
Statechart Modeling with Fujaba

Leif Geiger Albert Zündorf

University of Kassel, Software Engineering Research Group,
Wilhelmshöher Allee 73, 34121 Kassel, Germany

{leif.geiger|albert.zuendorf}@uni-kassel.de

Abstract

This paper is a small case study on a simple visual language. We use the Fujaba approach to
exemplify, how the different requirements of an environment for such a visual language may be ad-
dressed using Fujaba graph transformations. This covers abstract and concrete syntax, static and
operational semantics, and model transformations. This case study shows, how the more sophisti-
cated language elements of Fujaba may be exploited in modeling complex aspects of the statechart
environment. In addition, we address some not graph grammar related aspects in building such an
environment, e.g. the graphical user interface and multi-user support.

Keywords: Statecharts, MDA, Graph transformations, Meta Modeling

1 Introduction

This paper contributes to the special session on graph based tools for visual
modeling techniques. We show how the Fujaba approach may be used to build
a modeling environment for simple statecharts. Although we try to keep our
example as simple as possible we will try to address all modeling aspects listed
in the call for papers, i.e. abstract syntax, model transformations,operational
semantics, consistency checking, and concrete syntax.

2 Abstract syntax

The abstract syntax is frequently referenced as meta model. Fujaba employs
explicit graph schemas that are defined using UML class diagrams. Thus, a

Electronic Notes in Theoretical Computer Science 127 (2005) 37–49

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.12.029
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82390566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

simple meta model or abstract syntax definition for a statechart environment
may be defined as shown in Figure 1.

Note, from such a meta model / class diagram, Fujaba generates Java
classes for the different kinds of objects, their attributes and their relation-
ships. Relationships are realized using pairs of forward and backward pointers.
For to-many relationships, Fujaba employs different kinds of pre-defined con-
tainer classes.

Fig. 1. Class diagram in Fujaba

From the developers point of view, Fujaba’s implementation of relation-
ships turns Java object structures into graphs with bi-directional edges. Pro-
vided with a meta model / class diagram / graph schema, our dynamic object
browser DOBS may already be used as a simple editor for models / object
digrams / graphs, cf. Figure 2. However, DOBS shows the abstract syntax
of our model, only. To enable editing in statechart notation, concrete syntax
i.e. a graphical user interface still needs to be provided. This is discussed in
chapter 6.

Note, for technical reasons, the Fujaba approach has no explicit notion of
a host graph. This means, there is no pre-defined mechanism enumerating all
elements of the current graph, if required. Instead, the model itself has to pro-
vide some object that may be used to reach all elements of the corresponding
graph. Therefore our meta model provides an explicit StateChart class and
each statechart object / node collects all elements, i.e. states and transitions,
of the corresponding statecharts.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4938

Fig. 2. Abstract syntax in DOBS

3 Model transformations

Based on our meta model, we now discuss model transformations in the sense
of model driven architecture. As an example for a simple model transformation
we specify the flattening of complex statecharts to plain state machines. We
discuss this flattening first, since this allows us to simplify the specification of
operation semantics and of consistency checks, later on.

Flattening of statecharts with or-states deals with the replacement of tran-
sitions targeting or-states and with the replacement of transitions leaving or-
states and with the removal of or-states that have no more transition attached.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 39

Fig. 3. Replacing transitions targeting or-states

Figure 3 specifies the replacement of transitions targeting or-states. Such
transitions are simply re-targeted to the initial state of the statechart embed-
ded within the or-state. Note, Figure 3 employs a new (functional) class Stat-
eChartFlattener that has a statechart reference to StateChart objects. The
graph transformation in Figure 3 matches a statechart object sc containing
an or-state or that is targeted by a transition aToOr. In addition, the graph
transformation identifies a sub-state object inner, where the init attribute
has value true, i.e. the initial sub-state. As indicated by the �destroy� and
�create� markers, the graph transformation of Figure 3 removes the tar-
get link connecting transition aToOR and or-state or and adds a new target
link leading to sub-state inner. If this rule is applied as often as possible,
all transitions leading to or-states are redirected to the corresponding initial
states.

