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study, we show that the cellular structures are compatible with
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1. Introduction

Cellularity is a concept due to Graham and Lehrer [23] that is useful for studying non-semisimple
specializations of certain algebras such as Hecke algebras, q-Schur algebras, etc. A number of im-
portant examples of cellular algebras, including the Hecke algebras of type A and the Birman–
Wenzl–Murakami (BMW) algebras, actually occur in towers A0 ⊆ A1 ⊆ A2 ⊆ · · · with coherent cellular
structures. Coherence means that the cellular structures are well behaved with respect to induction
and restriction.
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This paper establishes a framework for proving cellularity of towers of algebras (An)n�0 that are
obtained by repeated Jones basic constructions from a coherent tower of cellular algebras (Q n)n�0.

Examples that fit in our framework include: Temperley–Lieb algebras, Brauer algebras, walled
Brauer algebras, Birman–Wenzl–Murakami (BMW) algebras, cyclotomic BMW algebras, partition al-
gebras, and contour algebras. We give a uniform proof of cellularity for all of these algebras.

We should alert the reader that we use a definition of cellular algebras that is slightly weaker
than the original definition of Graham and Lehrer. The two definitions are equivalent in case 2 is
invertible in the ground ring, and we know of no consequence of cellularity that would not also hold
with the weaker definition; in particular, all results of Graham and Lehrer [23] go through with the
modified definition. See Section 2.2 for details. Our contention is that the relaxed definition is in fact
superior, as it allows one to deal more naturally with extensions of cellular algebras. For this reason,
we have retained the terminology “cellularity” for our weaker definition, rather than inventing some
new terminology such as “weak cellularity.”

Once we have proved our abstract result (Theorem 3.2), it is generally very easy to check that
each example fits our framework, and thus that the tower (An)n�0 in the example is a coherent
tower of cellular algebras. What we need is, for the most part, already in the literature, or completely
elementary. The application of our method to the cyclotomic BMW algebras depends on a very recent
result of Mathas regarding induced modules of cyclotomic Hecke algebras [46].

For most of our examples, cellularity has been established previously (but coherence of the cel-
lular structures is a new result). Many of the existing proofs of cellularity for these algebras follow
the pattern made explicit by Xi in his paper on cellularity of the partition algebras [61]. The cellu-
lar bases obtained are pieced together from cellular bases of the (quotient) algebras Q k and bases
of certain R-modules Vk of tangles or diagrams, where R is the ground ring for An; a formal
method for piecing the parts together is König and Xi’s method of “inflation” [39]. It is not evi-
dent that the resulting “tangle bases” yield coherent cellular structures. By contrast, the cellular bases
that we produce are indexed by paths on the branching diagram (Bratteli diagram) for the generic
semisimple representation theory of the tower (An)n�0 over a field, and coherence is built into the
construction.

For example, for the Brauer algebras, the BMW algebras, and the cyclotomic BMW algebras, our
cellular basis of the n-th algebra is indexed by up-down tableaux of length n, and may be regarded as
an analogue of Murphy’s cellular basis [50] for the Hecke algebra, or the basis of Dipper, James and
Mathas [12] for the cyclotomic Hecke algebras. A Murphy type basis for the BMW and Brauer algebras
has been constructed by Enyang [15], and by Rui and Si [52] for cyclotomic BMW algebras.

Let us remark on the role played by the generic ground ring for our examples. For each of our
examples (An)n�0, there is a generic ground ring R such that any specialization A S

n to a ground ring
S is obtained as A S

n = AR
n ⊗R S . Moreover, R is an integral domain, and if F denotes the field of

fractions of R , then the algebras (A F
n )n�0 are split semisimple with a known representation theory

and branching diagram. It suffices for us to prove that the sequence of algebras defined over the
generic ground ring R is a coherent cellular tower, and we find that we can use the structure of the
algebras defined over F as a tool to accomplish this.

Our approach is influenced by the work of König and Xi [39] as well as by the work of Cox et al.
on “towers of recollement” [8]. In fact, the idea behind our approach is roughly the following: Each
algebra An (over the generic ground ring R) contains an essential idempotent en−1 with the prop-
erties that en−1 Anen−1 ∼= An−2 and An/(Anen−1 An) ∼= Q n , where Q n is a cellular algebra. Assuming
that An−2 and An−1 are cellular, we show that the (generally non-unital) ideal In = Anen−1 An is a
“cellular ideal” in An by relating ideals of An−2 to ideals of An contained in In . This proof involves
a new basis-free characterization of cellularity and also involves showing that In ∼= An−1 ⊗An−2 An−1
as An−1 bimodules; thus In is a sort of Jones basic construction for the pair An−2 ⊆ An−1. Since our
version of cellularity behaves well under extensions, we can conclude that An is cellular. Our method
is related to ideas introduced by König and Xi in their treatment of cellularity and Morita equiva-
lence [39].

Following Cox et al. [8], our approach employs the interaction between induction and restric-
tion functors relating An−1-mod and An-mod, on the one hand, and localization and globalization
functions relating An-mod and An−2-mod, on the other hand. (Write e = en−1 ∈ An . The local-
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ization functor F : An-mod → e Ane-mod ∼= An−2-mod is F : M �→ eM . The globalization function
G : An−2-mod ∼= e Ane-mod → An-mod is G : N �→ Ane ⊗e Ane N .)

Our framework and that of Cox et al. dovetail nicely; in fact, our main result (Theorem 3.2) says
that if (An), (Q n) are two sequences of algebras satisfying our framework axioms, then (An) satisfies
a cellular version of the axioms for towers of recollement; see [9] for a discussion of cellularity and
towers of recollement.

Although our techniques do not seem to be adaptable to proving “strict” cellularity in the sense
of [23], by combining our results with previous proofs of “strict” cellularity for our examples, we can
show the existence of “strictly” cellular Murphy type bases, i.e. bases indexed by paths on the generic
branching diagram for the sequence of algebras (An)n�0. We will indicate how this can be done for
the cyclotomic BMW algebras; other examples are similar.

Several other general frameworks have been proposed for cellularity which also successfully en-
compass many of our examples; see [39,24,57].

In a companion paper [19], we refine the framework of this paper to take into account the role
played by Jucys–Murphy elements. At the same time, we modify Andrew Mathas’s theory [45] of
cellular algebras with Jucys–Murphy elements to take into account coherent sequences of such alge-
bras.

2. Preliminaries

2.1. Algebras with involution

Let R be a commutative ring with identity. In the following, assume A is an R-algebra with an
involution i (that is, an R-linear algebra anti-automorphism of A with i2 = id).

If M is a left A-module, we define a right A-module i(M) as follows. As a set, i(M) is a copy of M ,
with elements marked with the symbol i, i(M) = {i(m): m ∈ M}. The R-module structure of i(M) is
given by i(m1)+ i(m2) = i(m1 +m2), and ri(m) = i(rm). Finally, the right A-module structure is defined
by i(m)a = i(i(a)m). If α : M → N is a homomorphism of left A-modules, define i(α) : i(M) → i(N) by
i(α)(i(m)) = i(α(m)). Then i : A-mod → mod-A is a functor. For any fixed M , i : M → i(M) given by
m �→ i(m) is, by definition, an isomorphism of R-modules.

If � is a left ideal in A, we have two possible meanings for i : � → i(�), namely the restriction to
� of the involution i, whose image is a right ideal in A, or the application of the functor i. However,
there is no problem with this, as the right A-module obtained by applying the functor i can be
identified with the right ideal i(�).

The same construction gives a map from right A-modules to left A-modules. Moreover, if A and B
are R-algebras with involutions i A and iB , and M is an A–B-bimodule, then i(M), defined as above as
an R-module has the structure of a B–A-bimodule with bi(m)a = i(i A(a)miB(b)). Note that i ◦ i(M) is
naturally isomorphic to M , so i is an equivalence between the categories of A–B-bimodules and the
category of B–A-bimodules.

Lemma 2.1. Suppose A, B, and C are R-algebras with involutions i A , iB , and iC . Let B P A and A Q C be bimod-
ules. Then

i(P ⊗A Q ) ∼= i(Q ) ⊗A i(P ),

as C–B-bimodules.

Proof. It is straightforward to check that there is a well-defined R-linear isomorphism f0 : P ⊗A Q →
i(Q ) ⊗A i(P ) such that f0(p ⊗ q) = i(q) ⊗ i(p). Then

f = f0 ◦ i−1 : i(P ⊗A Q ) → i(Q ) ⊗A i(P )

is an R-linear isomorphism. Finally, one can check that f is a C–B-bimodule map. �
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Remark 2.2. Note that if we identify i(P ⊗A Q ) with i(Q ) ⊗A i(P ) via f , then we have the formula
i(p ⊗ q) = i(q) ⊗ i(p). In particular, let M be a B–A-bimodule, and identify i ◦ i(M) with M , and
i(M ⊗A i(M)) with i ◦ i(M) ⊗A i(M) = M ⊗A i(M). Then we have the formula i(x ⊗ i(y)) = y ⊗ i(x).
We will use these identifications throughout the paper.

