain of equational reasoning. We leave the existence of a finite orthodox complete axiomatization for
path expressions of Core XPath as an open problem.

Related work and the meaning of our results. We are aware of two complete axiomatizations for XPath fragments. The first
is for the downward, positive, filter-free fragment of XPath [2], a rather limited fragment, and the second [31] concerns the

* Corresponding author.
E-mail addresses: balder.tencate@uva.nl (B. ten Cate), tadeusz@dcs.bbk.ac.uk (T. Litak), maartenmarx@uva.nl (M. Marx).
1570-8683/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2009.09.002

https://core.ac.uk/display/82390636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:balder.tencate@uva.nl
mailto:tadeusz@dcs.bbk.ac.uk
mailto:maartenmarx@uva.nl
http://dx.doi.org/10.1016/j.jal.2009.09.002

154 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
powerful language of Core XPath 2.0. However, an axiomatization for Core XPath is of interest even though an axiomatization
for Core XPath 2.0 is already known. If one wants to use the latter to prove validity of Core XPath (1.0) equivalences, one
may need to use intermediate Core XPath 2.0 expressions in the derivation. It is not clear, or even likely, that each of these
intermediate expressions could be rewritten to an equivalent one in Core XPath. This is an important issue, as Core XPath 2.0
is a much more complex language than Core XPath: its query equivalence problem is non-elementary [29], while the same
problem for Core XPath is only ExpTime-complete [4,19].

It is notable in this respect that for the axiomatization for Core XPath presented here, if two equivalent expressions
both belong to the same single axis fragment, a derivation exists that uses only intermediate results from the same fragment.
Observe that the complexity of the equivalence problem for single axis fragments of Core XPath is again typically lower
than for full Core XPath: it is either NP-complete or PSpace-complete, depending on the axis, as can be derived from results
in modal logic (cf. [28]).

Many typical XPath expressions belong to single axis fragments of Core XPath. Here are some examples.

Core XPath (↓) chapter/*[not(subsection)]
Core XPath (↓+) //footnote
Core XPath (↑) ../..[not(..)]
Core XPath (←+) preceding-sibling::price
Core XPath (→+) following-sibling::modification[not(following-sibling::modification)]

Thus, it is interesting to learn that the transformation between two equivalent expression in the same fragment can
be always conducted—at least in principle—using only the most basic rules of equational reasoning and without any in-
termediate expressions from more complex XPath fragments, where combinations of transitive/non-transitive, forward- and
backward-looking or horizontal and vertical axes would be allowed.

We briefly comment on logical meaning of our results. Our paper transfers equational axiomatization results for “static”
modal logics of node expressions to the “dynamic” or procedural [32] setting of path expressions. That is, we obtain axiom-
atizations for corresponding modal transition logics [35]. This can be done in an uniform way if we allow non-equational,
non-orthodox inference rules such as Sep discussed in Section 4. The task, however, becomes non-trivial if we insist that
the dynamic (“procedural”) axiomatization is also purely equational. Even if the original static logic is in the basic modal
signature of a single unary operator (in the terminology of this paper, it corresponds to simple node expressions of some
single axis fragment), smooth transfer of completeness for the corresponding modal transition logic requires a good choice
of proof technique. Our work seems to confirm again the importance of normal modal forms [6,15,23]. Sections 2.1 and 3.2
below offer brief comments and references on algebraic structures corresponding to the signature of Core XPath.

1. Preliminaries

1.1. Semantics: XML trees

We abstract away from atomic data attached to the individual elements, and view an XML document as a finite node-
labelled sibling-ordered tree. More formally, given a countably infinite set lab = v1, v2, v3, . . . of node labels, we define an
XML tree to be a structure T = (N, R↓, R→, L), where

– (N, R↓) is a finite tree (with N the set of nodes and R↓ the child relation),
– R→ is the successor relation of some linear ordering between siblings in the tree (in particular, for R→+ the transitive

closure of R→ , we have that for any two distinct siblings x, y, either xR→+ y or yR→+ x), and
– L : N → ℘(lab) labels the nodes with elements of lab.

We denote by R↓+ and R→+ the transitive closures of R↓ and R→ , i.e., the descendant and following-sibling relations.
R← , R←+ , R↑ and R↑+ are the converses of, respectively, R→ , R→+ , R↓ and R↓+ . The elements of lab correspond to XML
tags. It is customary to require that each node satisfies precisely one tag. For technical reasons it is convenient for us not to
make this assumption from the start, but we will explain later how a suitable axiom schema capturing this can be added
to the axiomatization.

1.2. Core XPath, the navigational core of XPath 1.0

The Core XPath language was introduced in [8,9] in order to capture the navigational core of XPath 1.0. Here, we follow
the definition of Core XPath given in [29], which has a different notation and is slightly more expressive, due to the fact
that it includes the non-transitive sibling axes.

The syntax of Core XPath is defined as follows:

Step := ↓ | ← | ↑ | →
Axis := Step | Step+

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 155
Table 1
Comparison with unabbreviated XPath notation [36].

Ours vs. Unabbreviated notation Ours vs. Unabbreviated notation

↓ child::* ↑ parent::*
← preceding-sibling::*[position()=1] → following-sibling::*[position()=1]
↓+ descendant::* ↑+ ancestor::*
←+ preceding-sibling::* →+ following-sibling::*
v self::v 〈pexpr〉 pexpr
¬nexpr not(nexpr) nexpr ∨ nexpr nexpr or nexpr

Table 2
Meaning of Core XPath expressions in (N, R↓, R→, L).

[[.]]PExpr := {(x, x) | x ∈ N}
[[s]]PExpr := Rs

[[s+]]PExpr := the transitive closure of Rs

[[A/B]]PExpr := {(x, y) | ∃z such that (x, z) ∈ [[A]]PExpr and (z, y) ∈ [[B]]PExpr}
[[A ∪ B]]PExpr := [[A]]PExpr ∪ [[B]]PExpr

[[A[φ]]]PExpr := {(x, y) | (x, y) ∈ [[A]]PExpr and y ∈ [[φ]]NExpr}

[[v]]NExpr := {x | v ∈ L(x)}
[[〈PathEx〉]]NExpr := {x | ∃y.(x, y) ∈ [[PathEx]]PExpr}
[[¬φ]]NExpr := {x | x /∈ [[φ]]NExpr}
[[φ1 ∨ φ2]]NExpr := [[φ1]]NExpr ∪ [[φ2]]NExpr

PathEx := . | Axis | PathEx[NodeEx] | PathEx/PathEx | PathEx ∪ PathEx

NodeEx := v | 〈PathEx〉 | ¬NodeEx | NodeEx ∨ NodeEx (v ∈ lab)

In this paper, Greek letters φ,ψ, . . . range over elements of NodeEx and Roman capitals A, B, C, . . . over elements of PathEx.
The letters s and a are metavariables ranging over, respectively, elements of Step and elements of Axis; thus, we can write
a := s | s+ . It is customary in XPath to call “.” an axis, but for our purposes it is convenient to treat it as a separate constant.
Note that we include the non-transitive sibling axes → and ← in the language. Also, we use angled brackets to distinguish
path expressions from node expressions that test for the existence of a path. We use the following abbreviations:

true for the node expression 〈.〉 ⊥ for the path expression .[false]
false for the node expression ¬true φ ∧ ψ for the node expression ¬(¬φ ∨ ¬ψ)

The reader familiar with original unabbreviated XPath notation [36] will notice that we included a number of abbreviations
and alterations—see Table 1 for comparison. Official abbreviated XPath notation [36] is different both from the unabbreviated
one and from the one in the present paper.

The semantics of Core XPath is defined in Table 2 by the functions [[·]]PExpr and [[·]]NExpr which take as input an XML tree
and a path expression or node expression, and produce a binary relation over the set of nodes or a set of nodes, respectively.
The XML tree is kept implicit in our notation.

For arbitrary A ⊆ Axis, we will denote by Core XPath(A) the fragment of Core XPath in which the only allowed axes are
those listed in A. When A has only one element a, we call Core XPath(a) a single axis fragment of Core XPath.

A Core XPath node equivalence instance is an expression of the form φ ≡ ψ , where φ,ψ ∈ NodeEx, and a Core XPath path
equivalence instance is an expression of the form A ≡ B , where A, B ∈ PathEx. An equivalence scheme may also contain path
metavariables (capital Latin letters) and node metavariables (lowercase Greek letters) as subexpressions of either side of the
equivalence. All expressions in Table 3 are equivalence schemes. An instance of a scheme is any equivalence instance arising
from the given scheme by uniformly replacing all metavariables with concrete expressions. For example, 〈.[〈↓+〉]〉 ≡ 〈↓+〉
is one of infinitely many instances of NdAx2 in Table 3. Depending on the context, we use the notion equivalence to refer
both to equivalence schemes and equivalence instances whenever it does not lead to ambiguities. Also, when equivalence
schemes are used in an axiomatization, we may refer to them as axioms. An a-instance of an axiom scheme is an instance
where no axis constant other than a occurs (recall that “.” is not an axis in our terminology!).

An equivalence is a Core XPath(A) equivalence if the expressions on both sides belong to Core XPath(A). If in every XML
tree it holds that [[φ]]NExpr = [[ψ]]NExpr , respectively [[A]]PExpr = [[B]]PExpr , then we say that the equivalence instance is valid.
An equivalence scheme is valid if all of its instances are.

We use A � B as shorthand for A ∪ B ≡ B , and φ � ψ as shorthand for φ ∨ ψ ≡ ψ . While this approach to containment
is standard in logic and algebra, it may at times prove confusing for the database community. This definition still allows to
derive equivalence through pairwise containment whenever necessary—it is enough to show that expressions on both sides
are equivalent to their join and use transitivity of equivalence. However, containment defined this way can be used to reason

156 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
Table 3
Basic axiom schemes valid on arbitrary structures.