Note, in Figure 1 class OrState inherits from class State. This means, any
time we need a node of type State, a node of type OrState does the job as
well (substitutability). For our graph rewrite rule this means, node inner may
either match a plain state or an or-state. Thus, our graph transformation
works for nested or-states as well.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4940

Fig. 4. Replacing transitions leaving or-states

The (programmed) graph transformation of Figure 4 replaces transitions
leaving or-states. This is done in three steps. The first graph rewrite rule
identifies a transition orToA with a source link to an or-state or and destroys
it. If this rule has been applied, successfully, the second graph rewrite rule
identifies inner states of or that do not already have a leaving transition with
the same label. Note, Fujaba uses crossed out elements to specify negative
application conditions. In this rewrite rule, the object or is shown without its
type. In Fujaba, omitting the type indicates so-called bound objects. Bound
objects are objects that have already been matched to the host graph in a pre-
vious step. Thus, a bound object does not compute a new match but it reuses
its old match. The second graph rewrite rule also has two stacked shapes.
Such a rule is called a for-each activity. For-each activities are iteratively
applied as long as new matches are found. Due to the each time transition
in Figure 4, each time when the second graph rewrite rule identifies an inner
state without an appropriate leaving transition, the third graph rewrite rule
is executed. The negative node another prevents the creation of a new tran-
sition if the inner state has already such a transition. This implements the
priority rules of UML statecharts. The third graph rewrite rule creates a new

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 41

transition leaving the corresponding inner state, targeting the same state a as
the old transition. In addition, the transition label and the transition action
are transferred.

Note, in general Fujaba employs isomorphic rule matching, only. However,
the maybe inner==a clause of the third graph rewrite rule allows nodes in-
ner and a to be matched on the same host graph object. This handles self
transitions.

]success[]failure[

superState

superState

elements

statechart

sourcetarget

OrState:outer

Transition:incoming
«destroy»

OrState:or

StateChart:sc

Transition:outgoing

this

or.isInit():=init
true==init

State:inner

StateChartFlattener::removeOuter (): Boolean

true false

Fig. 5. Removing obsolete or-states

The graph rewrite rule of Figure 5 employs two negative nodes ensuring
that the considered or-state has no out-going and no incoming transition, any
more. For simplicity reasons, a third negative application condition ensures
that the considered or-state is not embedded in another or-state. This means,
we handle nested or-states outside in. If all conditions hold, the or-state is
destroyed and all its sub-states are added to the statechart sc. In addition,
the init flag of the or-state is transferred to its initial sub-state. Thus, if the
or-state was a usual state, its initial sub-state becomes a usual state, too. If
the or-state was the initial state of the whole statechart, its initial sub-state
becomes the new initial state of the statechart.

In Fujaba the graph grammar like application of a set of rules as long as
possible needs to be programmed, explicitly. This may be done as shown in
the (pseudo) graph transformation of Figure 6. Figure 6 employs a boolean
constraint calling our three model transformations. If one of the above trans-
formation is applied (and returns true), we follow the success transition, and

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4942

the boolean constraint is evaluated, again. If no transformation succeeds, the
transformation terminates. Thus, the application of transformation flatten-
StateChart removes all (even nested) or-states and results in a simple state
machine.

Fig. 6. Employing the transformation rules as long as possible

Note, the boolean or operators connecting our three basic model transfor-
mations use left precedence and short circuit evaluation. This means, tran-
sitionFromInner has higher priority than transitionToInner which again has
higher priority than removeOuter. Thus, the proposed way of applying a set
of graph transformation implies precedences on the transformation rules. Re-
lying on these precedences, we e.g. might have omitted the negative nodes of
Figure 5.

4 Operational semantics

This chapter provides the operational semantics for our statecharts. Of course
we could interpret statecharts with (nested) or-states directly. However, this
would need some more complicated rules. Thus, to facilitate the example
this chapter assumes that the state chart is first flattened and all or-states
are properly replaced. Then, the statechart may be executed using the graph
transformation of Figure 7.