2.2. Cellularity

We recall the definition of cellularity from [23]; see also [44]. The version of the definition given
here is slightly weaker than the original definition in [23]; we justify this below.

Definition 2.3. Let R be an integral domain and A a unital R-algebra. A cell datum for A consists of an
algebra involution i of A; a partially ordered set (Λ,�) and for each λ ∈ Λ a set T (λ); and a subset
C = {cλ

s,t : λ ∈ Λ and s, t ∈ T (λ)} ⊆ A; with the following properties:

(1) C is an R-basis of A.
(2) For each λ ∈ Λ, let Ăλ be the span of the cμ

s,t with μ > λ. Given λ ∈ Λ, s ∈ T (λ), and a ∈ A, there
exist coefficients rs

v(a) ∈ R such that for all t ∈ T (λ):

acλ
s,t ≡

∑
v

rs
v(a)cλ

v,t mod Ăλ.

(3) i(cλ
s,t) ≡ cλ

t,s mod Ăλ for all λ ∈ Λ and s, t ∈ T (λ).

A is said to be a cellular algebra if it has a cell datum.

For brevity, we will write that (C ,Λ) is a cellular basis of A.

Remark 2.4.

(1) The original definition in [23] requires that i(cλ
s,t) = cλ

t,s for all λ, s, t . However, one can check
that the results of [23] remain valid with our weaker axiom. In fact, we are not aware of any
consequence of cellularity that would not also hold with our weaker definition.

(2) In case 2 ∈ R is invertible, our definition is equivalent to the original. Here is the proof: Suppose
that 2 is invertible in the ground ring and that {cλ

s,t} is a cellular basis in the sense of Defini-
tion 2.3. We want to produce a new cellular basis {aλ

s,t} satisfying the strict equality i(aλ
s,t) = aλ

t,s

for all λ, s, t . By hypothesis, for each λ, s, t there is a unique f (λ, s, t) ∈ Ăλ such that i(cλ
s,t) =

cλ
t,s + f (λ, s, t). One easily checks that i( f (λ, s, t)) = − f (λ, t, s). Declare aλ

s,t = cλ
s,t + (1/2) f (λ, t, s)

for all λ, s, t . Then {aλ
s,t} has the desired properties.

We recall some basic structures related to cellularity, see [23]. Given λ ∈ Λ. Let Aλ denote the span
of the cμ

s,t with μ � λ. It follows that both Aλ and Ăλ (defined above) are i-invariant two sided ideals

of A. If t ∈ T (λ), define Cλ
t to be the R-submodule of Aλ/ Ăλ with basis {cλ

s,t + Ăλ : s ∈ T (λ)}. Then
Cλ

t is a left A-module by Definition 2.3(2). Furthermore, the action of A on Cλ
t is independent of t ,

i.e. Cλ
u

∼= Cλ
t for any u, t ∈ T (λ). The left cell module �λ is defined as follows: as an R-module, �λ is

free with basis {cλ
s : s ∈ T (λ)}; for each a ∈ A, the action of a on �λ is defined by acλ

s = ∑
v rs

v(a)cλ
v

where rs
v(a) is as in Definition 2.3(2). Then �λ ∼= Cλ

t , for any t ∈ T (λ). For all s, t ∈ T (λ), we have a
canonical A–A-bimodule isomorphism α : Aλ/ Ăλ → �λ ⊗R i(�λ) defined by α(cλ

s,t + Ăλ) = cλ
s ⊗R i(cλ

t ).
Moreover, we have i ◦ α = α ◦ i, using Remark 2.2 and point (3) of Definition 2.3.
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Definition 2.5. Suppose A is a unital R-algebra with involution i, and J is an i-invariant ideal; then
we have an induced algebra involution i on A/ J . Let us say that J is a cellular ideal in A if it satisfies
the axioms for a cellular algebra (except for being unital) with cellular basis

{
cλ

s,t : λ ∈ Λ J and s, t ∈ T (λ)
} ⊆ J

and we have, as in point (2) of the definition of cellularity,

acλ
s,t ≡

∑
v

rs
v(a)cλ

v,t mod J̆λ

not only for a ∈ J but also for a ∈ A.

Remark 2.6. (On extensions of cellular algebras.) If J is a cellular ideal in A, and H = A/ J is cellular
(with respect to the involution induced from the involution on A), then A is cellular. In fact, let
(Λ J ,�) be the partially ordered set in the cell datum for J and C J the cellular basis. Let (ΛH ,�)

be the partially ordered set in the cell datum for H and {h̄μ
u,v} the cellular basis. Then A has a cell

datum with partially ordered set Λ = Λ J ∪ ΛH , with partial order agreeing with the original partial
orders on Λ J and on ΛH and with λ > μ if λ ∈ Λ J and μ ∈ ΛH . A cellular basis of A is C J ∪ {hμ

s,t},

where hμ
s,t is any lift of h̄μ

s,t .
With the original definition of [23], the assertions of this remark would be valid only if the ideal

J has an i-invariant R-module complement in A. The ease of handling extensions is our motivation
for using the weaker definition of cellularity.

2.3. Basis-free formulations of cellularity

König and Xi have given a basis-free definition of cellularity [39]. We describe a slight weakening
of their definition, which corresponds exactly to our weaker form of Graham–Lehrer cellularity.

Definition 2.7 (König and Xi). Let R be an integral domain and A a unital R-algebra with involution i.
An i-invariant two sided ideal J in A is called a split ideal if, and only if, there exists a left ideal
� of A contained in J , with � finitely generated and free over R , and there is an isomorphism of
A–A-bimodules α : J → � ⊗R i(�) making the following diagram commute:

J
α

i

� ⊗R i(�)

i

J
α

� ⊗R i(�)

A finite chain of i-invariant two sided ideals

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A

is called a cell chain if for each j (1 � j � n), the quotient J j/ J j−1 is a split ideal of A/ J j−1 (with
respect to the involution induced by i on A/ J ).

Remark 2.8.

(1) König and Xi call a split ideal a “cell ideal.” We changed the terminology to avoid confusion with
other concepts.
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(2) The definition of a cell chain differs from the one given by Konig and Xi in that we dropped the
requirement that J j−1 have an i-invariant R-module complement in J j .

Lemma 2.9. Let R be an integral domain and let A be a unital R-algebra with involution i. An ideal J of A is
split if, and only if, there exists a left A-module M that is finitely generated and free as an R-module, and there
exists an isomorphism of A–A-bimodules γ : J → M ⊗R i(M) making the following diagram commute:

J
γ

i

M ⊗R i(M)

i

J
γ

M ⊗R i(M)

Proof. If J is split, it clearly satisfies the condition of the lemma. Conversely, suppose the condition
of the lemma is satisfied. Fix some element b0 of the basis of M over R and define a left A-module
map β : M → A by β(m) = γ −1(m ⊗ b0). Then β is an isomorphism of M onto a left ideal � of A
contained in J .

Now we have β ⊗ i(β) : M ⊗R i(M) → � ⊗R i(�) is an isomorphism satisfying (β ⊗ i(β)) ◦ i =
i ◦ (β ⊗ i(β)). It follows that α = (β ⊗ i(β)) ◦ γ : J → � ⊗R i(�) is an isomorphism of A–A-bimodules
satisfying the requirement for a split ideal, namely, α ◦ i = i ◦ α. �
Lemma 2.10 (König and Xi). Let A be an R-algebra with involution. A is cellular if, and only if, A has a finite
cell chain.

Proof. We sketch the proof from [38], p. 372.
Suppose A has a cell datum with partially ordered set (Λ,�) and cell basis {cλ

s,t}. Write Λ as
a sequence (λ1, λ2, . . . , λn), where λ1 is maximal in Λ, and, for 1 � j < n, λ j+1 is maximal in Λ \
{λ1, . . . , λ j}. Then for each j � 1, Γ j = {λ1, . . . , λ j} is an order ideal in Λ. Set Γ0 = ∅. Define A(Γ j)

to be the R-submodule of A spanned by the basis elements cλ
u,v , with λ ∈ Γ j . Then A(Γ j) is an

i-invariant two sided ideal in A, and

0 = A(Γ0) ⊂ A(Γ1) ⊂ · · · ⊂ A(Γn) = A.

Moreover (see [23], p. 6),

A(Γ j)/A(Γ j−1) ∼= Aλ j / Ăλ j ∼= �λ j ⊗R i
(
�λ j

)
,

and the isomorphism α : A(Γ j)/A(Γ j−1) → �λ j ⊗R i(�λ j ) satisfies α ◦ i = i ◦ α. Thus (A(Γ j))1� j�n is
a cell chain.

