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a b s t r a c t

We introduce a class of absolutely continuous bivariate exponential distributions,
generated from quadratic forms of standard multivariate normal variates.
This class is quite flexible and tractable, since it is regulated by two parameters only,

derived from the matrices of the quadratic forms: the correlation and the correlation of
the squares of marginal components. A simple representation of the whole class is given in
terms of 4-dimensional matrices. Integral forms allow evaluating the distribution function
and the density function in most of the cases.
The class is introduced as a subclass of bivariate distributions with chi-square

marginals; bounds for the dimension of the generating normal variable are underlined in
the general case.
Finally, we sketch the extension to the multivariate case.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The exponential distribution plays a fundamental role as a model in a variety of applications, typically connected with
survival time, in some of its many forms of appearance. Its popularity is witnessed by the existence of a very broad literature
in this area; the AMS MathSciNet lists over a thousand titles on the exponential distribution. Detailed reviews can be found
in Johnson, Kotz, and Balakrishnan [1], in Balakrishnan and Basu [2] and, for the bivariate and the multivariate cases, in
Barnett [3], Basu [4,5], and in Kotz, Balakrishnan and Johnson [6].
Unfortunately, unlike the normal distribution, the exponential distribution does not have a natural extension to

the bivariate or the multivariate case. Therefore, a large number of classes of bivariate distributions with exponential
marginals have been proposed since 1960 [7], and some examples can be found twenty years earlier as particular cases
of bivariate gamma distributions [8]. None of the models proposed is completely satisfactory: some of them have a
singular component (e.g. [9]); most proposals are indexed only by the correlation (e.g. [7,9–13]). Multiparameter bivariate
exponential distributions have been suggested [14–17], but the parameters introduced in the construction of these models
do not have a clearmeaning.Moreovermany bivariate exponentialmodels are not easily extendible to themultivariate case.
In the present paper, we explore the probabilistic aspects of a class, G(2, 2), of absolutely continuous bivariate

exponential distributions: the full class of quadratic forms of amultivariate standard normal variablewith given exponential
marginal distributions. The expression of the moment generating function is derived from the structure of the underlying
matrix. This construction leads to a flexible class indexed by two parameters: the correlation of the marginal components
and the correlation of their squares. A representation theorem describes all the variates and exploits only 4-dimensional
matrices, given in terms of the two parameters. Therefore, sampling from these distributions may be simulated easily.
This fact is especially relevant in practical work since the distribution function and the density function of the above class

do not have a simple explicit expression, in general. For most of the elements in G(2, 2), in Section 3.3, we obtain integral
forms of the joint distribution function and the joint density function which allow a direct computation. Alternatively,
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one may follow the traditional way, which expresses the density function of quadratic forms of normal variates in terms
of modified Bessel functions, power series or Laguerre polynomials; for work in this direction, see [8,18,19,16], and the
reviews in [20,21]. All these authors only deal with particular cases of quadratic forms in normal variates, but possibly their
techniques can be extended to the full class.
It may be noted that the variables studied in the present paper have non-negative correlation: this restriction is shared by

most of the bivariate exponential models proposed in literature. In the full Frechet class with given exponential marginals,
the correlation ranges in [1 − π2

6 , 1] (see [22]). As far as I know, none of the proposed bivariate exponential models is
complete with respect to this range: very few have negative correlation only and just in two cases [7,17] there are models
whose range is both positive and negative, but it is only a limited subset of the full admissible range.
The bivariate exponential class studied in this paper is presented in the framework of bivariate quadratic forms in

standard normal variates whose marginal components have chi-square distributions, possibly with different degrees of
freedom m and p; this class is denoted by G(m, p). Extending the result for the exponential case, we find the minimal
dimension of the normal variable which is sufficient to describe the full class G(m, p).
Finally the natural multivariate extension is mentioned.