For handling events, we employ an object of type FSMSimulator. This
simulator object has a current edge marking the currently active state. If
method handleEvent is called, it tries to identify an outgoing transition a
with the label provided in parameter event. The maybe current==next clause
allows to handle self transitions. If such a transition exists, the current edge
is redirected to the target state of the transition. In addition, the transi-
tion action and the do-action of the target state are executed. For simplicity
reasons, here this is simulated using System.out.println. Alternatively, the

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 43

actions might e.g. employ Java syntax and we could use a Java interpreter
like the bean shell [1] to actually execute the actions.

Fig. 7. Firing transitions

5 Consistency checking

Consistency checking is an important functionality of a modeling environment.
Usually, there is quite a number of trivial yet useful checks, e.g. transitions
need to have source and target, states must have unique names within their
scopes, etc. Here, we focus on a little more challenging consistency check: each
state should be reachable from the initial state. Again, for simplicity reasons,
we first flatten the or-states in order to deal with simple state machines, only.
Our reachability test is done in three steps, cf. Figure 8.

In the first step we just mark all states using an unreachable link. Thus, the
multi-object old collects all state elements of statechart sc. In the second step
we employ a so-called path expression (sourceTrans.targetState)*. A simple
path expression is just a dotted list of edge labels. It is evaluated by traversing
the corresponding links. In our example, edges with label sourceTrans lead
from states to outgoing transitions. (In Fujaba, every edge has two labels,
one for its forward direction and one for the reverse direction.) Accordingly,
targetState edges lead from transitions to their target states. Thus, the path
sourceTrans.targetState leads from a given state to all its successor states.
In our example, we use the * operator to compute the transitive closure of
this basic path expression. In the second graph rewrite rule of Figure 8 the
path expression is applied to the initial state of our state machine. Due to
the transitive closure, the path expression computes the set of all successor
states reached by traversing transitions zero, one, or multiple times. This set

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4944

is collected in the multi-object reachables. Note, the maybe clause allows the
initial state to be contained in the set of reachable states. Note, in addition
to dotted lists of edge labels and to the transitive closure operator, Fujaba
path expressions provide an or operator computing the union of two path
expressions. More complex operators are not yet implemented.

Fig. 8. Reachability test for state machines

Once the set of reachable states is computed, the third graph rewrite rule
of Figure 8 removes the unreachable markers from these nodes. Note, in the
third activity the multi object is again a bound object. Thus, the set of objects
found in the step before, is reused in this step.

6 Concrete syntax

So far we have dealt with the example statechart environment on the level of
the abstract syntax only. Once we have modeled our meta model, the model
transformations, the operational semantics and the consistency checks, we just
need a graphical user interface for our new tool.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 45

In principle, since the Fujaba code generator turns our graph schema and
our graph transformations in usual Java code, one could use any modern GUI
toolkit, e.g. Swing, and any modern GUI builder and just build the GUI in the
conventional way. However, for diagrams editors this is very painful. Alter-
natively, we could use special frameworks for graphical editors, e.g. DiaGen,
cf. [3].

However, in this example we used a simple GUI toolkit named Fujaba
Window Toolkit (FWT) that we have developed for teaching purposes. FWT
provides a set of adapter classes for swing elements. These adapter classes en-
able the interactive construction of simple GUIs within our Dobs environment,
cf. Figure 9. Figure 9 shows an FVerticalContainer object f5 which contains
links to two FHorizontalContainer objects f4 and f7. The upper horizontal
container contains the checkbox f3 and the FTextField f1. The lower horizon-
tal container contains a do/ label and another text field f2. The upper part of
object f5 shows the swing representation generated by this FWT structure.

Fig. 9. GUI construction in Dobs

Each FTextField object has a subject link identifying the corresponding
logical object. In addition FTextField objects have a special attribute attr-
Name containing the name of an attribute of the subject object. With this
information, the FTextField object is able to depict the value of a certain at-
tribute of its subject object. Similarly, the user may click on the swing repre-
sentation of an FTextField and edit the depicted value. Then, the FTextField
updates the value of the corresponding attribute of the subject object, auto-

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4946

matically. Thus, in our example, the user may edit the name or the doAction
of state s0 directly via the swing representation contained in f5.

If the subject of an FWT container is changed, this change is forwarded to
all interested sub-objects. Thus, if we connect f5 to another state, the swing
representation would be connected to the name and doAction of that new
state.