Conversely, suppose ( J j)0� j�n is a cell chain in A. Then for each j � 1, we have an A-module
� j that is finitely generated and free as an R-module, and an isomorphism of A–A-bimodules

α j : J j/ J j−1 → � j ⊗R i(� j) satisfying i ◦ α j = α j ◦ i. Let {b j
s : s ∈ T ( j)} be an R-basis of � j and

let c
λ j
s,t be any lift in J j of α−1

j (b j
s ⊗ i(b j

t )). Now take Λ′ to be Λ with the order λ1 > λ2 > · · · > λn .

Let C = {c
λ j
s,t : 1 � j � n; s, t ∈ T ( j)}. Then (C ,Λ′) is a cellular basis of A. �

Remark 2.11. In the lemma, A has a cellular basis {cλ
s,t} with i(cλ

s,t) = cλ
t,s if and only if, A has a finite

cell chain ( J j) such that for each j � 1, J j−1 has an i-invariant R-module complement in J j .

Note that if we follow the procedure of the proof, starting with a cell datum on A with partially or-
dered set (Λ,�), then the only information that we retain about Λ is that λ j+1 is maximal in Λ\Γ j ;
we cannot recover the partial order on Λ from this. Moreover, if we continue to produce a cellular
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basis {c j
s,t} from the cell chain (A(Γ j))0� j�n , the result will not necessarily have the properties of a

cellular basis with respect to the original partially ordered set (Λ,�).
In order to prove our main results, we will need a different basis-free formulation of cellularity

that allows us to pass back and forth between the formulation of Definition 2.3 and the basis-free
formulation without losing information about the partially ordered set.

Definition 2.12. Let A be an R-algebra with involution i. Let (Λ,�) be a finite partially ordered set.
For λ ∈ Λ, let Γ�λ denote the order ideal {μ: μ � λ} and Γ>λ the order ideal {μ: μ > λ}.

A Λ-cell net is a map from the set of order ideals of Λ to the set of i-invariant two sided ideals of
A, Γ �→ AΓ , with the following properties:

(1) A∅ = {0}. If Γ1 ⊆ Γ2, then AΓ1 ⊆ AΓ2 .
(2) For λ ∈ Λ, write A�λ = AΓ�λ

and A>λ = AΓ>λ . Then

A = span{A�μ: μ ∈ Λ},
and for all λ ∈ Λ,

A>λ = span{A�μ: μ > λ}.

(3) For each λ ∈ Λ, there is an A-module Mλ , finitely generated and free as an R-module, such that
whenever Γ ⊆ Γ ′ are order ideals of Λ, with Γ ′ \ Γ = {λ}, then there exists an isomorphism of
A–A-bimodules

α : AΓ ′/AΓ → Mλ ⊗R i
(
Mλ

)
,

satisfying i ◦ α = α ◦ i.

Proposition 2.13. Let A be an R-algebra with involution, and let (Λ,�) be a finite partially ordered set. Then
A has a cell datum with partially ordered set Λ if, and only if, A has a Λ-cell net.

Proof. Suppose that A has a cell datum with partially ordered set Λ and cell basis {cλ
s,t}. For each

order ideal Γ of Λ, let A(Γ ) denote the span of those cλ
s,t with λ ∈ Γ . Then Γ �→ A(Γ ) is a Λ-cell

net.
Conversely, suppose that A has a Λ-cell net, Γ �→ AΓ . For each λ ∈ Λ, we have an isomorphism

of A–A-bimodules αλ : A�λ/A>λ → Mλ ⊗R i(Mλ). Let {bλ
s : s ∈ T (λ)} be an R-basis of Mλ and let cλ

s,t

be any lift of α−1
λ (bλ

s ⊗ i(bλ
t )) to A�λ . We claim that

C = {
cλ

s,t : λ ∈ Λ; s, t ∈ T (λ)
}

is an R-basis of A.
Let Aλ be the span of those cμ

s,t with μ � λ and Ăλ the span of those cμ
s,t with μ > λ. If μ � λ, then

for all s, t ∈ T (μ), cμ
s,t ∈ A�μ ⊆ A�λ , using point (1) of Definition 2.12. Hence Aλ ⊆ A�λ . Similarly,

Ăλ ⊆ A>λ .
We claim that

for all λ ∈ Λ, A�λ = Aλ. (2.1)

This is clear if λ is a maximal element of Λ. (Note that A>λ = A∅ = {0}.) Now suppose that λ is not
maximal and that for all μ > λ, A�μ = Aμ . Then

A>λ = span{A�μ: μ > λ} = span
{

Aμ: μ > λ
} = Ăλ,
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where the first equality comes from (2) of Definition 2.12 and the second from the induction hypo-
thesis. By definition of {cλ

s,t}, we have

A�λ = span
{

cλ
s,t

} + A>λ = span
{

cλ
s,t

} + Ăλ = Aλ.

Assertion (2.1) now follows by induction. Point (2) of Definition 2.12 and (2.1) imply that A>λ = Ăλ

for all λ ∈ Λ, and that A = span(C ).
We now proceed to establish linear independence of C . Write Λ as a sequence (λ1, λ2, . . . , λK )

with λ1 maximal and λ j+1 maximal in Λ \ {λ1, . . . , λ j} for 1 � j < K . Put Γ j = {λ1, . . . , λ j} for j � 1
and Γ0 = ∅. Then (Γ j)0� j�K is a maximal chain of order ideals. Since Γ j \ Γ j−1 = {λ j}, we have an
isomorphism γ j : AΓ j /AΓ j−1 → Mλ j ⊗R i(Mλ j ) with i ◦ γ j = γ j ◦ i. Thus (AΓ j )0� j�K is a cell chain
in A. So by the proof of Lemma 2.10, A has a cellular basis

B = {
bλ

s,t : λ ∈ Λ; s, t,∈ T (λ)
}
,

but with respect to the “wrong” partial order on Λ. Since C is a spanning set of the same cardinality
as the basis B, it follows that C is linearly independent over R , and thus an R-basis of A.

Because A>λ = Ăλ for all λ ∈ Λ, it is now easy to see that properties (2) and (3) of Definition 2.3
are satisfied by C . �
Remark 2.14. In the proposition, the following are equivalent:

(1) A has a cellular basis {cλ
s,t} with i(cλ

s,t) = cλ
t,s .

(2) A has a Λ cell net Γ → AΓ such that for each pair Γ ⊆ Γ ′ , AΓ has an i-invariant R-module
complement in AΓ ′ .

(3) A has a Λ cell net Γ → AΓ suchthat for each λ ∈ Λ, A>λ has an i-invariant R-module comple-
ment in A�λ .

The implications (1) ⇒ (2) ⇒ (3) are evident. For (3) ⇒ (1), let Bλ denote the i-invariant R-module
complement of A>λ in A�λ , and, in the second paragraph of the proof of the proposition, let cλ

s,t be

the unique lift of α−1
λ (bλ

s ⊗ i(bλ
t )) in Bλ .

2.4. Coherent towers of cellular algebras

Definition 2.15. Let H0 ⊆ H1 ⊆ H2 ⊆ · · · be an increasing sequence of cellular algebras, with a com-
mon multiplicative identity element, over an integral domain R . Let Λn denote the partially ordered
set in the cell datum for Hn . We say that (Hn)n�0 is a coherent tower of cellular algebras if the following
conditions are satisfied:

(1) The involutions are consistent; that is, the involution on Hn+1, restricted to Hn , agrees with the
involution on Hn .

(2) For each n � 0 and for each λ ∈ Λn , the induced module IndHn+1
Hn

(�λ) has a filtration by cell
modules of Hn+1. That is, there is a filtration

IndHn+1
Hn

(
�λ

) = Mt ⊇ Mt−1 ⊇ · · · ⊇ M0 = (0)

such that for each j � 1, there is a μ j ∈ Λn+1 with M j/M j−1 ∼= �μ j .
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(3) For each n � 0 and for each μ ∈ Λn+1, the restriction ResHn+1
Hn

(�μ) has a filtration by cell modules
of Hn . That is, there is a filtration

ResHn+1
Hn

(
�μ

) = Ns ⊇ Ns−1 ⊇ · · · ⊇ N0 = (0)

such that for each i � 1, there is a λi ∈ Λn with N j/N j−1 ∼= �λi .