2. A general class of joint quadratic forms

Let X = (X1, . . . , Xn)′ be a random vector such that its components are mutually independent and each component Xi
has standard normal distribution.
For the representation of quadratic forms, there is no loss of generality in considering only symmetric matrices. It is

well-known that a symmetric matrix A is idempotent with rank m if and only if the random variable X ′AX has chi-square
distribution withm degrees of freedom, denoted χ2m (e.g. Mathai and Provost [20, Chapter 5]).
The aim of the present section is to study the joint distribution of pairs of χ2m and χ

2
p , when they are both generated via

quadratic forms of the same n-dimensional normal variate. Denote by G(m, p)n this class of distributions, and by G(m, p)
the union of these distributions as n varies.
The subsequent developments rest on a linear algebra result which is stated in the next lemma.

Lemma 1. The following properties are equivalent for an n× n symmetric matrix A.
(i) Matrix A is idempotent with rank m.
(ii) The function f (x) = Ax is an orthogonal projection on a subspace of dimension m.
(iii) There exist m vectors c(i), orthogonal with unit norm, such that A =

∑m
s=1 c(s)c

′

(s), or equivalently an orthonormal matrix C
of size n×m, such that A = CC ′.

(iv) There exist n − m vectors h(s), orthogonal with unit norm, such that A = In −
∑
s h(s)h

′

(s), or equivalently there exists an
orthonormal matrix A∗, of size n× (n−m), such that A = In − A∗(A∗)′.

A simple and direct proof of Lemma 1 is given in an Appendix. Alternatively, it could be deduced elaborating on and
linking results which are in classical texts; see for instance Harville [23, mainly Section 12.3] or Ortega [24].
Consider a pair of matrices, A = (ai,j)with rankm and B = (bi,j)with rank p. Let (U, V ) ∈ G(m, p)n, given by U = X ′AX ,

V = X ′BX . Recall that, for quadratic forms of standard normal variates, the covariance is given by (e.g. [20, p. 75])

Cov(U, V ) = 2
∑
i,j

aijbij = 2 tr (AB).

Let us write A =
∑m
s=1 c(s)c

′

(s) and B =
∑p
s=1 d(s)d

′

(s), in the form of property (iii). Then we have

Cov(U, V ) = 2
∑
s,t

(c ′(s)d(t))
2

and the corresponding correlation coefficient is

Corr(U, V ) =

∑
s,t
(c ′(s)d(t))

2

√
mp

= ρ, (1)

say. Further, writematrices A and B as indicated in property (iv), i.e. they are identified via A∗ and B∗, respectively. On setting
A∗(A∗)′ =

∑n−m
s=1 h(s)h

′

(s) and B∗(B∗)
′
=
∑n−p
s=1 k(s)k(s)

′, therefore the covariance is

Cov(U, V ) = 2

[
m+ p− n+

∑
s,t

(h′(s)k(t))
2

]
leading to

ρ =

m+ p− n+
∑
s,t
(h′(s)k(t))

2

√
mp

. (2)
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This correlation coefficient turns out to be always non-negative, and it varies in [l, L], where

l =
max{0,m+ p− n}

√
mp

, L =
min{m, p}
√
mp

.

In fact, looking for the minimal value, if m + p ≤ n, two orthogonal matrices A and B can be selected. By Craig’s
theorem [20, p. 209], the corresponding quadratic forms are independent. Then the value 0 of the correlation is achieved.
Conversely, ρ = 0 means tr AB = 0, then A and B are orthogonal and the corresponding quadratic forms are independent. If
m+p > n, there exist no orthogonal matrices A and B of rankm and p. On writing ρ as in (2), it is apparent that ρ is minimal
when

∑
s,t(h

′

(s)k(t))
2 is minimal. Since (n−m)+ (n− p) < n, all vectors h(s) can be chosen orthogonal to all k(t), and in that

case ρ = (m+ p− n)/
√
mp.