Path Axiom Schemes for idempotent semirings

ISAx1 (A ∪ B) ∪ C ≡ A ∪ (B ∪ C)

ISAx2 A ∪ B ≡ B ∪ A
ISAx3 A ∪ A ≡ A
ISAx4 A/(B/C) ≡ (A/B)/C

ISAx5

{
./A ≡ A
A/. ≡ A

ISAx6

{
A/(B ∪ C) ≡ A/B ∪ A/C
(A ∪ B)/C ≡ A/C ∪ B/C

ISAx7 ⊥ ∪ A ≡ A

Path Axiom Schemes for predicates

PrAx1 A[¬〈B〉]/B ≡ ⊥
PrAx2 .[〈.〉] ≡ .
PrAx3 A[φ ∨ ψ] ≡ A[φ] ∪ A[ψ]
PrAx4 (A/B)[φ] ≡ A/B[φ]
Node Axiom Schemes

NdAx1 φ ≡ ¬(¬φ ∨ ψ) ∨ ¬(¬φ ∨ ¬ψ)

NdAx2 〈.[φ]〉 ≡ φ

NdAx3 〈A ∪ B〉 ≡ 〈A〉 ∨ 〈B〉
NdAx4 〈A/B〉 ≡ 〈A[〈B〉]〉

about equivalence even when it holds only in one direction: it abbreviates equivalence between the greater expression and
the join of both. The reason why containment is not always handled this way in the database world is that the most studied
class of queries—i.e., conjunctive queries—is not closed under union, whereas all classes of expressions studied in this paper
are.

A note of caution. The reader should be aware that some valid equivalence schemes for Core XPath are not valid equivalence
schemes for the full XPath language. For example, A[φ][ψ] = A[φ ∧ψ] is a valid equivalence of Core XPath, but not of XPath,
as is witnessed by the following instance:

child :: ∗[child :: v][position() = 1] �≡ child :: ∗[child :: v and position() = 1]
Note, though, that position() = 1 is not a Core XPath node expression despite the fact that some expressions containing
it can be simulated—see clauses for ← and → in Table 1.

2. Axioms, derivations and node normal forms

Recall that an axiomatization is a finite set of axioms—valid equivalence schemes. While it is not obligatory that all
axioms contain metavariables (see TransAx2 in Table 4), most axioms do and thus are schemes in proper sense. Tables 3,
4 and 5 present our proposed axioms for single axis fragments and (node expressions of) full Core XPath. The rest of the
paper will be devoted to proofs of their completeness. In this section, we are going to explain them in more detail, discuss
the notion of derivation we are going to use and prove a preliminary result on normal form for node expressions, which is
going to be used in all proofs to follow.

2.1. Basic axioms

Table 3 presents basic axiom schemes for Core XPath, which do not involve any axis or axes. As we are going to see,
however, it is possible to prove a completeness result for one of the single axis fragments even on the basis of this minimal
set of axioms—namely for Core XPath(↓).

2.1.1. Idempotent semirings axioms
The name comes from algebra. Idempotency is the property expressed by the axiom ISAx3. The natural numbers with

addition and multiplication form a semiring, but not an idempotent one. Distributive lattices with the two basic connectives
meet and join are natural examples of idempotent semirings. Tarski’s relation algebras [26,27] and Kleene algebras [16,17] in-
terpret / and ∪ in the same way as we do (as composition and union of relations, respectively), hence both have idempotent
semirings reducts.

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 157
Table 4
Axiom schemes for single axis fragments.

All axiom schemes from Table 3: common for all axes

Additional Axiom Schemes for children axis

none

Additional Axiom Scheme for other nontransitive axes

LinNTAx s[¬φ] ≡ . [¬〈s[φ]〉]/s for s ∈ {→,←,↑}
Additional Axiom Schemes for all transitive axes

TransAx1 〈s+[φ]〉 ≡ 〈s+[φ ∧ ¬〈s+[φ]〉]〉 }
for s ∈ {→,←,↑,↓}

TransAx2 s+/s+ � s+

Additional Axiom Scheme for non-descendant transitive axes

TransAx3 . [〈s+[φ]〉]/s+ ≡ s+[φ] ∪ s+[φ]/s+ ∪ s+[〈s+[φ]〉] for s ∈ {→,←,↑}

Table 5
Axiom schemes for full Core XPath.

All axiom schemes from Table 3 plus

TransAx1 〈s+[φ]〉 ≡ 〈s+[φ ∧ ¬〈s+[φ]〉]〉 for s ∈ {→,←,↑,↓}
TreeAx1

{
s+/s ∪ s ≡ s+ }

for s ∈ {→,←,↑,↓}
s/s+ ∪ s ≡ s+

TreeAx2 s[φ]/s−1 ≡ . [〈s[φ]〉] for s ∈ {←,→,↓}
TreeAx3 ↑[φ]/↓ ≡ (←+ ∪ →+ ∪ .)[〈↑[φ]〉]
TreeAx4

{ ←+ ≡ ←+[〈↑〉]
→+ ≡ →+[〈↑〉]

2.1.2. Predicate axioms
In the signature of Core XPath 2.0 [31], which includes intersection and complementation operators for binary relations,

predicates can be treated as defined operations—just like in the one-sorted signature of Tarski’s relation algebras [26,27]. In
XPath 1.0, there are less operations on relations available and predicates cannot be defined away.

2.1.3. Node axioms
NdAx1 is known in the algebraic community as the Huntington equation [14,13,22] and together with Der1 and Der2 from

Table 6 allows to derive the axioms of Boolean algebra for the node expression connectives ¬ and ∨. The axioms NdAx2,
NdAx3 and NdAx4 are counterparts of PrAx2, PrAx3 and PrAx4, respectively. This slight redundancy is the price one pays
for working in a two-sorted signature.

An algebraic note on the two-sorted signature. As pointed out by Georg Struth (p.c.), the two-sorted setting we are working
with corresponds to reducts of structures known to algebraists as boolean modules (see [11] for an extensive discussion and
up-to-date references). Strictly speaking, our signature is contained properly between that of semiring modules [5] and that
of boolean modules; the most appropriate name here would seem to be antidomain semiring modules or boolean modules over
idempotent semirings. It is also possible to find a one-sorted signature closely related to that of Core XPath: a brief discussion
is provided in Section 3.2 below.

2.1.4. The issue of unique node labels
Recall that in “real” XML trees, unlike the ones that we are using, each node satisfies exactly one label. In order to obtain

completeness for this more restricted semantics, it would suffice to add a further axiom scheme:

v ∧ v ′ ≡ ⊥ for distinct v, v ′ ∈ lab

In what follows, however, we find it more convenient not to add the above to our list of basic axioms. Thus, one may think
of labels in the present setting as modelling both XML tag names and attribute-value pairs.

2.2. Axis-specific axioms

All axioms presented up to now are valid on arbitrary structures, not only on finite trees. Table 4 introduces specific
axioms for all single axis fragments. Recall that in order to axiomatize Core XPath(a) for arbitrary a, we need only a-in-
stances of corresponding axioms.

TransAx1, also known as the Löb axiom, is valid on transitive structures which are well-founded, i.e., contain no infinite
ascending Rs+ -chains and no Rs+ -cycles. It is a powerful axiom. Modulo basic axioms given in Table 3, all the node expres-

158 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
Table 6
Examples of equivalences derivable from basic axioms.

Der1 φ ∨ ψ ≡ ψ ∨ φ

Der2 φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ

Der3 A[φ] ≡ A/.[φ]
Der4 A[true] ≡ A
Der5 A[false] ≡ ⊥
Der6 〈A[φ ∨ ψ]〉 ≡ 〈A[φ]〉 ∨ 〈A[ψ]〉
Der7 (A ∪ B)[φ] ≡ A[φ] ∪ B[φ]
Der8 φ � true
Der9 φ ∨ ¬φ ≡ true
Der10 A ≡ A[φ] ∪ A[¬φ]
Der11 .[〈A〉]/A ≡ A
Der12 〈A/B〉 � 〈A〉
Der13 〈A[false]〉 ≡ false
Der14 〈A[φ ∧ ψ]〉 ∧ ¬〈A[ψ]〉 ≡ false
Der15 〈A[φ]〉 ∧ ¬〈A[ψ]〉 � 〈A[φ ∧ ¬ψ]〉
Der16 A[φ]/.[¬φ] ≡ ⊥
Der17

{
A/⊥ ≡ ⊥
⊥/A ≡ ⊥

Der18 A[φ][¬φ] ≡ ⊥
Der19 A[φ ∧ ψ][¬φ] ≡ ⊥
Der20 A[φ][ψ][¬φ ∨ ¬ψ] ≡ ⊥
Der21 A[φ][ψ] ≡ A[φ ∧ ψ]
Der22 A[φ ∧ ψ] ≡ A[φ]/.[ψ]
Der23 φ ∧ ψ ≡ 〈.[φ]/.[ψ]〉
Der24 .[〈A〉]/.[φ]/A ≡ .[φ]/A

sion equivalences derivable from TransAx2 are already derivable from TransAx1 (see [3,33] for more information). TransAx2,
by itself, forces the transitivity of Rs+ . LinNTAx and TransAx3 are axioms of functionality and linearity, natural both from the
point of view of Relation/Dynamic Algebras and modal logic (cf. logics Alt.1 and GL.3).

2.3. Axioms for full Core XPath

We will now propose an axiomatization for full Core XPath. Table 5 presents a new group of axioms governing inter-
actions between axes; the symbol s−1 denotes the converse of s. The new group of axioms we add are tree axioms given
in Table 5. They are analogous to those for the logic of finite trees (LOFT) in [4] but are, we believe, more transparent. An
interested reader can refer to Table 8 below, which shows the original axioms of [4] rewritten as simple node expressions.