The modification of the definition for a finite tower of cellular algebras is obvious.
We call a filtration as in (2) and (3) a cell filtration. In the examples that we study, we will also have

uniqueness of the multiplicities of the cell modules appearing as subquotients of the cell filtrations, and
Frobenius reciprocity connecting the multiplicities in the two types of filtrations. We did not include
uniqueness of multiplicities and Frobenius reciprocity as requirements in the definition, as they will
follow from additional assumptions that we will impose later; see Lemma 2.22.1

Example 2.16. The tower of Hecke algebras of type A is a coherent tower of cellular algebras. Let R be
an integral domain and q an invertible element of R . Let Hn(R,q) denote the Hecke algebra of
type A generated by elements T1, . . . , Tn−1 satisfying the braid relations and the quadratic relations
(T j − q)(T j + 1) = 0 for 1 � j � n − 1. When q = 1, Hn(R,q) is the group algebra RSn of the sym-
metric group Sn . As is well known, Hn(R,q) has a basis T w (w ∈ Sn) given by T w = T j1 . . . T j	 for
any reduced expression w = s j1 . . . s j	 . The map defined by i(T w) = T w−1 is an algebra involution. The
map defined by (T w)# = (−q)	(w)(T w−1 )−1 is an algebra automorphism. The assignment T w �→ T w is
an embedding of Hn(R,q) into Hn+1(R,q). The algebra involutions are consistent on (Hn)n�0.

Dipper and James [10,11] studied the representation theory of the Hecke algebras, defining Specht
modules Sλ which generalize Specht modules for symmetric groups. They showed that induced mod-
ules of Specht modules have a filtration by Specht modules [10]. Jost [35] showed that restrictions of
Specht modules have Specht filtrations.

Murphy [50] showed that the Hecke algebras are cellular (before the formalization of the notion
of cellularity in [23]). Murphy shows that his cell modules �λ satisfy �λ ∼= (Sλ′

)#, where λ′ is the
transpose of λ and the superscript # means that the module is twisted by the automorphism #. Thus
it follows from the results of Dipper, James, and Jost cited above that restricted modules and induced
modules of Murphy’s cell modules have cell filtrations.

2.5. Inclusions of split semisimple algebras and branching diagrams

A general source for the material in this section is [18].
A finite dimensional split semisimple algebra over a field F is one which is isomorphic to a finite

direct sum of full matrix algebras over F .
Suppose A ⊆ B are finite dimensional split semisimple algebras over F (with the same identity

element). Let A(i), i ∈ I , be the minimal ideals of A and B( j), j ∈ J , the minimal ideals of B . We
associate a J × I inclusion matrix Ω to the inclusion A ⊆ B , as follows. Let W j be a simple B( j)-
module. Then W j becomes an A-module via the inclusion, and Ω( j, i) is the multiplicity of a simple
Ai -module in the decomposition of W j as an A-module. An equivalent characterization of the inclu-
sion matrix is the following. Let qi be a minimal idempotent in A(i) and let z j be the identity of B( j)
(a minimal central idempotent in B). Then qi z j is the sum of Ω( j, i) minimal idempotents in B( j).

It is convenient to encode an inclusion matrix by a bipartite graph, called the branching diagram;
the branching diagram has vertices labeled by I arranged on one horizontal line, vertices labeled by
J arranged along a second (higher) horizontal line, and Ω( j, i) edges connecting j ∈ J to i ∈ I .

1 Hemmer and Nakano [29] have obtained remarkable general results about uniqueness of multiplicities in Specht filtrations
of modules over Hecke algebras of type A. Hartmann and Paget [28] obtained analogous results for modules over Brauer al-
gebras. The assertions that we require here are much more special, applying only to induced modules of cell modules and
restrictions of cell modules.
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If A1 ⊆ A2 ⊆ A3 · · · is a (finite or infinite) sequence of inclusions of finite dimensional split
semisimple algebras over F , then the branching diagram for the sequence is obtained by stacking
the branching diagrams for each inclusion, with the upper vertices of the diagram for Ai ⊆ Ai+1 be-
ing identified with the lower vertices of the diagram for Ai+1 ⊆ Ai+2.

For our purposes, it suffices to restrict our attention to the case that A0 ∼= F . In most of our
examples, the entries in each inclusion matrix are all 0 or 1; thus in the branching diagram there are
no multiple edges between vertices.

Definition 2.17. An (infinite) abstract branching diagram B is an infinite graph with vertex set V =∐
i�0 V i , with the following properties

(1) V 0 is a singleton and V i is finite for all i.
(2) Two vertices v ∈ V i and w ∈ V j are adjacent only if |i − j| = 1. Multiple edges are allowed

between adjacent vertices.
(3) If i � 1 and v ∈ V i , then v is adjacent to at least one vertex in V i−1 and to at least one vertex in

V i+1.

The definition can be modified in the obvious way for a finite abstract branching diagram. When
we treat the walled Brauer algebra in Section 5.6, we will loosen the definition by dropping the
requirement that V 0 is a singleton.

The branching diagram for a sequence of finite dimensional split semisimple algebras (with the
restrictions mentioned above) is an abstract branching diagram, and conversely, given an abstract
branching diagram B, one can construct a sequence of finite dimensional split semisimple algebras
(over any given field) whose branching diagram is (isomorphic to) B.

Let B be an abstract branching diagram with vertex set V = ∐
i�0 V i . We usually denote the

unique element of V 0 by ∅. We picture B with the elements of V i arranged on the horizontal line
y = i in the plane, and we call V i the i-th row of vertices in B. If v ∈ V i and w ∈ V i+1 are adjacent,
we write v ↗ w . The subgraph of B consisting of V i and V i+1 and the edges connecting them is
called the i-th level of B.

Now suppose we are given an abstract branching diagram B0 with vertex set V (0) = ∐
i�0 V (0)

i .
We construct a new abstract branching diagram B as follows: The vertex set of B is V = ∐

k�0 Vk ,
where

Vk =
∐
i�k

k−i even

V (0)
i × {k}.

Thus the k-th row of vertices of B consists of copies of rows k, k −2, k −4, . . . of vertices of B0. Now
if (λ,k) ∈ Vk and (μ,k + 1) ∈ Vk+1, there exist i � k with k − i even such that λ ∈ V (0)

i , and j � k + 1

with k + 1 − j even such that μ ∈ V (0)
j . We declare (λ,k) ↗ (μ,k + 1) if, and only if, |i − j| = 1 and

λ and μ are adjacent in B0. The number of edges connecting (λ,k) and (μ,k + 1) is the same as the
number of edges connecting λ and μ in B0.

The first few levels of B is picture schematically in Fig. 2.1, where each diagonal line represents
all the edges connecting vertices in V (0)

i with vertices in V (0)
i±1. Note that the k-th level of B is a

folded copy of the first k levels of B0. We call B the branching diagram obtained by reflections from B0.

Example 2.18. Take B0 to be Young’s lattice. Thus V (0)

k consists of Young diagrams of size k, and
λ ↗ μ in B0 if μ is obtained from λ by adding one box. Then the k-th row of vertices in the abstract
branching diagram B obtained from B0 by reflections consists of all pairs (λ,k), where λ is a Young
diagram of size i � k, with k − i even. Moreover, (λ,k) ↗ (μ,k + 1) in B if, and only if, μ is obtained
from λ either by adding one box or by removing one box.
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Fig. 2.1. Branching diagram obtained by reflections.

2.6. The Jones basic construction

This paper could be written without ever mentioning the Jones basic construction. Nevertheless,
in our view, the basic construction plays an essential role behind the scenes.

The Jones basic construction was introduced [32] in the theory of von Neumann algebras and is
crucial in the analysis of von Neumann subfactors. Translated to the context of finite dimensional
split semisimple algebras over a field, the basic construction was a fundamental ingredient in Wenzl’s
analysis of the generic structure of the Brauer algebras and the BMW algebras [55,6,56].

The basic construction for finite dimensional split semisimple algebras can be described as follows
(see [18]): let A ⊆ B be finite dimensional split semisimple algebras over field F , with the same
multiplicative identity element. The basic construction for the pair A ⊆ B is the algebra End(B A). This
algebra is also split semisimple and the inclusion matrix for the pair B ⊆ End(B A) is a transpose of
that for the pair A ⊆ B . Suppose now that B has a faithful F -valued trace ε with faithful restriction
to A. Here faithful means that the bilinear form (x, y) �→ ε(xy) is non-degenerate. In this case there
is a unique trace preserving conditional expectation εA : B → A, i.e. a unital A–A-bimodule map
satisfying ε ◦ εA = ε. Identify B with its image in EndF (B) under the left regular representation. The
basic construction End(B A) is equal to BεA B = {∑n

i=1 b′
iεAb′′

i : n � 1, b′
i,b′′

i ∈ B}. Moreover, BεA B ∼=
B ⊗A B , where the latter is given the algebra structure determined by (b1 ⊗ b2)(b3 ⊗ b4) = b1 ⊗
εA(b2b3)b4. Note that we have three realizations for the basic construction,

End(B A) ∼= BεA B ∼= B ⊗A B,

any of which could serve as a potential definition of the basic construction in a more general setting.
Suppose in addition that we are given an algebra C with B ⊆ C and that C contains an idempotent

e such that exe = εA(x)e for x ∈ B , and x �→ xe is injective from B to Be ⊆ C . Note that BeB is a
possibly non-unital subalgebra of C . By [55], Theorem 1.3, BeB ∼= BεA B ∼= End(B A), and, in particular,
BeB is unital and semisimple.
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Let’s now describe how Wenzl used these ideas to show the generic semisimplicity of the Brauer
algebras. We refer the reader to Section 5.2.1 for the definition of the Brauer algebras. Consider the
Brauer algebras Bn = Bn(F , δ) over F = C or F = Q(δ), in the first case with parameter δ a non-
integer complex number, and in the second case with parameter δ an indeterminant over Q. The
Brauer algebras have a canonical F -valued trace ε and conditional expectations εn : Bn → Bn−1 pre-
serving the trace. Each Brauer algebra Bn contains an essential idempotent en−1 with e2

n−1 = δen−1
and en−1xen−1 = δεn−1(x)en−1 for x ∈ Bn−1. Moreover, x �→ xen−1 is injective from Bn−1 to Bn and
one has Bn/Bnen−1 Bn ∼= FSn , which is semisimple, since F has characteristic 0. Let fn−1 = δ−1en−1;
then fn−1 is an idempotent with fn−1xfn−1 = εn−1(x) fn−1 for x ∈ Bn−1. We have B0 ∼= B1 ∼= F .