Looking for the maximal value, whenm ≤ p, the maximum of
∑
s,t(c

′

(s)d(t))
2 ism and it is achieved when all c(s)’s lie on

the subspace spanned by the d(t)’s. In that case ρ = m/
√
mp, which corresponds to the fact that U is an additive component

of V (see [20, p. 207]), or U = V whenm = p.
Therefore, G(m, p)n contains independent pair if and only if m + p ≤ n, in this case ρ = 0 is equivalent to the

independence of the marginals. In G(m, p)n there is the identical pair, (U,U), if and only ifm = p.

3. A class of bivariate exponentials

When A and B have rank 2, the subclass G(2, 2)n is a set of bivariate distributions whose components are exponential
with mean 2. The case with n = 2 is trivial since the identity is the only idempotent 2 × 2 matrix with rank 2; then
G(2, 2)2 = {U,U}, where U = XTX . Therefore in the following we study in detail G(2, 2)n, assuming n ≥ 3.

3.1. The moment generating function

The moment generating function of (U, V ) isMU,V (u, v) = {P(2u, 2v)}−1/2 where

P(y, z) = det(I − yA− zB) (3)

is a polynomial which identifiesMU,V (e.g. [20, p. 67]).
Consider first the subclass G(2, 2)3, that is the set of bivariate exponential distributions generated by quadratic forms

of a trivariate normal random variable. This class is especially simple to describe, but it is rather meagre too: the class is
regulated by a single parameter, the correlation coefficient, ρ, and the marginal components are strongly correlated. In fact,
from statement (iv) of Lemma 1, there exist two vectors h and k with unit norm such that A = I3 − hh′ and B = I3 − kk′.
Then polynomial (3) takes the form

P(y, z) = 1− 2(y+ z)+ (y+ z)2 + ((h′k)2 − 1)(y2z + yz2 − yz).

Therefore the correlation coefficient identifies the joint distribution: in fact, ρ = {1 + (h′k)2}/2. We have then proved the
next statement.

Theorem 2. In G(2, 2)3, polynomial (3) is given by

P(y, z) = 1− 2(y+ z)+ (y+ z)2 + 2(ρ − 1)(y2z + yz2 − yz),

where ρ = Corr(U, V ).

Finally, note that in this case, the marginal components are strongly correlated, since ρ ranges only within the interval
[2−1, 1]. The range of ρ becomes wider if the dimension of X increases: in fact, if n > 3, then G(2, 2)n will include pairs of
independent exponential distributions, as specified at the end of previous section.
If n > 3, it is convenient to write the matrices in form of condition (iii) of Lemma 1. Notice that an orthogonal

transformationΨ of the space ofRn transforms amatrix A intoΨ AΨ ′. Hence, polynomial P(y, z) and themoment generating
function remain unchanged.
Therefore, the simplest way for generating all distributions in G(2, 2)n is to select an appropriate reference element.

Without loss of generality, a pair of quadratic forms can be written via two matrices

A = cc ′ + dd′, B = ee′ + ff ′ (4)

where vectors c, d are arbitrary orthonormal vectors, while e = (1, 0, 0, . . . 0)′, f = (0, 1, 0, . . . , 0)′.

Lemma 3. If A and B are as in (4), in G(2, 2)n, polynomial (3) takes the form

P(y, z) = 1− 2(y+ z)+ (y+ z)2 + (a11 + a22 − 2)(y2z + yz2 − yz)+ y2z2
∑
3≤i<j

(aiiajj − a2ij).

and ρ = 1
2 (a11 + a22).

The proof is given in an Appendix.
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Let us consider now the general case, where both (c, d) and (e, f ) are arbitrary pairs of orthonormal vectors in Rn. Let l1
and l2 denote respectively the projections of c and d on the subspace T = C(B) spanned by the columns of B.

Theorem 4. In G(2, 2)n, polynomial (3) is

P(y, z) = 1− 2(y+ z)+ (y+ z)2 + 2(ρ − 1)(y2z + yz2 − yz)+ γ y2z2

where

ρ =
1
2
(‖l1‖2 + ‖l2‖2), γ = 1− ‖l1‖2 − ‖l2‖2 + ‖l1‖2‖l2‖2 sin2(l1l2).