TransAx1 is already familiar from single axis fragments. TreeAx1 is a Kleene algebra axiom [16,17] corresponding to an
axiom of propositional dynamic logic (PDL) (cf. Mix in [7]). TreeAx2, TreeAx3 and TreeAx4 force that R→ is the converse of
R← , R↑ is the converse of R↓ and that R↑ , R← and R→ are partial functions. TreeAx3 together with TreeAx4 in addition
ensure proper interplay between horizontal and vertical axes.

2.4. Rules and derivations

Definition 1. For P , Q both path expressions or both node expressions, we say that P ≡ Q is derivable from a given set of
axioms if it can be obtained from them using the standard rules of equational logic:

– P ≡ P .
– If P ≡ Q then Q ≡ P .
– If P ≡ Q and Q ≡ R , then P ≡ R .
– If P ≡ Q and R ′ is obtained from R by replacing some occurrences of P by Q , then R ≡ R ′ .

We will say that an expression Γ is consistent relative to a given set of axioms if Γ ≡ ⊥ is not derivable. An expression Γ

is provably equivalent to � relative to a given set of axioms if Γ ≡ � is derivable from these axioms.

The above is the standard definition of derivability used in universal algebra. However, there is an equivalent presentation
which shows better the connection with query rewriting. Given two Core XPath node (path) expressions Γ , �, a derivation
from Γ to � is a sequence of node (path) expressions Γ1, . . . ,Γn such that Γ1 = Γ , Γn = �, and for each i < n, Γi+1 is
obtained from Γi by replacing an occurrence of a subexpression Θ in Γi by Θ ′ , provided that Θ ≡ Θ ′ or Θ ′ ≡ Θ is an
instance of one of the axioms. It is not hard to see that Γ ≡ � is a derivable equivalence scheme if and only if there
exists a derivation from Γ to � (and also vice versa, of course). In the “if” direction, the standard rules of equational logic,

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 159
Table 7
Translation of Core XPath(A) node expressions into simple node expressions.

vs := v .s(φ) := φ

(¬φ)s := ¬φs as(φ) := 〈a[φ]〉
(φ ∨ ψ)s := φs ∨ ψs (A ∪ B)s(φ) := As(φ) ∨ Bs(φ)

〈A〉s := As(true) (A[ψ])s(φ) := As(ψs ∧ φ)

(A/B)s(φ) := As(Bs(φ))

intuitively, can be read as saying that such derivation sequences are sound in the sense that they preserve equivalence. In
the “only if” direction, it’s easy to see that derivability by means of derivation sequences satisfies transitivity, symmetry,
reflexivity and can be applied inside the context of another expression. As some of our axioms are formulated using �, let
us recall that this is just an abbreviation for an equivalence of a specific form. Hence, the fact that φ � ψ is an axiom means
that φ ∨ ψ can be replaced by ψ in any derivation sequence.

Lemma 2. All equivalences in Table 6 can be derived from those in Table 3.

Proof. See Appendix A. �
In the remainder of this section we prove our first important result concerning syntactic derivability: a normal form

theorem for node expressions. The notions of derivability, consistency and provable equivalence are considered relative to
axioms in Table 3. It follows that this result does not rely on any axiom valid only for particular axes or only on finite
trees; it would remain valid under arbitrary interpretation of axis constants. When derivability and related notions are
mentioned in the context of Core XPath(a) for any a, the only axis constant allowed in instances of axiom schemes used
in the derivation is a itself, i.e., in derivations for Core XPath(a), one is allowed to use only a-instances of axioms. In the
same way, we will talk about derivable equivalence schemes. Derivations of equivalence schemes from equivalence schemes
should be seen as patterns of infinitely many derivations of corresponding axiom instances.

2.5. Simple node expressions

This subsection defines a proper subclass of node expressions which is sufficiently rich to represent all node expressions.
First, a few words of introduction are necessary.

Throughout the paper, we use implicitly the intimate relationship between node expressions of Core XPath and formulas
of modal logic. In fact, if we take modal logic in a sufficiently broad sense, not only node expressions, but the whole Core
XPath can be treated as a specific modal language: see [20,28,30] for a detailed discussion. In this paper, however, we use the
term modal logic in a conservative sense—to denote systems which enrich propositional boolean logic with a supply of unary
operators (operations preserving the bottom element and distributing over unary joins) and whose variables are interpreted
as sets of nodes. Rather than providing an explicit definition, we will single out a subclass of those node expressions which
correspond directly to modal formulas over a given supply of operators A. They will be called simple node expressions of
Core XPath(A):

siNode(A) := true | v | 〈a[siNode]〉 | ¬siNode | siNode ∨ siNode

where v ∈ lab and a ∈ A. Readers familiar with modal logic will realize that our 〈a[v]〉 is just the modal formula �a v , where�a is interpreted by Ra . For more on the connection with modal logic, see [28] and further comments in the present paper.
Simple node expressions are as expressive as the whole set of node expressions; the remaining node expressions (but

not path expressions!) can be thus considered syntactic sugar. To prove this, we provide a translation (·)s : NodeEx(A) �→
siNode(A) which is constant for elements of siNode(A). This mapping uses an auxiliary mapping (·)s : PathEx(A) �→
(siNode(A) �→ siNode(A)) assigning to every path expression a unary function defined on simple node expressions. As do-
mains of both mappings are disjoint, we use the same symbol with no risk of confusion. Their definitions are given in
Table 7.

Lemma 3. Every Core XPath node expression is provably equivalent to a simple node expression—namely, to its (·)s-translation.

Recall that by “provably equivalent” we mean derivability from the axioms in Table 3.

Proof. For the purpose of induction, we prove in fact a stronger statement:

For every A ∈ PathEx and for every φ ∈ NodeEx, 〈A[φ]〉 ≡ As(φ) and φ ≡ φs are provable.

160 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
Inductive steps for node expressions are obvious, hence we focus only on inductive steps for path expressions.

– A = .: by NdAx2.
– A = a ∈ siAxis: by definition of (·)s .
– A = B ∪ C :

〈(B ∪ C)[φ]〉 ≡ 〈B[φ] ∪ C[φ]〉 by Der7

≡ 〈B[φ]〉 ∨ 〈C[φ]〉 by NdAx3

≡ Bs(φ) ∨ Cs(φ) by IH

≡ (B ∪ C)s(φ) by definition of (·)s

– A = B/C :

〈(B/C)[φ]〉 ≡ 〈B/C[φ]〉 by PrAx4

≡ 〈B[〈C[φ]〉]〉 by NdAx4

≡ Bs(Cs(φ)) by IH

≡ (B/C)s(φ) by definition of (·)s

– A = B[ψ]:

〈B[ψ][φ]〉 ≡ 〈B[ψs][φ]〉 by IH on NodeEx

≡ 〈B[ψs ∧ φ]〉 by Der21

≡ Bs(ψs ∧ φ) by IH on PathEx

≡ (B[ψ])s(φ) by definition of (·)s �
We hope that this proof gives the reader good insight into how Birkhoff-style derivations look like. In what follows, we

are going either to delegate such detailed proofs to Appendix A or just hint at main steps in the derivation, leaving the
details to the reader.

2.6. Normal forms for simple node expressions

In this subsection, we are concerned with simple node expressions for single axis fragments of the form Core XPath(a)

for a given a. We are going to define a normal form for such expressions motivated by analogous results in modal logic
(see [6,15,23]). These normal forms are going to play a crucial rôle in completeness proofs below. They can be thought of
as total descriptions of nodes accessible from the context node in a fixed number of steps along the axis a.

Define the degree of a simple node expression as the maximal number of nested occurrences of 〈a[·]〉; i.e., the degree of
a label is 0, the degree of a Boolean expression is the maximum of degrees of its Boolean components and the degree of
〈a[φ]〉 is the degree of φ plus one. The set of all simple node expressions of degree at most n is denoted by SNEa

n .
From now on, unless stated otherwise, we keep the number of labels fixed as m, that is, we assume all expressions use

only the labels among v1, . . . , vm . For any finite set s ⊆ {1, . . . ,k}, define k \ s to be {1, . . . ,k} − s. Let

NFNa
0 =

{ ∧
i∈s

vi ∧
∧

i∈m\s

¬vi

∣∣∣ s ⊆ {1, . . . ,m}
}

.

Assume NFNa
i are defined for all i smaller than n � 1. Let f (n) be the cardinality of

⋃
i<n NFNa

i . Fix an enumeration of
this set α1, . . . ,α f (n) and define the set NFNa

n of all expressions of the form

φβ,s := β ∧
∧
i∈s

〈a[αi]〉 ∧
∧

i∈ f (n)\s

¬〈a[αi]〉

for arbitrary β ∈ NFNa
0 and s ⊆ {1, . . . , f (n)} s.t. φβ,s is consistent relative to a-instances of all axioms for a given single

axis fragment. β can be thought of as the configuration of labels valid at the present node, while the remaining conjuncts
describe the situation in nodes reachable in no more than n steps along the axis a. For any φ of the above form and for any
αi ∈ ⋃

j<n NFNa , we say that αi is positive in φ if i ∈ s, and otherwise αi is negative in φ.
j

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 161
Lemma 4.

– Every simple node expression in SNEa
n is provably equivalent to a disjunction of (zero or more) elements of NFNa

n.
– For every pair of distinct elements φ,ψ ∈ NFNa

n, φ ∧ ψ is inconsistent.