Suppose it is known for some n that Bk is split semisimple and that the trace ε is faithful on Bk for
k � n. By Wenzl’s observation applied to Bn−1 ⊆ Bn ⊆ Bn+1 and the idempotent fn ∈ Bn+1, we have
Bnen Bn = Bn fn Bn ∼= Bnεn Bn ∼= End((Bn)Bn−1 ). But it is elementary to check that Bnen Bn = Bn+1en Bn+1.
Thus we have that the ideal Bn+1en Bn+1 ⊆ Bn+1 is split semisimple, and the quotient of Bn+1 by
this ideal (∼= FSn+1) is also split semisimple, so Bn+1 is split semisimple. To continue the inductive
argument, it is necessary to verify that the trace ε is faithful on Bn+1. Wenzl uses a Lie theory
argument for this.

In this paper, we develop a cellular analog of this argument. Let’s continue to use the example of
the Brauer algebras to illustrate this. Cellularity is a property that is preserved under specializations,
so it suffices to consider the Brauer algebras over the generic ring R = Z[δ]. Let F denote the field of
fractions of R , F = Q(δ). Write Bn for Bn(R, δ) and B F

n for Bn(F , δ). By Wenzl’s theorem, B F
n is split

semisimple. We have B0 ∼= B1 ∼= R .
Suppose it is known for some n that Bk is cellular for k � n. We want to show that Bn+1en Bn+1 =

Bnen Bn is a cellular ideal in Bn+1. It will then follow that Bn+1 is cellular, because the quotient
Bn+1/Bn+1en Bn+1 ∼= RSn+1 is cellular. Let Λn−1 denote the partially ordered set in the cell datum for
Bn−1. For each order ideal Γ of Λn−1, write J (Γ ) for the span in Bn−1 of all cλ

s,t with λ ∈ Γ . The
crucial point is to show that Γ �→ Bnen J (Γ )Bn = Bn+1en J (Γ )Bn+1 is a Λn−1-cell net in Bn+1en Bn+1.
Along the way to doing this, we show that

J ′(Γ ) := Bn ⊗Bn−1 J (Γ ) ⊗Bn−1 Bn ∼= Bnen J (Γ )Bn (2.2)

via b′ ⊗ x ⊗ b′′ �→ b′enxb′′; consequently, if Γ1 ⊆ Γ2, then J ′(Γ1) imbeds in J ′(Γ2). In particular,

Bn ⊗Bn−1 Bn ∼= Bnen Bn = Bn+1en Bn+1, (2.3)

and J ′(Γ ) imbeds as an ideal in the (non-unital) algebra Bn ⊗Bn−1 Bn . Essentially, what we show is
that Bn+1en Bn+1 = Bnen Bn is isomorphic to the basic construction Bn ⊗Bn−1 Bn , and that Γ �→ J ′(Γ )

is a Λn−1-cell net in Bn ⊗Bn−1 Bn .
We note that Bn is not a projective Bn−1-module, but the isomorphisms (2.2) and the embeddings

J ′(Γ1) ↪→ J ′(Γ2) reflect the projectivity of B F
n over B F

n−1.

2.7. Coherent cellular towers and extension of the ground ring

Let R be an integral domain and let F denote the field of fractions of R . We will be interested in
coherent towers (Hn)n�0 of cellular algebras over R such that for all n, the F -algebra H F

n := Hn ⊗R F
is (split) semisimple. We will see that in this situation we have uniqueness of multiplicities in the
filtrations of induced and restricted modules by cell modules, and Frobenius reciprocity connecting
these multiplicities.

For any algebra A over R , write A F for the F -algebra A ⊗R F . Moreover, for a left (or right) A-
module M , write M F for the left (or right) A F module M ⊗R F .

Lemma 2.19. Let R be an integral domain and F its field of fractions. Let A and B be R-algebras. For modules
M A and A N, we have
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M ⊗A N ⊗R F ∼= M F ⊗A F N F (2.4)

as F -vector spaces. The isomorphism

M ⊗A N ⊗R F → M F ⊗A F N F

is determined by (x ⊗A y ⊗R f ) �→ (x ⊗R 1F ) ⊗A F (y ⊗R f ). If A NB is a bimodule, then the isomorphism in
(2.4) is an isomorphism of right B F -modules, and similarly, if B M A is a bimodule, then the isomorphism is an
isomorphism of left B F -modules.

Proof. Note that

M ⊗A (N ⊗R F ) ∼= M ⊗A A F ⊗A F (N ⊗R F )

= (M ⊗A A ⊗R F ) ⊗A F (N ⊗R F )

∼= (M ⊗R F ) ⊗A F (N ⊗R F )

= M F ⊗A F N F .

If we track a simple tensor through these equalities and isomorphisms, we see that

x ⊗A y ⊗R f �→ x ⊗A 1A F ⊗A F (y ⊗R f )

= x ⊗A 1A ⊗R 1F ⊗A F (y ⊗R f ) �→ (x ⊗R 1F ) ⊗A F (y ⊗R f ).

The final statement follows from this. �
Lemma 2.20. Let R be an integral domain and F its field of fractions. If M is a free R-module, then the map
M → M ⊗R F determined by x �→ x ⊗ 1F is injective.

Proof. It follows from [30], Propositions 3.2 and 3.3 that the map x �→ x ⊗ 1 takes an R-basis of M to
an F -basis of M ⊗R F . In particular, the map is injective. �
Lemma 2.21. Let R be an integral domain and F its field of fractions. Let N1 ⊆ N2 be R-modules with N2 free.
Let ι : N1 → N2 denote the injection. Then ι ⊗ idF : N1 ⊗R F → N2 ⊗R F is injective.

Proof. Any element of N1 ⊗R F can be written as y = (1/q)(x ⊗ 1F ), with q ∈ R× and x ∈ N1. Then
ι ⊗ idF (y) = (1/q)(ι(x) ⊗ 1F ) = (1/q)γ ◦ ι(x), where γ : N2 → N2 ⊗R F is determined by z �→ z ⊗ 1F .
Because N2 is a free R-module, γ is injective, by Lemma 2.20, and it follows that ι ⊗ idF is injec-
tive. �
Lemma 2.22. Let R be an integral domain with field of fractions F . Suppose that (Hn)n�0 is a coherent tower
of cellular algebras over R and that H F

n is split semisimple for all n. Let Λn denote the partially ordered set in
the cell datum for Hn. Then

(1) {(�λ)F : λ ∈ Λn} is a complete family of simple H F
n -modules.

(2) Let [ω(μ,λ)]μ∈Λn+1, λ∈Λn denote the inclusion matrix for H F
n ⊆ H F

n+1 . Then for any λ ∈ Λn and μ ∈
Λn+1 , and any cell filtration of ResHn+1

Hn
(�μ), the number of subquotients of the filtration isomorphic to

�λ is ω(μ,λ).

(3) Likewise, for any λ ∈ Λn and μ ∈ Λn+1 , and any cell filtration of IndHn+1
Hn

(�λ), the number of subquotients
of the filtration isomorphic to �μ is ω(μ,λ).



F.M. Goodman, J. Graber / Advances in Applied Mathematics 46 (2011) 312–362 325
Proof. For point (1), (�λ)F is a cell module for H F
n , and, for a semisimple cellular algebra, the cell

modules are precisely the simple modules.
We have

(
ResHn+1

Hn

(
�μ

))F = Res
H F

n+1

H F
n

((
�μ

)F ) ∼=
⊕
λ∈Λn

ω(μ,λ)
(
�λ

)F
, (2.5)

by definition of the inclusion matrix. On the other hand, if

ResHn+1
Hn

(
�μ

) = Ns ⊇ Ns−1 ⊇ · · · ⊇ N0 = (0)

is a cell filtration, with N j/N j−1 ∼= �λ j , then

(
ResHn+1

Hn

(
�μ

))F = N F
s ⊇ N F

s−1 ⊇ · · · ⊇ N F
0 = (0),

by Lemma 2.21, because all the modules N j are free as R-modules. Moreover, N F
j /N F

j−1
∼=

(N j/N j−1)
F ∼= (�λ j )F by right exactness of tensor products. Since H F

n modules are semisimple,

(
ResHn+1

Hn

(
�μ

))F ∼=
s⊕

j=1

(
�λ j

)F
. (2.6)

Comparing (2.5) and (2.6) and taking into account that �λ �→ (�λ)F is injective, we obtain conclu-
sion (2).