Proof. Assume first that hypotheses of Lemma 3 hold, and consider the corresponding polynomial. Since 2ρ = a11 + a22,
clearly ρ = (‖l1‖2 + ‖l2‖2)/2. Let T⊥ be the subspace orthogonal complement of T ; let g1 and g2 denote respectively the
projections of c and d on T⊥; namely g1 = (0, 0, c3, . . . , cn) and g1 = (0, 0, d3, . . . , dn). It is the easy to check that the
coefficient of y2z2 is

γ = ‖g1‖2‖g2‖2 sin2(g1, g2) = ‖g1‖2‖g2‖2 − (g ′1g2)
2.

On recalling that c and d are orthonormal, and c = l1 + g1 and d = l2 + g2, where li is orthogonal to gi (i = 1, 2), we obtain
that ‖gi‖2 = 1− ‖li‖2 and (g ′1g2) = −(l

′

1l2). Therefore

γ = 1− ‖l1‖2 − ‖l2‖2 + ‖l1‖2‖l2‖2 − (l′1l2)
2
= 1− 2ρ + ‖l1‖2‖l2‖2 sin2(l1l2)

and the conclusion holds.
Consider next the general case and notice that ρ and γ depend on ‖l1‖2, ‖l2‖2 and (l′1l2)

2 only; because of the definition
of l1 and l2, these terms are invariant under orthogonal transformations, then the conclusion holds in the general case. �

Notice that under the assumptions of Lemma 3, both ρ and γ depend only on the first two coordinates of c and d, being
2ρ = (c21 + d

2
1 + c

2
2 + d

2
2), γ = 1− (c21 + d

2
1 + c

2
2 + d

2
2)+ (c1d2 − c2d1)

2.

In G(2, 2)n, with n > 3, the correlation coefficient assumes all non-negative values. Of course the case of ρ = 1
correspond to the case of identity of the two marginals. The case ρ = 0 is equivalent to the independence (as for the
bivariate normal).
In all other cases, one can build infinitely many different distributions with the same correlation coefficient. In fact
γ ∈ [max{1− 2ρ, 0}, (1− ρ)2],

namely γ is zero if the marginal components are equal, while it is 1 only in case of independence.
Notice that parameter γ appears in mixedmoments of higher order, which can be obtained by differentiatingMU,V (u, v)

several times and then evaluating the result at u = v = 0. The lowest order term where γ occurs is E(U2V 2), then γ
characterizes the correlation of (U2, V 2), such that

Corr(U2, V 2) =
1− γ + 6ρ + 3ρ2

10
.

3.2. Representation theorem

Increasing the dimension of X beyond 4 does not make the class any broader, as it is shown by the next result.

Theorem 5. All bivariate exponential distributions generated by quadratic forms of an n-dimensional vector X can be obtained
from a 4-dimensional vector, that is G(2, 2) = G(2, 2)4.

Proof. Since A and B have rank 2, they are identified by 2 pairs of vectors. Those 4 vectors generate a space which is at most
4-dimensional. Therefore, there exists an orthogonal transformation, Ψ , which maps C(A, B) into the subspace generated
by the first 4 coordinate vectors. Hence the joint distribution of (X ′AX, X ′BX) is the same of those of two quadratic forms
involving only the first 4 normal variates of X . �

A simple representation for all distributions of G(2, 2) is given in the following theorem which provides another
parametrization, equivalent to the previous one, but more convenient.

Theorem 6. Every bivariate exponential distribution in G(2, 2) is the distribution of a pair (U, V ), withU = X ′AX andV = X ′BX,
where X is a 4-variate standard normal,

B =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


and, given ρ ∈ [0, 1] and δ ∈ [0,min(ρ, 1− ρ)],
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A(δ) =

 ρ −δ α − β α + β
−δ ρ α + β α − β
α − β α + β 1− ρ δ
α + β α − β δ 1− ρ


where

α = α(ρ, δ) =

√
(ρ − δ)(1− ρ + δ)

2
,

β = β(ρ, δ) =

√
(ρ + δ)(1− ρ − δ)

2
.