Proof (Sketch). The proof is a generalization of the proof of the normal form theorem for classical propositional logic.
Recall that every formula of classical calculus can be represented as disjunction of conjunctions of literals: atoms and
their negations. In this case, the collection of literals has to be extended with normal forms of strictly lower degree. The
equivalence scheme Der6 in Table 6 is crucially used in distributing the disjunctions locked inside test expressions. See [6,
Theorem 1] or [15, Theorem 2.7] for different notational variants of the same proof (the result proved in the latter paper is
in fact even more general than the one proved here). �
Corollary 5. For every φ ∈ NFNa

n+1 , there is exactly one φd ∈ NFNa
n s.t. φ and φd are consistent.

Proof. NFNa
n is a subset of SNEa

n+1, thus by Lemma 4 each element of NFNa
n is equivalent to a disjunction of elements of

NFNa
n+1. However, by Lemma 4, elements of NFNa

n are mutually inconsistent, hence any element of NFNa
n+1 can appear as a

disjunct for only one element of NFNa
n . �

In [6], φd is called the correlate of φ and in [23]—the derivative of φ. We adopt the latter term. Intuitively, if φ can be
thought of as a total description of nodes accessible from the context node in no more than n + 1 steps along the axis a,
φd restricts the information provided by φ to obtain a complete description of nodes accessible from the context node in
no more than n steps along the same axis. In fact, φd can be obtained from φ by a straightforward syntactic operation:
removing the deepest nesting level in every conjunct. For example, in a language with one variable

(v1 ∧ 〈↓+[v1]〉 ∧ 〈↓+[¬v1]〉)d = v1.

Nevertheless, the existence and uniqueness of derivative is a direct consequence of Lemma 4 (together with the restriction
of the set of normal forms to consistent ones) and its specific syntactic shape is irrelevant for our purposes.

3. Completeness results for single axis fragments

We are ready to present completeness proofs for specific axes. In each of these proofs, the notions of provability and
consistency are relative to the set of axioms in the formulation of the corresponding completeness theorem; we will not
repeat this disclaimer. We begin with the descendant axis. In proofs for remaining axes later on, we can focus on differences
(and/or similarities) with the proof for Core XPath(↓+).

3.1. Completeness for Core XPath(↓+)

Theorem 6 (Node completeness for Core XPath(↓+)). A Core XPath(↓+) node equivalence is valid iff it is derivable from ↓+-instances
of the axioms in Table 3 and TransAx1, TransAx2 in Table 4.

Theorem 7 (Path completeness for Core XPath(↓+)). A Core XPath(↓+) path equivalence is valid iff it is derivable from ↓+-instances
of the axioms in Table 3 and TransAx1, TransAx2 in Table 4.

While Theorem 6 can be derived from known results in modal literature, Theorem 7 seems new. As the proof of the
latter we are going to give builds on a specific technique used in the proof of the former, we are going to give uniform
proofs for both results. Our proof of Theorem 6 is analogous to [23, Theorem 6.2].

For the sake of both proofs, we represent XML trees as tuples T = (N, R↓+ , L), where R↓+ is the descendant axis. This
convention allows to phrase some lemmas more succinctly. Note that, since Core XPath(↓+) does not provide means to
refer to the sibling order, the latter may be chosen arbitrarily.

For φ,ψ ∈ NFN↓+
n , we write φ �↓+ ψ if the following two conditions hold:

– every element of
⋃

i<n NFN↓+
i positive in ψ is positive in φ and

– the derivative of ψ is also positive in φ.

Intuitively, φ �↓+ ψ means that a node where φ holds can be an ancestor of a node where ψ holds. Recall that α

being positive in φ means that the validity of φ implies the validity of 〈↓+[α]〉, i.e., that every node satisfying φ has a ↓+-
successor where α is valid. Conversely, α being negative in φ means that no node satisfying φ has a ↓+-successor where α
is valid.

Note that �↓+ is in general not necessarily an order: there exist non-trivial �↓+ -cycles. However, we have the following

162 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
Lemma 8. �↓+ is a transitive relation.

Proof. Immediate from the definition �↓+ . Observe that those normal forms which are negative in a given φ must stay
negative in all �↓+ -successors of φ. Hence, if ψd is positive in a �↓+ -successor of φ, it is positive in φ itself. �

Here are some examples illustrating this notion of precedence:

– φ �↓+ ψ for any φ,ψ ∈ NFN↓+
0 ,

– in a language with just one variable:

v1 ∧ 〈↓+[v1]〉 ∧ 〈↓+[¬v1]〉 �↓+ ¬v1 ∧ ¬〈↓+[v1]〉 ∧ 〈↓+[¬v1]〉,
but the converse does not hold.

If for φ,ψ ∈ NFN↓+
n , we have φ �↓+ ψ and some χ ∈ ⋃

i<n NFN↓+
i is positive in φ but negative in ψ , then we write φ ≺↓+

ψ . It follows from the definition that ≺↓+ is not only transitive, but also well-founded: it contains no infinite descending
chains and no loops.

Lemma 9. Every element of NFN↓+
n is satisfiable.

Proof (Sketch). Take any φ ∈ NFN↓+
n . We construct an XML tree satisfying φ at the root as follows. The domain N of our XML

tree consists of all sequences of elements of NFN↓+
n of the form (β1, . . . , βk), with β1 = φ and for any j < k, β j ≺↓+ β j+1.

Note that there are only finitely many such sequences and that for any i < j, βi ≺↓+ β j+1 as well. For x, y ∈ N , define xR↓+ y
to hold if the sequence x is an initial segment of the sequence y (recall the convention about trees in the present proof).
Finally, the labelling function L labels the node (β1, . . . , βk) with v if v is positive in βk . It can be shown by induction that
the root of the XML tree obtained this way, i.e., (φ), indeed satisfies φ. The key observation that all normal forms positive in
φ are witnessed at some ≺↓+ -successor follows from axiom TransAx1. We call this tree the canonical tree of φ. The reader
is encouraged to compare this proof with [6, Theorems 4 and 5] or [23, Theorem 6.2]. �

Theorem 6 now follows:

Proof of Theorem 6. We restrict ourselves to the difficult direction. Suppose that φ ≡ ψ is valid, where φ,ψ are arbitrary
Core XPath(↓+) node expressions. By Lemma 3 and the first item of Lemma 4, for large enough n, φ is provably equivalent

to some disjunction φ′ of NFN↓+
n expressions, and ψ is equivalent to some disjunction ψ ′ of NFN↓+

n expressions. It follows
by the remaining item of Lemma 4 and by Lemma 9 that φ′ and ψ ′ must be identical (up to the ordering of the disjuncts):
if one contains a disjunct which does not appear in the other, this disjunct is satisfiable and wherever it is satisfied, no
other disjunct may hold, a contradiction. Hence, φ′ and ψ ′ are provably equivalent, and therefore so are φ and ψ . �

Next, we will proceed to prove Theorem 7.

Definition 10. NFP↓+
n is the set of consistent path expressions of the form

S = .[β1]/↓+[β2]/ · · ·/↓+[β�],
where � � 1, each βi ∈ NFN↓+

n , and βi �↓+ β j for i < j.

Note that we use the weak relation �↓+ here, not the strict order ≺↓+ used in the construction of the models in the
node completeness proof.

Lemma 11. For every path expression A, there exists suitably large n s.t. for every n′ � n, A is provably equivalent to a sum of elements

of NFP↓+
n′ .

Proof (Sketch). Repeated use of Lemma 4, TransAx2 and some auxiliary equivalences in Tables 3 and 6. In some more detail:
remove all non-leading occurrences of “.” (i.e., occurrences preceded by “/”) outside the scope of any node subexpression
using Der3 and Der22. Fix n to be the sum of the highest degree of a subexpression occurring in A and the number of
occurrences of “/” operator in A. Then all maximal node subexpressions of A (i.e., those which themselves are not proper

subexpressions of any other node subexpression of A) can be rewritten as disjuncts of elements of NFP↓+
n by Lemma 4.

Distribute all sums and disjunctions wherever possible. The inconsistency of these summands where βi �↓+ βi+1 does not
hold for some i is now a direct consequence of Der11 and Der22, whereas for j > i + 1 one uses in addition TransAx2. �

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 163
We are ready to introduce the construction of canonical models associated with normal forms of path expression using
an auxiliary merging construction for XML trees.

Definition 12. Given two XML trees T1 = (N, R↓+ , L) and T2 = (N ′, R ′
↓+ , L′) with roots r and r′ , respectively, and N, N ′

disjoint, we define their transitive root union T1 � T2 as the XML tree (N ∪ N ′, R↓+ ∪ R ′
↓+ ∪ ({r} × N ′), L ∪ L′). That is, the root

of the second becomes a child of the root of the first.
For any S ∈ NFP↓+

n of the form

S = .[β1]/↓+[β2]/ · · ·/↓+[β�],
we define the canonical tree of S as the structure

T = T1 � (
T2 � (· · · � T�) · · ·),

where each Ti is the canonical tree of βi as defined in the proof of Lemma 9 above.

Lemma 13. Let S ∈ NFP↓+
n and its canonical tree T be as in Definition 12 above and for each i � �, let ri be the root of the tree Ti . Then

(r1, r�) ∈ [[S]]PExpr . Moreover, for any S ′ = .[β ′
1]/↓+[β ′

2]/ · · ·/↓+[β ′
�′] ∈ NFP↓+

n , (r1, r�) ∈ [[S ′]]PExpr iff (β ′
1, . . . , β

′
�′) is a subsequence

of (β1, . . . , β�) s.t. β1 = β ′
1 and β ′

�′ = β� .