Likewise,

(
IndHn+1

Hn

(
�λ

))F = Hn+1 ⊗Hn �λ ⊗R F ∼= H F
n+1 ⊗H F

n

(
�λ

)F
,

by Lemma 2.19. But

H F
n+1 ⊗H F

n

(
�λ

)F = Ind
H F

n+1

H F
n

((
�λ

)F ) ∼=
⊕

μ∈Λn+1

ω(μ,λ)
(
�μ

)F
,

using (2.5) and Frobenius reciprocity. The rest of the argument for point (3) is similar to that for
point (2). �
Lemma 2.23. Adopt the assumptions and notation of Lemma 2.22. Assume in addition that the branching
diagram B for (H F

n )n�0 has no multiple edges and that H F
0 = F . It follows that each Hn has a cell datum

(perhaps different from the one initially given) with the same partially ordered set Λn but with T (λ) equal to
the set of paths on B from ∅ to λ.

Proof. Referring to the proof of Proposition 2.13, it suffices to show that, for each n and for each
λ ∈ Λn , the cell module �λ has an R-basis indexed by the set P(λ) of paths in B from ∅ to λ.
But this says only that the rank of �λ over R is |P(λ)|, and this is true because rankR(�λ) =
dimF (�λ ⊗R F ) = |P(λ)|. See also the following remark. �
Remark 2.24. In principle, in the situation of Lemma 2.23, we can recursively build bases of cell
modules, using the cell filtrations of restrictions. Suppose we have bases of �λ for all λ ∈ Λn for
some n. Let μ ∈ Λn+1. Then �μ , regarded as an Hn-module, has a filtration by cell modules of Hn ,

�μ = Ns ⊇ Ns−1 ⊇ · · · ⊇ N0 = (0),
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with N j/N j−1 ∼= �λ j ; and λ ∈ Λn appears (exactly once) in the list of λ j , if, and only if, λ ↗ μ.
Now we inductively build bases of the N j to obtain a basis of Ns = �μ . The isomorphism N1 ∼= �λ1

provides a basis of N1. For j � 2, if we have a basis of N j−1, then that basis together with any lift of
a basis of N j/N j−1 ∼= �λ j gives a basis of N j .

3. A framework for cellularity

In this section we describe our framework for cellularity of algebras related to the Jones basic
construction.

3.1. Framework axioms

Let R be an integral domain with field of fractions F . We consider two sequences of R-algebras

A0 ⊆ A1 ⊆ A2 ⊆ · · · , and Q 0 ⊆ Q 1 ⊆ Q 2 ⊆ · · · ,

each with a common multiplicative identity element. We assume the following axioms:

(1) (Q n)n�0 is a coherent tower of cellular algebras.
(2) There is an algebra involution i on ∪n An such that i(An) = An .
(3) A0 = Q 0 = R , and A1 = Q 1 (as algebras with involution).
(4) For all n, A F

n := An ⊗R F is split semisimple.
(5) For n � 2, An contains an essential idempotent en−1 such that i(en−1) = en−1 and An/

(Anen−1 An) ∼= Q n , as algebras with involution.
(6) For n � 1, en commutes with An−1 and en Anen ⊆ An−1en .
(7) For n � 1, An+1en = Anen , and the map x �→ xen is injective from An to Anen .
(8) For n � 2, en−1 ∈ An+1en An+1.

Remark 3.1.

(1) Let Λ
(0)
n denote the partially ordered set in the cell datum for Q n . It follows from axioms (1) and

(4) and Lemma 2.22 that Λ
(0)
n can be identified with the n-th row of vertices of the branching

diagram for (Q F
n )n�0.

(2) Applying the involution in axiom (7), we also have en An+1 = en An , and the map x �→ enx is
injective from An to en An .

(3) Since en is an essential idempotent, there is a non-zero δn ∈ R with e2
n = δnen . Thus we have

en Anen ⊇ en An−1en = An−1e2
n = δn An−1en . Combining this with axiom (6), we have δn An−1en ⊆

en Anen ⊆ An−1en . Hence en A F
n en = A F

n−1en .
(4) From axiom (6), we have for every x ∈ An , there is a y ∈ An−1 such that enxen = yen; but by

axiom (7), y is uniquely determined, so we have a map cln : An → An−1 with enxen = cln(x)en .
It is easy to check that cln is an An−1–An−1-bimodule map, but it is not unital in general; if
e2

n−1 = δnen−1, then cln(1) = δn1. If δn is invertible in R , then εn = (1/δn) cln is a conditional
expectation, i.e. a unital An−1–An−1-bimodule map.

(5) From axioms (4) and (5), we have Q F
n := Q n ⊗R F is split semisimple.

(6) In our examples, there is a single non-zero δ with e2
n = δen for all n.

3.2. The main theorem

Theorem 3.2. Let R be an integral domain with field of fractions F . Let (Q k)k�0 and (Ak)k�0 be two towers
of R-algebras satisfying the framework axioms of Section 3.1. Then

(1) (Ak)k�0 is a coherent tower of cellular algebras.
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(2) For all k, the partially ordered set in the cell datum for Ak can be realized as

Λk =
∐
i�k

k−i even

Λ
(0)
i × {k},

with the following partial order: Let λ ∈ Λ
(0)
i and μ ∈ Λ

(0)
j , with i, j, and k all of the same parity. Then

(λ,k) > (μ,k) if, and only if, i < j, or i = j and λ > μ in Λ
(0)
i .

(3) Suppose k � 2 and (λ,k) ∈ Λ
(0)
i × {k} ⊆ Λk. Let �(λ,k) be the corresponding cell module. If i < k, then

(Akek−1 Ak �(λ,k)) ⊗R F = �(λ,k) ⊗R F , while if i = k then Akek−1 Ak �(λ,k) = 0.
(4) The branching diagram B for (A F

k )k�0 is that obtained by reflections from the branching diagram B0 for
(Q F

k )n�0 .

Remark 3.3. In most of our examples, the branching diagrams have no multiple edges. In this case,
for all k and for all (λ,k) ∈ Λk , the index set T ((λ,k)) in the cell datum for Ak can be taken to be
the set of paths on B from ∅ to (λ,k). This follows from (1) and (4), using Lemma 2.23.

4. Proof of the main theorem

We will prove Theorem 3.2 in this section. Our strategy is to prove the following statement by
induction on n:

Claim. For all n � 0, the statements (1)–(4) of Theorem 3.2 hold for the finite tower (Ak)0�k�n.

Of course, by statement (4) for the finite tower, we mean that the branching diagram for the
finite tower (A F

k )0�k�n is that obtained by reflections from the branching diagram of the finite tower
(Q F

k )0�k�n .
The claim holds trivially for n = 0 and n = 1. We assume that the claim holds for some n � 1 and

prove that it also holds for n + 1.

4.1. An+1 is cellular

We will show that An+1 is a cellular algebra.
Since An+1/An+1en An+1 ∼= Q n+1 is cellular, to prove that An+1 is cellular, it suffices to show that

An+1en An+1 is a cellular ideal in An+1; see Remark 2.6.
Recall that Λk denotes the partially ordered set in the cell datum for Ak for each k, 0 � k � n.

Denote the elements of the cellular basis of Ak by cλ
u,v for λ ∈ Λk and u, v ∈ T (λ).

For each order ideal Γ of Λn−1, recall that An−1(Γ ) is the span in An−1 of all cλ
s,t with λ ∈ Γ .

An−1(Γ ) is an i-invariant two sided ideal of An−1.
In the following, we will write J (Γ ) = An−1(Γ ) and

Ĵ (Γ ) = Anen J (Γ )An = An+1en J (Γ )An+1,

which is a two sided ideal in An+1. Our goal is to show that Γ �→ Ĵ (Γ ) is a Λn−1-cell net in
An+1en An+1.

Lemma 4.1. Let R be an integral domain and F its field of fractions. Suppose that A and B are R-algebras. Let
P A , A M A and A Q be modules. Then

P ⊗A M ⊗A Q ⊗R F ∼= P F ⊗A F M F ⊗A F Q F



328 F.M. Goodman, J. Graber / Advances in Applied Mathematics 46 (2011) 312–362
as F -vector spaces. The isomorphism

P ⊗A M ⊗A Q ⊗R F → P F ⊗A F M F ⊗A F Q F

is determined by

x ⊗A y ⊗A z ⊗R f �→ (x ⊗R 1F ) ⊗A F (y ⊗R 1F ) ⊗A F (z ⊗R f ).