Moreover parameter γ is given by

γ = γ (δ) = (1− ρ)2 − δ2.

Proof. Due to Theorem 5 every joint distribution can be written by means of a 4-dimensional vector X; use the form (4),
where the matrix A is defined as A = cc ′ + dd′, where
let

c =

(√
(ρ − δ)/2,

√
(ρ − δ)/2,

√
1− ρ + δ

2
,

√
1− ρ + δ

2

)
,

d =

(
−
√
(ρ + δ)/2,

√
(ρ + δ)/2,

√
1− ρ − δ

2
,−

√
1− ρ − δ

2

)
.

Since γ = a33a44−a234, then γ = γ (δ) = (1−ρ)
2
−δ2. It assumes all possible values as δ varies. In particular we obtain:

max γ = γ (0) = (1− ρ)2,

and

min γ =
{
γ (ρ) = 1− 2ρ ρ ≤ 1/2
γ (1− ρ) = 0 ρ ≥ 1/2. �

Under the above representation, polynomial (3) takes the form
P(y, z) = 1− 2(y+ z)+ (y+ z)2 + 2(ρ − 1)(y2z + yz2 − yz)+ ((1− ρ)2 − δ2)y2z2.

Notice that δ2, as well as γ , is a function of Corr(U, V ) and Corr(U2, V 2).

3.3. The distribution function

It is very hard to give a general expression of a joint distribution in G(2, 2), however, we may draw some conclusions, by
distinguishing the case γ > 0 and γ = 0.
If γ > 0, it is possible to find an explicit form both for the distribution and the density function, given by integral forms.

Let U = X ′AX , and V = X ′BX , with X a 4-dimensional standard normal and A and B as in (4). Therefore γ = a33a44 − a234
and, given the structure of A, the assumption γ > 0 implies a33 > 0 and a44 > 0. Given s ∈ (0, 1), let Us be the subset of R4
where U ≤ s occurs. Therefore Us can be described as follows:

Us = {(x1, x2, x3, x4) : z1 ≤ x4 ≤ z2;w1 ≤ x3 ≤ w2},
where for k = 1, 2

zk = zk(s) =

−

3∑
i=1
ai4xi ±

√
a44s−

3∑
i,j=1

(aija44 − ai4aj4)xixj

a44
and

wk = wk(s) =

2∑
i=1
(ai4a34 − ai3a44)xi ±

√
γ a44s

γ
.

Given t ∈ (0, 1), let Vt be the subset of R4 where V ≤ t occurs. Being V = X21 + X
2
2 , it results

Vt = {(x1, x2, x3, x4) : |x1| ≤
√
t; y1 ≤ x2 ≤ y2},

where y1 = y1(t) = −
√
t − x21 and y2 = y2(t) =

√
t − x21.
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Of course the joint distribution function of (U, V ) is given by F(s, t) = P((U, V ) ∈ Us∩Vt). Therefore, if φ is the standard
normal density, it can be expressed as

F(s, t) =
∫ √t
−
√
t
dx1

∫ y2(t)

y1(t)
dx2

∫ w2(s)

w1(s)
dx3

∫ z2(s)

z1(s)

4∏
i=1

φ(xi)dx4. (5)

Since t and s are separated in F(s, t), then the density is quite easily computable as the secondmixed derivative of F(s, t),
as Example 1 shows.
Consider now the case γ = 0. In the expression of Vt ∩ Us the two variables s, t cannot be separated; for some variable,

let us say x2, the limitation are

y1(x1, s, t) ≤ x2 ≤ y2(x1, s, t)

where y1(x1, s, t) = max{h(t), g1(x1, s)} and y2(x1, s, t) = min{k(t), g2(x1, s)}, for suitable h, k and gi’s. Therefore there is
a set S where the derivative f (s, t) does not exist. Namely, let v =

∑
aijxixj and u =

∑
bijxixj, then it is

S = {(x1, x2, x3, x4) : h(v) = g1(x1, u) or k(v) = g2(x1, u)} .