For the representation of a whole statechart, we employ an FXYContainer
that allows to move its sub-objects. Then we attach the FWT structure for
a single state as a prototype to this FXYContainer. In addition, we tell the
FXYContainer to observe the elements association of its subject statechart.
Thus, every time we add a new state to the elements association of that stat-
echart, the FXYContainer adds a copy of the prototype FWT structure for
this kind of logical object to its content. In addition, subject links between this
new FWT structure and the logical object are established. A similar mecha-
nism may be used for transitions. Finally, the FXYContainer representing the
statechart is embedded in an FWTFrame object which creates a new JFrame
window containing the swing representations of the statechart elements. In
this way, we have created the GUI shown in Figure 10.

Fig. 10. Simple FWT GUI for a statechart tool

7 Persistency, undo/redo and multi user support

To complete the functionality of our statechart environment, we need to be
able to store and retrieve statechart projects. This might easily be achieved us-
ing Java serialization mechanisms. However, Fujaba provides a special frame-
work called Common Object Replication Architecture (CoObRA). With a sin-
gle command, the Fujaba code generation is changed to employ the CoObRA

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 47

mechanism. Thereby, all changes to the object graph are automatically proto-
colled. This protocol is then used for storage and retrieval, for undo/redo, for
versioning and for merging contributions from multiple authors. The latter
mechanism provides multi user support based on optimistic locking concepts.
See [7] for more details.

8 Summary

This paper outlined a little case study applying the Fujaba approach to the
modeling of a simple statechart environment. We addressed the typical re-
quirements of such an environment, i.e. abstract syntax, model transfor-
mations, operational semantics, consistency checking, concrete syntax, and
persistency concepts. Actually, such CASE tools are the original application
domain of the Fujaba approach. Thus, it was relatively easy to provide exam-
ple transformations for the different aspects of the statechart example.

These example transformations utilize many of the more sophisticated fea-
tures of Fujaba e.g. programmed graph rewriting, method invocations, for-
each activities, multi objects, maybe clauses, negative application conditions,
path expressions, etc. Similar language elements are provided by Progres
graph transformations [6]. Due to our experiences, such sophisticated model-
ing constructs are mandatory for the specification of complex functionality as
required for CASE tools.

In addition to the application logic, a practical tool requires a lot of ad-
ditional functionality, e.g. a graphical user interface, persistency, undo/redo
and XMI based model exchange mechanisms, code generation, etc. In order
to facilitate the realization of such functionality and to allow the seamless
integration with other Java libraries, Fujaba generates usual Java code from
the graph schema and from all graph transformations. This generated code is
easily blended with conventionally programmed system parts.

References

[1] http://www.beanshell.org/

[2] I. Diethelm, L. Geiger, A. Zündorf: Systematic Story Driven Modeling, Workshop on Scenarios
and State Machines: models, algorithms, and tools; workshop at ICSE 2004, Edinburgh, 2004.

[3] http://www2-data.informatik.unibw-muenchen.de/DiaGen

[4] T. Fischer, J. Niere, L. Torunski: Konzeption und Realisierung einer integrierten
Entwicklungsumgebung für UML, Java und Stroy-Driven-Modeling (in german), Diploma
Thesis, University of Paderborn, 1998.

[5] Fujaba Homepage, University of Paderborn, http://www.fujaba.de/.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–4948

http://www.beanshell.org/
http://www2-data.informatik.unibw-muenchen.de/DiaGen

[6] http://www-i3.informatik.rwth-aachen.de/research/projects/progres/

[7] C. Schneider, A. Zündorf, J. Niere: CoObRA - a small step for development tools to
collaborative environments; Workshop on Directions in Software Engineering Environments;
workshop at ICSE 2004, Scotland, UK 2004

[8] A. Zündorf: Rigorous Object Oriented Software Development, Habilitation Thesis, University
of Paderborn, 2001.

L. Geiger, A. Zündorf / Electronic Notes in Theoretical Computer Science 127 (2005) 37–49 49

http://www-i3.informatik.rwth-aachen.de/research/projects/progres/

	Introduction
	Abstract syntax
	Model transformations
	Operational semantics
	Consistency checking
	Concrete syntax
	Persistency, undo/redo and multi user support
	Summary
	References