Proof. It is enough to prove the “moreover” part. The “if” direction is by direct verification (recall that if βi �↓+ β j , then
every formula negative in βi is also negative in β j). For the converse, assume the contrary and recall that by Lemma 9,

no two distinct elements of NFN↓+
n can be true at the same point. Thus, if β ′

1 is distinct from β1 or β ′
�′ from β� , there is

nothing to prove. Let i � 2 be the smallest number s.t. (β ′
1 = β1, β

′
2, . . . , β

′
i) is not a subsequence of (β1, β2, . . . , β�). That

is, (β ′
1 = β1, β

′
2, . . . , β

′
i−1) = (β1, βg(2), . . . , βg(i−1)) for some strictly increasing g , but β ′

i = β j for no j s.t. g(i − 1) < j � �.
For any 1 < j < i, we choose g(j) to be minimal so that for no j′ properly contained between g(j − 1) and g(j), β j′ is
equal to β ′

j . So it means that β ′
1 = β1, β

′
2 = βg(2), . . . , β

′
i−1 = βg(i−1) are true at, respectively, r1, rg(2), . . . , rg(i−1) (and no

subsequence of (r1, r2, . . . , rg(i−1)−1) makes them valid in this order) but for no j > g(i − 1), β ′
i does hold at r j . It follows

that (r1, r�) /∈ [[S ′]]PExpr . �
Lemma 14. For any

S ′ = .[β ′
1]/↓+[β ′

2]/ · · ·/↓+[β ′
�′]

S1 = .[β1
1]/↓+[β1

2]/ · · ·/↓+[β1
�(1)]

· · ·
Sk = .[βk

1]/↓+[βk
2]/ · · · /↓+[βk

�(k)
]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∈ NFP↓+
n ,

S ′ is contained in S1 ∪ · · · ∪ Sk iff for some i � k,

(∗) (β i
1, . . . , β

i
�(i)) is a subsequence of (β ′

1, . . . , β
′
�′) s.t. β ′

1 = β i
1 and β ′

�′ = β i
�(i).

Proof. The “if” direction follows by a direct calculation. Conversely, Lemma 13 implies that if the condition (∗) above holds
for no i � k, then (r1, r�′) in the canonical tree belongs to [[S ′]]PExpr , but not to [[S1]]PExpr ∪ · · · ∪ [[Sk]]PExpr . Thus, we have a
countermodel for containment. �

Finally, we prove Theorem 7:

Proof of Theorem 7. Follows from Lemmas 11 and 14; the reasoning is in fact analogous to the proof of Theorem 6

above. Given any equivalence, we can rewrite both sides as sums of elements of NFP↓+
n for some suitably high n, then

use Lemma 14 to show that if one side is not provably contained in the other, there exists a countermodel. �
3.2. Completeness for Core XPath(↓)

Similar results can be proved for Core XPath(↓):

Theorem 15 (Node completeness for Core XPath(↓)). A Core XPath(↓) node equivalence is valid iff it is derivable from ↓-instances of
the axioms in Table 3.

Theorem 16 (Path completeness for Core XPath(↓)). A Core XPath(↓) path equivalence is valid iff it is derivable from ↓-instances of
the axioms in Table 3.

164 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
In other words, there are no Core XPath(↓)-specific validities.

Proof of Theorems 15 and 16. (Sketch) We only highlight the most important differences with the proofs of Theorems 6
and 7. We define a (non-transitive) relation ≺↓ not just on NFN↓

n , but on the whole set
⋃

i�n NFN↓
i , relating normal form

node expressions of degree i to ones of degree i − 1. More precisely, we say that φ ≺↓ φ′ if for some i � n, φ ∈ NFN↓
i ,

φ′ ∈ NFN↓
i−1 and φ′ is positive in φ. Canonical trees based on this order are defined similarly as in the proof of Lemma 9, this

time using the child relation rather than the descendant relation. That is, we make (β1, . . . , βk) a parent of (β1, . . . , βk, βk+1)

in the canonical tree. In the normal form for path expressions, the degree of node expressions in the sequence decreases.
The definition of canonical trees for normal form path expressions does not require essential changes and the proof of an
analogue of Lemma 13 is in fact simplified by the lack of transitivity. �

The proof method used for Theorem 15 corresponds to the one used for [6, Theorem 3] in modal logic. Theorem 16
is closely related to a completeness result for dynamic relation algebras with union in [12, Theorem 4.9 and Section 5]. See
[20,30] for more details on the connection between Core XPath and this algebraic language.

3.3. Completeness for transitive linear axes

Theorem 17 (Node completeness for transitive linear axes). A Core XPath(s+) (s ∈ {→+,←+,↑+}) node equivalence is valid iff it
is derivable from s+-instances of axioms in Table 3 and TransAx1, TransAx2 and TransAx3 in Table 4.

Theorem 18 (Path completeness for transitive linear axes). A Core XPath(s+) (s ∈ {→+,←+,↑+}) path equivalence is valid iff it is
derivable from s+-instances of axioms in Table 3 and TransAx1, TransAx2 and TransAx3 in Table 4.

For φ,φ′ ∈ NFNs+
n , we define φ �s+ φ′ in the same way as for ↓+ . We can now define the set NFPs+

n analogously to
Definition 10—recall that this definition included only consistent path normal forms—and an analogue of Lemma 11 still
holds. However, these normal forms for path expressions are not “saturated” enough to construct canonical linearly ordered
models out of them. We therefore define a proper subset satNFPs+

n ⊆ NFPs+
n .

Definition 19. satNFPs+
n is the set of elements of NFP↓+

n of the form

S = .[β1]/s+[β2]/ · · ·/s+[β�],
where � � 1, each βi ∈ NFNs+

n , βi �s+ β j for i < j and for every i < � and every α positive in βi it is either the case that α
is positive in β� or for some j > i,

– α ∧ β j is consistent and
– α is negative in β j .

As β j is a normal form of degree higher than α, the consistency of α ∧ β j is equivalent to α being the kth derivative of
β j for a suitable k. Intuitively, β j is the last node where α holds and everywhere further down the axis s+ , α is refuted. The
fact that it is always possible to find such a s+-maximal node with respect to any α which holds somewhere along a s+-
path is exactly the meaning of TransAx1 axiom for s+ . TransAx3, on the other hand, ensures s+-paths are non-branching:
if 〈s+[α]〉 holds at some node on a s+-path, α itself must hold somewhere further along the same path. Together, the two
axioms play a crucial rôle in the proof of the following result:

Lemma 20. For s+ ∈ {↑+,→+,←+}, every element of NFPs+
n is equivalent to a sum of elements of satNFPs+

n . Consequently, for
every path expression A of Core XPath(s+), there exists a suitably large n s.t. for every n′ � n, A is equivalent to a sum of elements of
satNFPs+

n′ .

Proof. As above, we fix an enumeration α1, . . . ,α f (n) of
⋃

i<n NFNs+
i . We say S has an αi-defect if there is β j ∈ S s.t. αi

is positive in β j but negative in β j+1 and inconsistent with β j+1. Let us choose the smallest i s.t. αi is a defect. It follows
from TransAx1 and the definition of a defect that S is equivalent to

.[β1]/s+[β2]/ · · ·/s+[β j ∧ 〈s+[αi ∧ ¬〈s+[αi]〉]〉]/s+[β j+1 ∧ ¬αi ∧ ¬〈s+[αi]〉]/ · · ·/s+[β�]
This in turn by TransAx3 is equivalent to

.[β1]/s+[β2]/ · · ·/s+[β j]/s+[αi ∧ ¬〈s+[αi]〉]/s+[β j+1 ∧ ¬αi ∧ ¬〈s+[αi]〉]/ · · · /s+[β�]
and this finally is equivalent to

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 165
.[β1]/s+[β2]/ · · · /s+[β j]/s+[φ]/s+[β j+1 ∧ ¬αi ∧ ¬〈s+[αi]〉]/ · · · /s+[β�]
where φ stands for

αi ∧ ¬〈s+[αi]〉 ∧
∧

γ negative in βi

¬〈s+[γ]〉 ∧
∧

γ positive in βi+1

〈s+[γ]〉 ∧ 〈s+[β j+1
d]〉.

The fact that we can add new conjuncts in the last step preserving equivalence follows from the validity of
.[¬〈s+[γ]〉]/s+[γ] ≡ ⊥ (an instance of PrAx1) and TransAx2. Now, Lemma 4 guarantees φ is equivalent to a disjunction
of elements of NFNs+

n . For any β j′ extending φ s.t.

S ′
j′ = .[β1]/s+[β2]/ · · ·/s+[β j]/s+[β j′]/s+[β j+1]/ · · ·/s+[β�]

is consistent (the inconsistent ones can be simply removed as summands, but if all such S ′
j′ were inconsistent, the original

expression would have been inconsistent as well), S ′
j′ is a member of NFPs+

n which does not have an αi -defect and no

element of NFPs+
n extending S ′

j′ without adding new points at the beginning or at the end has an αi-defect. Thus, the
αi-defect has been fixed in all consistent S ′

j′ . We repeat the procedure for remaining defects. �
Proof of Theorem 17. It is clearly enough to show that every φ ∈ NFNs+

n is satisfiable. We will prove it in a slightly different
manner than for Core XPath(↓+); in fact, the proof along the present lines could have been given also for Theorem 6.
Lemma 4 and Corollary 5 imply that φ is equivalent to

∨{ψ ∈ NFNs+
n+2 | φ = ψdd}. Let us choose arbitrarily any ψ s.t.

φ = ψdd . Define

A = {
α ∈ NFNs+

n

∣∣ α positive in ψ
}

and a relation ≺s+ on A as follows:

α ≺s+ β iff ψ ∧ 〈s+[α ∧ ¬〈s+[β]〉]〉 is inconsistent.