However set S has probability 0, as shown in the Example 2. In this well-known example it is easy find the density, while
in the general case the expression of F is complex, its derivatives are intractable and it should be more convenient to resort
to the techniques mentioned in the introduction.

Example 1. Let Ṽ = X21 + X
2
2 , and Ũ =

∑4
i,j=1 aijXiXj, with a2j = ai2 = 0. Due to Lemma 1, it is possible to find out h1, h3, h4

such that
∑
h2i = 1 and aii = 1−h

2
i , aij = −hihj, for i, j 6= 2. From Lemma 3, we obtain 2ρ = a11+a22 and γ = a33a44−a

2
34;

therefore ρ ≤ 1/2 and γ = 1 − 2ρ. For every ρ < 1/2 (that is γ > 0), assume h1 =
√
1− 2ρ , h2 = h3 =

√
ρ . Then

matrix A is

A =

2ρ 0 −α −α
0 0 0 0
−α 0 1− ρ −ρ
−α 0 −ρ 1− ρ


where α =

√
(1− 2ρ)ρ.

Since the joint distribution of (Ũ, Ṽ ) is characterized only by ρ and γ , such form of A describes all the considered joint
distributions. Now

Vt ∩ Us = {|x1| ≤
√
t; |x2| ≤

√
t − x21;w1 ≤ x3 ≤ w2; z1 ≤ x4 ≤ z2}

where

wk =
1

1− 2ρ

(
x1
√
(1− 2ρ)ρ ±

√
(1− 2ρ)(1− ρ)s

)
and

zk =
1

1− ρ

(
x1
√
(1− 2ρ)ρ + x3ρ ±

√
(1− ρ)s−

(
x1
√
ρ − x3

√
1− 2ρ

)2)
.

Express the joint distribution function of (Ṽ , Ũ) as in (5), and compute its second derivative; then its density is given by

g(s, t) =
∫ √t
−
√
t
dx1

∫ w2

w1

φ(x1)φ(x3)
ψ(t − x21) (φ(z2)+ φ(z1))

2
√
(1− ρ)s−

(
x1
√
ρ − x3

√
1− 2ρ

)2 dx3
where ψ is the density of a chi-squared variate with one degree of freedom. �

Example 2. Let V = X21 + X
2
2 , and U = X

2
2 + X

2
3 . Here a44 = 0 and γ = 0. It is

Vt ∩ Us = {|x2| ≤ min{
√
t,
√
s}; |x1| ≤

√
t − x22; |x3| ≤

√
s− x22}.

The joint distribution function is calculated integrating the density of X on set Vt ∩ Us. Then when s 6= t , its second mixed
derivative results

f (s, t) =
∫ min{s,t}

0

e−(s+t−y)/2√
(2π)3(s− y)(t − y)y

dy.
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The set S where it does not exists has probability 0; in fact

P(U = V ) =
∫
S
Πiφ(xi)dx1dx2dx3dx4 = 0,

being S = {(x1, x2, x3, x4) :
∑
aijxixj =

∑
bijxixj}.

4. Final remarks

We have introduced a class G(2, 2) of absolutely continuous bivariate exponential distributions and explored its
probabilistic properties. This class has a natural extension to the multivariate case, since it is a class of bivariate quadratic
forms of standard normal vectors. A simple representation for all distributions of G(2, 2) is given in terms of 4-dimensional
matrices defined by two parameters only.
The aim of this paper was on the construction of the stochastic model and the study of its probabilistic properties, and

we have not examined the statistical side. However, some remarks are in order. From the statistical viewpoint, the more
critical aspect of this class is that the joint density does not have a simple expression. Excepted for the case γ = 0, we
have derived an integral form for computing the distribution function and the density function, but this does not lend
itself to straightforward use of maximum likelihood estimation. On the other hand, the simple expressions connecting the
parameters ρ and γ , or equivalently δ, with Corr(U, V ) and Corr(U2, V 2) allow immediate estimation of the parameters via
the method of moments, once these correlations have been estimated by their sample counterparts. In addition, sampling
from these distributions is straightforward, which makes them well suited for application of the MCMC methodology.
The class G(2, 2) is studied as particular case of the bivariate class G(m, p), whose marginals are respectively χ2m and χ

2
p .