If B P A and A Q B are bimodules, then the isomorphism is an isomorphism of B F –B F -bimodules.

Proof. By Lemma 2.19,

(P ⊗A M) ⊗A Q ⊗R F ∼= (P ⊗A M)F ⊗A F Q F . (4.1)

Applying Lemma 2.19 again, we have that

(P ⊗A M)F ∼= P F ⊗A F M F (4.2)

as right A F -modules. Combining the two isomorphisms we have

P ⊗A M ⊗A Q ⊗R F ∼= P F ⊗A F M F ⊗A F Q F . (4.3)

If we track a simple tensor through these isomorphisms, we see that

x ⊗A y ⊗A z ⊗R f �→ (x ⊗A y ⊗R 1F ) ⊗A F (z ⊗R f )

�→ (x ⊗R 1F ) ⊗A F (y ⊗R 1F ) ⊗A F (z ⊗R f ).

If B P A and A Q B are bimodules, then the isomorphism in (4.1) is an isomorphism of B F –B F -
bimodules, and the isomorphism in (4.2) is an isomorphism of B F –A F -bimodules. Hence the final
isomorphism (4.3) is an isomorphism of B F –B F -bimodules. �
Lemma 4.2. Let K be a field and A a semisimple K -algebra. Suppose that I ⊆ A is a two-sided ideal and M A ,
A N are modules. Then the homomorphism M ⊗A I ⊗A N → M ⊗A N defined by x⊗ y ⊗ z �→ x⊗ yz is injective.

Proof. The semisimplicity of A implies that all A-modules are projective. Thus N ⊗A − and − ⊗A M
are exact, and

N ⊗A I ⊗A M → N ⊗A A ⊗A M ∼= N ⊗A M

is injective. �
Proposition 4.3. For all order ideals Γ of Λn−1:

(1) The map

ΦΓ : Anen ⊗An−1 J (Γ ) ⊗An−1 en An → Anen J (Γ )An

determined by

ΦΓ (a1en ⊗ x ⊗ ena2) = a1enxa2

is an isomorphism of An+1–An+1-bimodules.
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(2) Anen ⊗An−1 J (Γ ) ⊗An−1 en An is a free R-module.
(3) Let Γ ′ be another order ideal containing Γ , such that Γ ′ \ Γ is a singleton. Let ι denote the injection

J (Γ ) → J (Γ ′). Then

βΓ,Γ ′ := id ⊗ ι ⊗ id : Anen ⊗An−1 J (Γ ) ⊗An−1 en An → Anen ⊗An−1 J
(
Γ ′) ⊗An−1 en An

is injective.

We provide two lemmas on the way to proving Proposition 4.3.

Lemma 4.4. Let Γ ⊆ Γ ′ be two order ideals in Λn−1 such that Γ ′ \ Γ is a singleton. Suppose that ΦΓ is an
isomorphism and that Anen ⊗An−1 J (Γ )⊗An−1 en An is a free R-module. Then βΓ,Γ ′ is injective and Anen ⊗An−1

J (Γ ′) ⊗An−1 en An is a free R-module.

Proof. Let {λ} = Γ ′ \ Γ . Since ΦΓ is assumed injective, it follows from considering the commutative
diagram below that βΓ,Γ ′ is also injective:

Anen ⊗An−1 J (Γ ) ⊗An−1 en An
ΦΓ

βΓ,Γ ′

Anen J (Γ )An

Anen ⊗An−1 J (Γ ′) ⊗An−1 en An
ΦΓ ′

Anen J (Γ ′)An

By the right exactness of tensor products, we have

(
Anen ⊗An−1 J

(
Γ ′) ⊗An−1 en An

)
/βΓ,Γ ′

(
Anen ⊗An−1 J (Γ ) ⊗An−1 en An

)
∼= Anen ⊗An−1

(
J
(
Γ ′)/ J (Γ )

) ⊗An−1 en An

∼= Anen ⊗An−1 �λ ⊗R i
(
�λ

) ⊗An−1 en An. (4.4)

Consider Anen = An+1en (because of framework axiom (7)) as an An+1–An−1-bimodule. One can easily
check that i(Anen) ∼= en An as An−1–An+1-bimodules. Therefore,

i
(
�λ

) ⊗An−1 en An ∼= i
(
�λ

) ⊗An−1 i(Anen) ∼= i
(

Anen ⊗An−1 �λ
)
, (4.5)

using Lemma 2.1. By framework axioms (6) and (7), Anen ∼= An as An–An−1-bimodules. Hence,

Anen ⊗An−1 �λ ∼= An ⊗An−1 �λ = IndAn
An−1

(
�λ

)
, (4.6)

as An modules. Combining (4.4), (4.5), and (4.6), we have

(
Anen ⊗An−1 J

(
Γ ′) ⊗An−1 en An

)
/βΓ,Γ ′

(
Anen ⊗An−1 J (Γ ) ⊗An−1 en An

)
∼= IndAn

An−1

(
�λ

) ⊗R i
(
IndAn

An−1

(
�λ

))
, (4.7)

as An–An-bimodules.
By the induction assumption on n, IndAn

An−1
(�λ) has a filtration with subquotients isomorphic to

cell modules for An , and in particular IndAn
An−1

(�λ) is a free R-module. By (4.7),

(
Anen ⊗An−1 J

(
Γ ′) ⊗An en An

)
/βΓ,Γ ′

(
Anen ⊗An−1 J (Γ ) ⊗An−1 en An

)
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is a free R-module. Since Anen ⊗An−1 J (Γ ) ⊗An−1 en An is free by hypothesis, and βΓ,Γ ′ is injective,

βΓ,Γ ′
(

Anen ⊗An−1 J (Γ ) ⊗An−1 en An
)

is a free R-module. Hence

Anen ⊗An−1 J
(
Γ ′) ⊗An−1 en An

is also a free R-module. �
Lemma 4.5. Let Γ be an order ideal in Λn−1 . If Anen ⊗An−1 J (Γ ) ⊗An−1 en An is a free R-module, then ΦΓ is
an isomorphism.

Proof. ΦΓ is surjective, so we only have to prove ΦΓ is injective. Define

α1 : Anen ⊗An−1 J (Γ ) ⊗An−1 en An → Anen ⊗An−1 J (Γ ) ⊗An−1 en An ⊗R F

and

α2 : Anen J (Γ )An → Anen J (Γ )An ⊗R F

by x �→ x ⊗ 1F . Since Anen ⊗An−1 J (Γ ) ⊗An−1 en An is a free R-module, by assumption, α1 is injective,
according to Lemma 2.20. Let

τ : Anen ⊗An−1 J (Γ ) ⊗An−1 en An ⊗R F → A F
n en ⊗A F

n−1
J (Γ )F ⊗A F

n−1
en A F

n

be the isomorphism from Lemma 4.1. (We are writing en for en ⊗ 1F .) Let

Φ F
Γ : A F

n en ⊗A F
n−1

J (Γ )F ⊗A F
n−1

en A F
n → A F

n en J (Γ )F A F
n

be defined by xen ⊗ a ⊗ en y �→ xenay.
Consider the following diagram

A F
n en ⊗A F

n−1
J (Γ )F ⊗A F

n−1
en A F

n

Φ F
Γ

A F
n en J (Γ )F A F

n

Anen ⊗An−1 J (Γ ) ⊗An−1 en An ⊗R F
ΦΓ ⊗idF

τ

Anen J (Γ )An ⊗R F

Anen ⊗An−1 J (Γ ) ⊗An−1 en An
ΦΓ

α1

Anen J (Γ )An

α2

It is straightforward to check that Φ F
Γ ◦τ ◦α1 = α2 ◦ΦΓ . Thus, to prove that ΦΓ is injective, it suffices

to show that Φ F
Γ is injective.

Define

β : A F
n en ⊗A F J (Γ )F ⊗A F en A F

n → A F
n en ⊗A F en A F

n
n−1 n−1 n−1
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by β(x ⊗ y ⊗ z) = x ⊗ yz. Observe that β is injective by Lemma 4.2. Define

φ F : A F
n en ⊗A F

n−1
en A F

n → A F
n en A F

n

by φ F (xen ⊗ en y) = xen y. Observe that φ F ◦ β = Φ F
Γ , so to prove that Φ F

Γ is injective, it suffices to
show that φ F is injective.