Axioms TransAx2 and LinNTAx together with Lemma 4 guarantee that this is a linear transitive relation—total on A. In other
words, any two normal forms of degree n which are positive in a chosen normal form of degree n + 2 must be provably
comparable relative to that form. TransAx1 guarantees that this relation is, in addition, antisymmetric—a well-founded order.
This order, with ψ as the root, will be called a suitable chain for φ. Note that both the order and the elements occurring in
it are relative to the chosen ψ ∈ NFNs+

n+2, therefore it is not uniquely determined. The reader can verify that a model whose
points are the normal forms occurring in this chain and with both Rs+ and labelling defined in the natural way is a model
for φ. �
Proof of Theorem 18. The canonical chain associated with S ′ is built by concatenating S ′ with a suitable chain for β� .
Formulation and proofs of analogues of Lemmas 13 and 14 for elements of satNFPs+

n and sums thereof can be now left to
the reader. Observe that a reasoning analogous to the one used in the proof of Theorem 17 ensures that every S ′ ∈ satNFPs+

n
of the form

S ′ = .[β1]/s+[β2]/ · · ·/s+[β�]
contains a minimal subsequence which belongs to satNFPs+

n ; this is the subsequence T of S ′ which contains exactly β1, β�

and those βi ’s in between whose removal would create a defect. Then an element of satNFPs+
n (provably) contains S ′ iff it

is a subsequence of S ′ containing all βi ’s in T . �
3.4. Completeness for non-transitive linear axes

Theorem 21 (Node completeness for nontransitive linear axes). A Core XPath(s) (s ∈ {→,←,↑}) node equivalence is valid iff it is
derivable from s-instances of axioms in Table 3 and LinNTAx in Table 4.

Theorem 22 (Path completeness for nontransitive linear axes). A Core XPath(s) (s ∈ {→,←,↑}) path equivalence is valid iff it is
derivable from s-instances of axioms in Table 3 and LinNTAx in Table 4.

Same remarks apply as in the case of Theorems 6 and 7: while Theorem 21 can be derived from known results in modal
literature, Theorem 22 seems new. Again, we are going to give uniform proofs for both results.

Proof of Theorems 21 and 22. (Sketch) Just like the proof of Theorems 17 and 18 modified the proof of Theorems 6 and 7,
this proof modifies the proof of Theorems 15 and 16. Again, define a (non-transitive) relation ≺s (s ∈ {←,→,↑}) on the
whole set

⋃
i�n NFNs by stipulating that φ ≺s φ′ if for some i � n, φ ∈ NFNs , φ′ ∈ NFNs and φ′ is positive in φ. However,
i i i−1

166 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
Table 8
Equivalences axiomatizing LOFT of Blackburn, Meyer-Viol, de Rijke [4].

LOFT0: boolean axioms

LOFT1

{ 〈s[false]〉 ≡ false
〈s[φ ∨ ψ]〉 ≡ 〈s[φ]〉 ∨ 〈s[ψ]〉

LOFT2 φ � ¬〈s[¬〈s−1[φ]〉]〉
LOFT3 〈s[¬φ]〉 ∧ 〈s[φ]〉 ≡ false for s ∈ {↑,←,→}
LOFT4 〈s[φ]〉 ∨ 〈s[〈s+[φ]〉]〉 ≡ 〈s+[φ]〉
LOFT5 ¬〈s[φ]〉 ∧ 〈s+[φ]〉 � 〈s+[¬φ ∧ 〈s[φ]〉]〉
LOFT6 〈s[true]〉 � 〈s+[¬〈s[true]〉]〉
LOFT7: TransAx1 for ↓+ and →+
LOFT8 ¬〈↓[φ]〉 � 〈↓[¬〈←〉 ∧ ¬φ ∧ ¬〈→+[φ]〉]〉
LOFT9 〈↓[φ]〉 � 〈↓[¬〈←〉]〉 ∧ 〈↓[¬〈→〉]〉
LOFT10 ¬〈↑〉 � ¬〈←〉 ∧ ¬〈→〉

using LinNTAx we can prove a very strong fact about ≺s which obviously does not hold for ≺↓ . Namely, ≺s is a partial
function, i.e., no normal form can have more than one ≺↓-successor. This is a consequence of the validity of 〈s[¬φ]〉 �
¬〈s[φ]〉 and the fact that distinct normal forms of the same degree are mutually inconsistent. This also means that when
we define normal forms for path expressions just like in the proof of Theorem 16, i.e., as sequences of node expressions of
strictly decreasing degree, there will be no defects to be fixed, contrary to the situation we had in the proof of Theorem 18.
The details are left to the reader as an exercise. �
4. Completeness for full Core XPath

We will now present a completeness result for full Core XPath based on axioms from Tables 3 and 5; the notions
of derivability and consistency are now taken relative to this set of axioms. As in the previous cases, we focus first on
completeness for node expressions.

Theorem 23 (Node completeness for full Core XPath). A Core XPath node equivalence is valid iff it is derivable from the axioms given
in Tables 3 and 5.

Proof. As before, we first reduce all node expressions to simple ones using Lemma 3. Next, we observe that these simple
Core XPath node expressions can be seen as notational variants of formulas of the logic of finite trees (LOFT) [4]. Finally,
we show that equivalences axiomatizing LOFT are derivable when written as simple node expressions. They are given in
Table 8; let us recall once again that both φ � ψ and ψ � φ abbreviate φ ∨ ψ ≡ ψ . See Appendix A for the derivations.
Completeness is now an immediate consequence of the completeness result in [4, Theorem 42]; in fact, that theorem is
exactly the completeness result for simple node expressions of Core XPath in the isomorphic modal notation. �

The node completeness result can be lifted to path expressions by introducing an extra inference rule with syntactic side
conditions, which we call the Sep rule, and which is closely related to the separability rule in [24].

(Sep) If 〈A[v]〉 ≡ 〈B[v]〉 and v does not occur in A and B , then A ≡ B .

Corollary 24 (Non-orthodox path completeness for full Core XPath). A Core XPath path equivalence is valid iff it is derivable from the
axioms in Tables 3 and 5 using the standard rules of equational logic plus the Sep rule.

Proof. Suppose A ≡ B . Pick any v not occurring in A and B . Then the node expressions 〈A[v]〉 and 〈B[v]〉 are also equiv-
alent. Hence, by Theorem 23, their equivalence is derivable (in the standard sense) from the axioms in Tables 3 and 5.
A single application of the Sep rule now yields a derivation of A ≡ B . �

An in-depth discussion of disadvantages of such axiomatizations can be found in [25,34]. We should point out that
the rule Sep as formulated here is not sound when used in combination with the axiom scheme v ∧ v ′ ≡ ⊥ discussed
in Section 2. The problem can be solved, but every available solution requires some additional complications, e.g., in the
formulation of the Sep rule. This is one more reason why a purely equational axiomatization would be of interest. Note that,
once the Sep rule is added, derivability can no longer be characterized simply by the existence of a chain of rewrite steps,
as discussed in Section 2.4.

Our conjecture is that axioms presented in Tables 3, 4 and 5 (note we include single axis axioms here) provide an
orthodox axiomatization for Core XPath path expressions. However, it is not clear how to provide such a completeness proof
for path expressions, even given the results of [4]. Generalizing existing modal results to path equivalences without the use
of non-standard rules seems a non-trivial problem, although a good choice of proof technique—such as normal modal forms
in the present paper—may prove helpful.

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 167
5. Further work

We have given complete axiomatizations for all eight single axis fragments and full Core XPath. We hope that these
axiomatization will be of help in obtaining sets of effective rewrite rules for query optimization in these XPath fragments.

Except for obtaining such rules and implementing them, other possible directions of research are:

– removing the non-orthodox rule Sep from the axiomatization of full Core XPath path equivalences;
– equationally axiomatizing positive fragments of Core XPath, in particular those extending the fragment studied in [2];
– equationally axiomatizing fragments of Core XPath properly contained between single axis fragments and the whole

language. Of particular interest, also from a practical point of view, are fragments mixing the following and de-
scendant axes and/or duals of both;

– investigating whether existing theorem provers and model searchers for equational logic like Waldmeister [10], Prover9
and Mace4 [21] can be adapted for automatic proving/disproving XPath equivalences (this should be rather straightfor-
ward using our results) and, more importantly, whether this would be practically useful for XPath implementers and/or
programmers of query optimizers.

Acknowledgements

The first author and the second author were supported by the Netherlands Organization for Scientific Research (NWO)
grants 639.021.508 and 680-50-0613, respectively, during the period when most of the results were obtained. At present,
the first author is partially supported by ERC Advanced Grant Webdam on Foundation of Web data management and the
second author is supported by EPSRC grant EP/F002262/1. We would like to thank the anonymous referees of all versions of
this paper for their comments and criticism.

Appendix A

A.1. Proof of Lemma 2

– Der1. Use NdAx2, NdAx3, ISAx2.
– Der2. Use NdAx2, NdAx3, ISAx1. As was observed in the main paper, from this moment on we can use all the boolean

equivalences for ¬ and ∨.
– Der3

A[φ] ≡ (A/.)[φ] by ISAx5

≡ A/.[φ] by PrAx4

– Der4

A[true] ≡ A/.[true] by Der3

≡ A/. by PrAx2

≡ A by ISAx5

– Der5

A[false] ≡ A[false]/. by ISAx5

≡ ⊥ by PrAx1

– Der6—from NdAx3 and PrAx3.
– Der7

(A ∪ B)[φ] ≡ (
(A ∪ B)/.

)[φ] by ISAx5

≡ (A ∪ B)/.[φ] by PrAx4

≡ A/.[φ] ∪ B/.[φ] by ISAx6

≡ (A/.)[φ] ∪ (B/.)[φ] by PrAx4

≡ A[φ] ∪ B[φ] by ISAx5

More often than Der7 itself, we will use the derived property of monotonicity:

168 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
A � B implies

{
A[φ] � B[ψ] for any φ,ψ ∈ NodeEx by Der7

〈A〉 � 〈B〉 by NdAx3

φ � ψ implies A[φ] � A[ψ] for any A ∈ PathEx by PrAx3

– Der8. . [¬〈.〉] � . [φ] is an instance of ISAx7. Monotonicity yields 〈. [¬〈.〉]〉 � 〈. [φ]〉. An application of NdAx2 on both
sides yields the dual form of Der8.