For the simplest case, G(1, 1), it is easy to check that the moment generating function of U, V is given by

M(u, v) =
1

(1− (2u+ 2v)+ (1− ρ)4uv)1/2
.

In the remaining cases, it is difficult to find a general formula for the moment generating function. Running the same
argument presented in the proof of the Theorem5, it can be stated thatG(m, p) = G(m, p)m+p, whichmeans that an (m+p)-
dimensional standard normal vector is sufficient to represent the whole set of bivariate chi-square distributions withm and
p degrees of freedom respectively.
Higher-dimensional normal vectors are required to deal with the multivariate case, that is the k-dimensional variables

whose marginal components are generated via quadratic forms of the same n-dimensional normal variate. The same
argument of the proof of the Theorem5 states that the class of distributionswithmarginalsχ2mi , i = 1, 2, . . . , k, is completely
represented usingm-dimensional normal vectors, wherem =

∑
imi.
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Appendix

A.1. Proof of Lemma 1

(i) H⇒ (ii). If A = (ai,j) has rank m, then the space S = {Ax : x ∈ Rn} is m-dimensional. Moreover, since A is symmetric
idempotent, the projection on S turns out to be orthogonal.

(ii) H⇒ (iii). Consider an m-dimensional subspace S and c(1), . . . , c(m) a basis of S. If Ax is an orthogonal projection on S,
then Ax =

∑m
i=1 c(i)c

′

(i)x. Therefore, we have A =
∑m
i=1 c(i)c

′

(i) = CC
′, where C is the matrix whose ith column is c(i), and A

satisfies the conditions required.

(iii) H⇒ (i). Clearly A = CC ′ is idempotent since C is orthonormal, that is C ′C = Im. Moreover an algebraical routine gives
that rank(A) = m.

(ii)⇐⇒ (iv). Given the equivalence of the first three items, then the next statement is obvious: Let S be an m-dimensional
subspace, S⊥ its orthogonal complement. Given twomatrices A andH , then Ax is the orthogonal projection on S andHx is the
orthogonal projection on S⊥ if and only if matrices A and H are of type described in (iii) with Ax+Hx = x, that is A+H = In.
This concludes the proof. �
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A.2. Proof of Lemma 3

Consider two n×nmatrices A and B, given by A = cc ′+dd′, B = ee′+ ff ′, where e = (1, 0, 0, . . . 0)′, f = (0, 1, 0, . . . , 0)′.
Notice that 2ρ = a11+a22 = c21+c

2
2+d

2
1+d

2
2 and that aiiajj−a

2
ij = (cidj−cjdi)

2. We are going to prove that the polynomial
(3) is given by

P = 1− 2(y+ z)+ y2 + z2 + yz(4− 2ρ)+ (y2z + yz2)(2ρ − 2)+ y2z2
∑
3≤i<j

(cidj − cjdi)2.

The proof works by direct computation, verifying that the above expression holds true. Recall that P = det(In− yA− zB)
by definition. First of all, notice that all terms involving y3 or z3 have a null coefficient since the matrices are of rank 2.
Moreover by direct computation one obtains that

P = 1− 2z + z2 + y
[
−

∑
(c2i + d

2
i )
]
+ y2

[∑
i

∑
j6=i

(c2j d
2
i )− 2

∑
i<j

(cicjdidj)

]

+ yz

[∑
(c2i + d

2
i )+

∑
i≥3

(c2i + d
2
i )

]
− yz2

[∑
i≥3

(c2i + d
2
i )

]

+ y2z

[
−

∑
i≥3

(c21 + d
2
1)(c

2
i + d

2
i )−

∑
i≥3

(c22 + d
2
2)(c

2
i + d

2
i )+

∑
i≥3

(c1ci + d1di)2

+

∑
i≥3

(c2ci + d2di)2 − 2
∑
3≤i<j

(c2i + d
2
i )(c

2
j + d

2
j )+ 2

∑
3≤i<j

(cicj + didj)2
]

+ y2z2
[∑
3≤i<j

(c2i + d
2
i )(c

2
j + d

2
j )−

∑
3≤i<j

(cicj + didj)2
]
.

The coefficient of y2 is∑
i

d2i
∑
j6=i

(c2j )− 2
∑
i<j

(cicjdidj) =
∑
i

d2i (1− c
2
i )− 2

∑
i<j

(cicjdidj)

= ‖d‖2 −

(∑
i

dici

)2
which equals 1 because d is of unit norm and orthogonal to c.
The coefficient of yz is

‖c‖2 + ‖d‖2 +
∑
i≥3

(c2i + d
2
i ) = 2(‖c‖

2
+ ‖d‖2)− (c21 + d

2
1 + c

2
2 + d

2
2)

= 4− 2ρ.

Of course the coefficient of yz2 equals 2ρ − 2.
With some algebra, the coefficient of y2z turns into

−

∑
i≥3

[
c2i

(∑
j6=i

d2j

)
+ d2i

(∑
j6=i

c2j

)]
+ 2[c1d1 + c2d2]

∑
i≥3

cidi + 4
∑
3≤i<j

cicjdidj

= −

∑
i≥3

[c2i (1− d
2
i )+ d

2
i (1− c

2
i )] + 2[c1d1 + c2d2]

∑
i≥3

cidi + 4
∑
3≤i<j

cicjdidj

= −

∑
i≥3

[c2i + d
2
i ] + 2

∑
i≥3

[c2i d
2
i ] + 4

∑
3≤i<j

cicjdidj + 2[c1d1 + c2d2]
∑
i≥3

cidi

= −2+ c1 + c2 + d1 + d2 + 2

[∑
i≥3

cidi

]2
+ 2[c1d1 + c2d2]

∑
i≥3

cidi

= 2ρ − 2+ 2

[∑
i≥3

cidi

]
n∑
i=1

cidi

= 2ρ − 2,

taking into account orthogonality of c and d.
Finally, the coefficient of y2z2 is

∑
3≤i<j(cidj − cjdi)

2.



G. Regoli / Journal of Multivariate Analysis 100 (2009) 1261–1269 1269

References

[1] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, vol. 1, 2nd ed., in: Wiley Series in Probability and Mathematical Statistics:
Applied Probability and Statistics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1994.

[2] N. Balakrishnan, A.P. Basu (Eds.), The Exponential Distribution: Theory, Methods, and Applications, Gordon and Breach, Amsterdam, 1995.
[3] V. Barnett, The bivariate exponential distribution: A review and some new results, Statist. Neerlandica 39 (1985) 343–356.
[4] A.P. Basu, Multivariate exponential distributions and their applications in reliability, in: P.R. Krishnaiah, C.R. Rao (Eds.), in: Handbook of Statistics, vol.
7, Elsevier Science Publishers, Amsterdam, 1988.

[5] A.P. Basu, Bivariate exponential distributions, in: N. Balakrishnan, A.P. Basu (Eds.), The Exponential Distribution: Theory, Methods, and Applications,
Gordon and Breach, Amsterdam, 1995.

[6] S. Kotz, N. Balakrishnan, N.L. Johnson, Continuous Multivariate Distributions, vol. 1: Models and Applications, 2nd ed., in: Wiley Series in Probability
and Statistics: Applied Probability and Statistics, Wiley-Interscience, New York, 2000.

[7] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Statist. Assoc. (1960) 698–707.
[8] W.F. Kibble, A two-variate gamma type distribution, Sankhyā 5 (1941) 137–150.
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