– Der9. Follows from Der8 by boolean laws.
– Der10

A ≡ A[true] by Der4

≡ A[φ ∨ ¬φ] by Der9

≡ A[φ] ∪ A[¬φ] by PrAx3

– Der11

A ≡ ./A by ISAx5

≡ (.[〈A〉] ∪ .[¬〈A〉])/A by Der10

≡ .[〈A〉]/A ∪ .[¬〈A〉]/A by ISAx6

≡ .[〈A〉]/A ∪ ⊥ by PrAx1

≡ .[〈A〉]/A by ISAx7

– Der12

〈A/B〉 ≡ 〈A[〈B〉]〉 by NdAx4

� 〈A[true]〉 monotonicity

≡ 〈A〉 by Der4

– Der13—from monotonicity and NdAx2.
– Der14

〈A[φ ∧ ψ]〉 ∧ ¬〈A[ψ]〉 � 〈A[φ ∧ ψ]〉 ∧ ¬〈A[ψ ∧ ψ]〉 monotonicity

≡ false by dual of Der9

– Der15

〈A[φ]〉 ∧ ¬〈A[ψ]〉 ≡ 〈A[(φ ∧ ¬ψ) ∨ (φ ∧ ψ)]〉 ∧ ¬〈A[ψ]〉 boolean

≡ (〈A[φ ∧ ¬ψ]〉 ∨ 〈A[φ ∧ ψ]〉) ∧ ¬〈A[ψ]〉 by Der6

≡ (〈A[φ ∧ ¬ψ]〉 ∧ ¬〈A[ψ]〉) ∨ (〈A[φ ∧ ψ]〉 ∧ ¬〈A[ψ]〉) boolean

≡ 〈A[φ ∧ ¬ψ]〉 ∧ ¬〈A[ψ]〉 by Der14

� 〈A[φ ∧ ¬ψ]〉 boolean

– Der16

A[φ]/.[¬φ] ≡ A[¬¬φ]/.[¬φ] boolean

≡ A[¬〈.[¬φ]〉]/.[¬φ] by NdAx2

≡ ⊥ by PrAx1

– Der17

A/⊥ ≡ A[〈.〉]/.[¬〈.〉] by Der4

≡ ⊥ by Der16

⊥/A ≡ A[false]/A by Der5

� A[¬〈A〉]/A by Der8 and monotonicity

≡ ⊥ by PrAx2

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 169
Table 9
Additional auxiliary equivalences for full Core XPath.

Der25 .[〈s[φ]〉] � s[φ]/s−1

Der26 s/s−1 ≡ . [〈s〉] for s ∈ {←,→,↓}
Der27 ↑/↓ ≡ (←+ ∪ →+ ∪ .)[〈↑〉]
Der28 〈s〉 ≡ 〈s+〉
Der29 〈s[φ]〉 ≡ 〈s+[φ ∧ ¬〈s[φ]〉]〉
Der30 〈s∗[¬〈s[true]〉]〉 ≡ true

– Der18

A[φ][¬φ] ≡ A[φ]/.[¬φ] by Der3

≡ ⊥ by Der16

– Der19

A[φ ∧ ψ][¬φ] � A[φ][¬φ] monotonicity

≡ ⊥ by Der18

– Der20

A[φ][ψ][¬φ ∨ ¬ψ] ≡ A[φ][ψ][¬φ] ∪ A[φ][ψ][¬ψ] by PrAx3

� A[φ][true][¬φ] ∪ A[true][ψ][¬ψ] by Der8 and monotonicity

≡ A[φ][¬φ] ∪ A[ψ][¬ψ] by Der4

≡ ⊥ by Der18

– Der21
First, let us derive

A[φ ∧ ψ] ≡ A[φ ∧ ψ][φ] ∪ A[φ ∧ ψ][¬φ] by Der10

≡ A[φ ∧ ψ][φ] ∪ ⊥ by Der19

≡ A[φ ∧ ψ][φ] by ISAx7

A[φ ∧ ψ] ≡ A[φ ∧ ψ][ψ] is derived analogously. Thus, using monotonicity we get A[φ ∧ ψ] � A[φ][ψ]. Conversely,

A[φ][ψ] ≡ A[φ][ψ][φ ∧ ψ] ∪ A[φ][ψ][¬φ ∨ ¬ψ] by Der10

≡ A[φ][ψ][φ ∧ ψ] ∪ ⊥ by Der20

≡ A[φ][ψ][φ ∧ ψ] by ISAx7

Using Der8, monotonicity and Der4 we get that A[φ][ψ] � A[φ ∧ ψ] and Der21 is proved.
– Der22

A[φ ∧ ψ] ≡ A[φ][ψ] by Der21

≡ A[φ]/.[ψ] by Der3

– Der23—from NdAx2 and Der22.
– Der24—from Der22, commutativity of boolean ∧ and Der11.

A.2. Proof of Theorem 23

We begin by deriving a number of auxiliary references shown in Table 9. We use an additional abbreviation: s∗ = . ∪ s+ .

– Der25. For s ∈ {←,→,↓} by TreeAx2 (� can be even replaced by ≡ then).
For s = ↑ by TreeAx3.

– Der26 and Der27—from TreeAx2 and TreeAx3, respectively, using Der4.
– Der28

〈s+〉 ≡ 〈s ∪ s/s+〉 by TreeAx1

≡ 〈s〉 ∨ 〈s/s+〉 by NdAx3

≡ 〈s〉 by Der12

170 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
– Der29

〈s[φ]〉 � 〈s+[φ]〉 by LOFT4

� 〈s+[φ ∧ ¬〈s+[φ]〉]〉 by TransAx1

� 〈s+[φ ∧ ¬〈s[φ]〉]〉 by LOFT4

The use of LOFT4 does not lead to a vicious circle, see its derivation below.
– Der30—follows from Der29 and boolean axioms. Recall that s∗ = . ∪ s+ .

Now we can derive the LOFT axioms themselves.

– LOFT0. See the remark on Der2 above.
– LOFT1—already proved, as an instance of Der13 and Der6.
– LOFT2. By boolean reasoning, it is equivalent to

〈s[¬〈s−1[φ]〉]〉 ∧ φ ≡ false

This in turn follows from

〈s[¬〈s−1[φ]〉]〉 ∧ φ ≡ 〈.[〈.[〈s[¬〈s−1[φ]〉]〉]/.[φ]〉]〉 by Der23

� 〈.[〈s[¬〈s−1[φ]〉]/s−1/.[φ]〉]〉 by Der25

≡ 〈.[〈s[¬〈s−1[φ]〉]/s−1[φ]〉]〉 by Der3

≡ false by PrAx1

– LOFT3

〈s[¬φ]〉 ∧ 〈s[φ]〉 ≡ 〈.[〈s[¬φ]〉]/.[〈s[φ]〉]〉 by Der23

� 〈.[〈s[¬φ]/s−1/s[φ]/s−1〉]〉 by Der25

≡ 〈.[〈s[¬φ]/.[〈s−1〉]/.[φ]/s−1〉]〉 by Der26

≡ 〈.[〈s[¬φ]/.[φ]/s−1〉]〉 by Der11

≡ 〈.[〈s[false]/s−1〉]〉 by Der22

≡ false by Der5

– LOFT4

〈s+[φ]〉 ≡ 〈(s ∪ s/s+)[φ]〉 by TreeAx1

≡ 〈s[φ] ∪ (s/s+)[φ]〉 by Der7

≡ 〈s[φ] ∪ s/s+[φ]〉 by PrAx4

≡ 〈s[φ]〉 ∨ 〈s/s+[φ]〉 by NdAx3

≡ 〈s[φ]〉 ∨ 〈s[〈s+[φ]〉]〉 by NdAx4

– LOFT5 (see [33]). By boolean reasoning, it boils down to proving that

t := ¬〈s[φ]〉 ∧ 〈s+[φ]〉 ∧ ¬〈s+[¬φ ∧ 〈s[φ]〉]〉 ≡ false

This is proven by first observing that

t ≡ ¬(〈s[φ]〉 ∨ 〈s[¬φ ∧ 〈s[φ]〉]〉) ∧ 〈s/s+[φ]〉 ∧ ¬〈s/s+[¬φ ∧ 〈s[φ]〉]〉 by LOFT4

≡ ¬〈s[φ ∨ (¬φ ∧ 〈s[φ]〉)]〉 ∧ 〈s/s+[φ]〉 ∧ ¬〈s/s+[¬φ ∧ 〈s[φ]〉]〉 by Der6

≡ ¬〈s[φ ∨ 〈s[φ]〉]〉 ∧ 〈s/s+[φ]〉 ∧ ¬〈s/s+[¬φ ∧ 〈s[φ]〉]〉 boolean

≡ ¬〈s[φ ∨ 〈s[φ]〉]〉 ∧ 〈s[〈s+[φ]〉]〉 ∧ ¬〈s[〈s+[¬φ ∧ 〈s[φ]〉]〉]〉 by NdAx4

� 〈s[¬(φ ∨ 〈s[φ]〉) ∧ 〈s+[φ]〉 ∧ ¬〈s+[¬φ ∧ 〈s[φ]〉]〉]〉 by Der15

� 〈s[¬〈s[φ]〉 ∧ 〈s+[φ]〉 ∧ ¬〈s+[¬φ ∧ 〈s[φ]〉]〉]〉 monotonicity

= 〈s[t]〉

B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172 171
Thus, we get

t � 〈s[t]〉 by the above

� 〈s+[t ∧ ¬〈s[t]〉]〉 Der29

≡ 〈s[false]〉 by the above

≡ false by Der5

– LOFT6—already proved, as an instance of Der29.
– LOFT7 does not need to be proved, being an instance of an axiom.
– LOFT8. By boolean reasoning, it is equivalent to

〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]〉 ∧ 〈↓[φ]〉 ≡ false

〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]〉 ∧ 〈↓[φ]〉 ≡ 〈.[〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]〉]/.[〈↓[φ]〉]〉 by Der23

≡ 〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]/↑/↓[φ]/↑〉 by Der26

≡ 〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]/(←+ ∪ →+ ∪ .)[〈↑〉][φ]/↑〉 by Der27

≡ 〈↓[¬〈←〉 ∧ ¬〈→∗[φ]〉]/(←+ ∪ →+ ∪ .)[φ]/↑〉 by Der11

� 〈(↓[¬〈←〉]/←+/↑) ∪ (↓[¬〈→∗[φ]〉]/→∗[φ]/↑〉) by ISAx6

≡ false by PrAx1

– LOFT9

〈↓[φ]〉 � 〈↓[true]〉 monotonicity

≡ 〈↓[〈←∗[¬〈←[true]〉]〉]〉 by Der30

≡ 〈↓[¬〈←〉]〉 ∨ 〈↓[〈←+[¬〈←〉]〉]〉 by Der6

But now

〈↓[〈←+[¬〈←〉]〉]〉 ≡ 〈↓[〈←+[↑][¬〈←〉]〉]〉 by TreeAx4

� 〈↓[〈↑/↓[¬〈←〉]〉]〉 by Der27

≡ 〈↓/↑/↓[¬〈←〉]〉 by NdAx4

≡ 〈.[↓]/↓[¬〈←〉]〉 by Der26

≡ 〈↓[¬〈←〉]〉 by Der11

Thus, we got 〈↓[φ]〉 � 〈↓[¬〈←〉]〉.
The proof of 〈↓[φ]〉 � 〈↓[¬〈→〉]〉 is analogous.

– LOFT10. First observe that by boolean reasoning, it is equivalent to

〈←〉 ∨ 〈→〉 � 〈↑〉

〈←〉 ∨ 〈→〉 ≡ 〈←+〉 ∨ 〈→+〉 by Der28

≡ 〈←+ ∪ →+〉 by NdAx3

≡ 〈←+[〈↑〉] ∪ →+[〈↑〉]〉 by TreeAx4

≡ 〈(←+ ∪ →+)[〈↑〉]〉 by Der7

� 〈↑/↓〉 by Der27

� 〈↑〉 by Der12

172 B. ten Cate et al. / Journal of Applied Logic 8 (2010) 153–172
References

[1] A. Balmin, F. Özcan, A. Singh, E. Ting, Grouping and optimization of XPath expressions in DB2® pure XML, in: SIGMOD ’08: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 2008, ACM, 2008, pp. 1065–1074.

[2] M. Benedikt, W. Fan, G. Kuper, Structural properties of XPath fragments, Theoretical Computer Science 336 (1) (2005) 3–31.
[3] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge University Press, 2001.
[4] P. Blackburn, W. Meyer-Viol, M. de Rijke, A proof system for finite trees, in: H.K. Büning (Ed.), Computer Science Logic, in: Lecture Notes in Computer

Science, vol. 1092, Springer, 1996, pp. 86–105.
[5] Z. Ésik, W. Kuich, A semiring-semimodule generalization of omega-context-free languages, in: J. Karhumäki, H.A. Maurer, G. Paun, G. Rozenberg (Eds.),

Theory Is Forever, in: Lecture Notes in Computer Science, vol. 3113, Springer, 2004, pp. 68–80.
[6] K. Fine, Normal forms in modal logic, Notre Dame Journal of Formal Logic 16 (2) (1975) 229–234.
[7] R. Goldblatt, Logics of Time and Computation, Lecture Notes, vol. 7, CSLI Publications, 1987.
[8] G. Gottlob, C. Koch, Monadic queries over tree-structured data, in: Proceedings of LICS’02, Los Alamitos, California, 2002, IEEE Computer Society Press,

2002, pp. 189–202.
[9] G. Gottlob, C. Koch, R. Pichler, Efficient algorithms for processing XPath queries, ACM Transactions on Database Systems 30 (2) (2005) 444–491.

[10] T. Hillenbrand, A. Buch, R. Vogt, B. Löchner, Waldmeister: High performance equational deduction, Journal of Automated Reasoning 18 (2) (1997)
265–270.

[11] R. Hirsch, Peirce algebras and boolean modules, Journal of Logic and Computation 17 (2) (2007) 255–283.
[12] M. Hollenberg, An equational axiomatization of dynamic negation and relational composition, Journal of Logic, Language and Information 6 (4) (1997)

381–401.
[13] E.V. Huntington, Boolean algebra. A correction, Transactions of AMS 35 (2) (1933) 557–558.
[14] E.V. Huntington, New sets of independent postulates for the algebra of logic with special reference to Whitehead and Russell’s “Principia Mathematica”,

Transactions of AMS 35 (1) (1933) 274–304.
[15] P. Jipsen, Computer-aided investigations of relation algebras, PhD thesis, Mathematics Department, Vanderbilt University, 1992.
[16] S. Kleene, Representation of events in nerve nets and finite automata, in: C. Shannon, J. McCarthy (Eds.), Automata Studies, Princeton University Press,

Princeton, NJ, 1956, pp. 3–42.
[17] D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular events, Information and Computation 110 (2) (1994) 366–390.
[18] M. Krishnaprasad, Z.H. Liu, A. Manikutty, J.W. Warner, V. Arora, S. Kotsovolos, Query rewrite for XML in Oracle XML DB, in: VLDB ’04: Proceedings of

the Thirtieth International Conference on Very Large Data Bases, VLDB Endowment, 2004, pp. 1134–1145.
[19] M. Marx, XPath with conditional axis relations, in: E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm, E. Ferrari

(Eds.), Proceedings of the 9th International Conference on Extending Database Technology, EDBT 2004, in: Lecture Notes in Computer Science, vol. 2992,
Springer, 2004.

[20] M. Marx, M. de Rijke, Semantic characterizations of navigational XPath, SIGMOD Rec. 34 (2) (2005) 41–46.
[21] W. McCune, Prover9 and Mace4 website, http://www.cs.unm.edu/~mccune/.
[22] W. McCune, Solution of the Robbins problem, Journal of Automated Reasoning 19 (3) (1997) 263–276.
[23] L.S. Moss, Finite models constructed from canonical formulas, Journal of Philosophical Logic 36 (6) (2007) 605–640.
[24] V. Pratt, Dynamic algebras: Examples, constructions, applications, Studia Logica 50 (3–4) (1991) 571–605.
[25] M. Reynolds, An axiomatization for Until and Since over the reals without the IRR rule, Studia Logica 51 (2) (1992) 165–193.
[26] A. Tarski, On the calculus of relations, Journal of Symbolic Logic 6 (3) (1941) 73–89.
[27] A. Tarski, S. Givant, A Formalization of Set Theory without Variables, AMS Colloquium Publications, vol. 41, Providence, RI, 1987.
[28] B. ten Cate, G. Fontaine, T. Litak, Some modal aspects of XPath, Earlier version published in Preliminary Proceedings of Methods for Modalities 2007.

Extended journal version in preparation. See http://www.dcs.bbk.ac.uk/~tadeusz/papers/, for the most recent version.
[29] B. ten Cate, C. Lutz, The complexity of query containment in expressive fragments of XPath 2.0, in: Proceedings of PODS’07, ACM, New York, NY, USA,

2007, pp. 73–82.
[30] B. ten Cate, M. Marx, Navigational XPath: Calculus and algebra, SIGMOD Rec. 36 (2) (2007) 19–26.
[31] B. ten Cate, M. Marx, Axiomatizing the logical core of XPath 2.0, Theory of Computing Systems 44 (4) (2009) 561–589, Open access: http://www.

springerlink.com/content/m62011j670270282/fulltext.pdf.
[32] J. van Benthem, Exploring Logical Dynamics. Studies in Logic, Language and Information, CSLI Publications, Stanford, 1996.
[33] J. van Benthem, Modal frame correspondence and fixed-points, Studia Logica 83 (1) (2006) 133–155.
[34] Y. Venema, Completeness via completeness: Since and until, in: M. de Rijke (Ed.), Diamonds and Defaults, in: Synthese Library, vol. 229, Kluwer

Academic Publishers, 1993, pp. 279–286.
[35] Y. Venema, A crash course in arrow logic, in: Arrow Logic and Multi-Modal Logic, Center for the Study of Language and Information, Stanford, CA, USA,

1997, pp. 3–34.
[36] W3C, XML path language (XPath): Version 1.0. W3C recommendation, http://www.w3.org/TR/xpath.html.

http://www.cs.unm.edu/~mccune/
http://www.dcs.bbk.ac.uk/~tadeusz/papers/
http://www.springerlink.com/content/m62011j670270282/fulltext.pdf
http://www.springerlink.com/content/m62011j670270282/fulltext.pdf
http://www.w3.org/TR/xpath.html

	Complete axiomatizations for XPath fragments
	Preliminaries
	Semantics: XML trees
	Core XPath, the navigational core of XPath 1.0

	Axioms, derivations and node normal forms
	Basic axioms
	Idempotent semirings axioms
	Predicate axioms
	Node axioms
	The issue of unique node labels

	Axis-specific axioms
	Axioms for full Core XPath
	Rules and derivations
	Simple node expressions
	Normal forms for simple node expressions

	Completeness results for single axis fragments
	Completeness for Core XPath(+)
	Completeness for Core XPath()
	Completeness for transitive linear axes
	Completeness for non-transitive linear axes

	Completeness for full Core XPath
	Further work
	Acknowledgements
	References