Since A F
n+1 is split semisimple (by framework axiom (4)), the ideal A F

n+1en A F
n+1 (which equals

A F
n en A F

n by framework axiom (7)) is a unital algebra in its own right, and Morita equivalent to
en A F

n+1en = en A F
n en ∼= A F

n−1. In fact, let

ψ F : en An ⊗A F
n en A F

n
A F

n en → en A F
n en

be given by enx ⊗ yen �→ (1/δn)enxyen , where e2
n = δnen . Then

(
en A F

n en, A F
n en A F

n , A F
n en, en A F

n ,ψ F , φ F )
is a Morita context, in the sense of [30], Section 3.12, with surjective bimodule maps ψ F and φ F . It
follows from Morita theory, for example [30], Morita Theorem I, p. 167, that ψ F and φ F are isomor-
phisms. �
Proof of Proposition 4.3. Let Γ be an order ideal of Λn−1. There exists a chain of order ideals

∅ = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γs = Γ,

such that the difference between any two successive order ideals is a singleton. Write β j for βΓ j ,Γ j+1 ,
for 0 � j < s.

We prove by induction that for 0 � j � s, ΦΓ j is an isomorphism and Anen ⊗An−1 J (Γ j)⊗An−1 en An

is a free R-module; and that for 0 � j < s, β j is injective. For j = 0, these statements are trivial since
J (∅) = 0.

Fix j (0 � j < s) and suppose that Anen ⊗An−1 J (Γ j) ⊗An−1 en An is a free R-module, that ΦΓ j is an
isomorphism. Then it follows from Lemma 4.4 that Anen ⊗An−1 J (Γ j+1)⊗An−1 en An is a free R-module.
Next, it follows from Lemma 4.5 that ΦΓ j+1 is an isomorphism.

We conclude that Anen ⊗An−1 J (Γ )⊗An−1 en An is a free R-module and that ΦΓ is an isomorphism.
Applying Lemma 4.4 again gives statement (3) of the proposition. �

We continue to work with the following assumptions: R is an integral domain with field of frac-
tions F . (Q k)k�0 and (Ak)k�0 are two towers of R-algebras satisfying the framework axioms of
Section 3.1. The following induction assumption is in force: For some fixed n � 1, the conclusions
(1)–(4) of Theorem 3.2 hold for the finite tower (Ak)0�k�n . We use the notation of the discussion
preceding Lemma 4.1.

The following is a corollary of Proposition 4.3.

Corollary 4.6. Anen ⊗An−1 en An ∼= Anen An, as An+1–An+1 bimodules, with the isomorphism determined by
xen ⊗ en y �→ xen y.

Proof. In Proposition 4.3, take Γ = Λn−1, so J (Γ ) = An−1. �
Proposition 4.7.

(1) Γ �→ Ĵ (Γ ) is a Λn−1-cell net in Anen An.
(2) Anen An is a cellular ideal in An+1 .
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(3) An+1 is a cellular algebra. The partially ordered set in the cell datum for An+1 can be realized as Λn+1 =
Λn−1 ∪ Λ

(0)
n+1 , where Λ

(0)
n+1 is the partially ordered set in the cell datum for Q n+1; moreover the partial

order on Λn+1 agrees with the original partial orders on Λn−1 and Λ
(0)
n+1 , and satisfies λ > μ if λ ∈ Λn−1

and μ ∈ Λ
(0)
n+1 .

(4) Let λ ∈ Λn−1 , and let �λ denote the corresponding cell module of An−1 . The cell module of An+1 corre-
sponding to λ is isomorphic to Anen ⊗An−1 �λ .

Proof. It is evident that Ĵ (∅) = {0}, and that Γ1 ⊆ Γ2 implies Ĵ (Γ1) ⊆ Ĵ (Γ2). Note that J (Γ�λ) =
Aλ

n−1, so Ĵ (Γ�λ) = Anen Aλ
n−1 An . Similarly, Ĵ (Γ>λ) = Anen Ăλ

n−1 An . It follows that Anen An =
span{ Ĵ (Γ�λ): λ ∈ Λn−1} and that for all λ ∈ Λn−1, Ĵ (Γ>λ) = span{ Ĵ (Γ�μ): μ > λ}. We have shown
that Γ �→ Ĵ (Γ ) satisfies conditions (1) and (2) of Definition 2.12.

Next we show that Γ �→ Ĵ (Γ ) satisfies condition (3) of Definition 2.12. Let Γ ⊆ Γ ′ be two order
ideals of Λn−1, with Γ ′ \ Γ = {λ}. From the proof of Proposition 4.3, we already have Ĵ (Γ ′)/ Ĵ (Γ ) ∼=
Mλ ⊗R i(Mλ), with Mλ = Anen ⊗An−1 �λ . Let χ : Ĵ (Γ ′)/ Ĵ (Γ ) → Mλ ⊗R i(Mλ) denote the isomorphism.
We have to check that χ ◦ i = i ◦ χ . The isomorphism ΦΓ of Proposition 4.3 satisfies i ◦ ΦΓ = ΦΓ ◦ i.
Moreover,

βΓ,Γ ′
(

Anen ⊗An−1 J (Γ ) ⊗An−1 en An
) ⊆ Anen ⊗An−1 J

(
Γ ′) ⊗An−1 en An

and Ĵ (Γ ) ⊆ Ĵ (Γ ′) are i-invariant, so the induced isomorphism

Φ̃Γ : Anen ⊗An−1 J
(
Γ ′) ⊗An−1 en An/βΓ,Γ ′

(
Anen ⊗An−1 J (Γ ) ⊗An−1 en An

) → Ĵ
(
Γ ′)/ Ĵ (Γ )

satisfies i ◦ Φ̃Γ = Φ̃Γ ◦ i. Next, the map

π : Anen ⊗An−1 J
(
Γ ′) ⊗An−1 en An → Anen ⊗An−1 J

(
Γ ′)/ J (Γ ) ⊗An−1 en An

satisfies i ◦ π = π ◦ i, so the induced isomorphism

π̃ : Anen ⊗An−1 J
(
Γ ′) ⊗An−1 en An/βΓ,Γ ′

(
Anen ⊗An−1 J (Γ ) ⊗An−1 en An

)
→ Anen ⊗An−1 J

(
Γ ′)/ J (Γ ) ⊗An−1 en An

satisfies i ◦ π̃ = π̃ ◦ i. Finally, we have an isomorphism α : J (Γ ′)/ J (Γ ) → �λ ⊗R i(�λ) satisfying
i ◦ α = α ◦ i, so the map

ᾱ = id ⊗ α ⊗ id : Anen ⊗An−1 J
(
Γ ′)/ J (Γ ) ⊗An−1 en An

→ Anen ⊗An−1 �λ ⊗R i
(
�λ

) ⊗An−1 en An

satisfies i ◦ ᾱ = ᾱ ◦ i. The map χ is ᾱ ◦ π̃ ◦ Φ̃−1
Γ , so we have i ◦ χ = χ ◦ i.

This completes the proof that Γ �→ Ĵ (Γ ) is a Λn−1-cell net in Anen An . By Proposition 2.13,
Anen An has a cell datum with partially ordered set equal to Λn−1. Moreover, since the isomorphisms
Ĵ (Γ ′)/ Ĵ (Γ ) ∼= Mλ ⊗R i(Mλ) are actually isomorphisms of An+1–An+1-bimodules, the cellular basis C̃
of Anen An satisfies the property (2) of Definition 2.3 not only for a ∈ Anen An but also for a ∈ An+1;
that is Anen An is a cellular ideal in An+1.

Statement (3) of the lemma follows from applying Remark 2.6. Statement (4) follows from the
isomorphism Ĵ (Γ ′)/ Ĵ (Γ ) ∼= Mλ ⊗R i(Mλ). �
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Corollary 4.8. The description of the partially ordered set given in Theorem 3.2, point (2), is valid for k = n +1.

Proof. Combining point (3) of Proposition 4.7 with the induction assumption (specifically the descrip-
tion of Λn−1 as the union of copies of Λ

(0)
n−1, Λ

(0)
n−3, etc.), we see that Λn+1 is the union of copies

of Λ
(0)
n+1, Λ

(0)
n−1, Λ

(0)
n−3, etc., with the following partial order: the partial order agrees with the original

partial order on each Λ
(0)
i , and λ > μ if λ ∈ Λ

(0)
i , μ ∈ Λ

(0)
j , and i < j. �

For the remainder of Section 4, we denote elements of Λk (0 � k � n + 1) by ordered pairs (λ,k),
where it is understood that λ ∈ Λ

(0)
i for some i � k with k − i even.

Corollary 4.9. Point (3) of Theorem 3.2 holds for k = n + 1.

Proof. The cell modules of An+1 are of two types: There are the cell modules �(λ,n+1) with λ ∈ Λ
(0)
n+1,

which are actually cell modules of An+1/(Anen An) ∼= Q n+1. These satisfy

Anen An �(λ,n+1) = 0.

On the other hand, there are the cell modules of the cellular ideal Anen An , namely �(λ,n+1) =
Anen ⊗An−1 �(λ,n−1) , with λ ∈ Λ

(0)
i for some i < n + 1 with n + 1 − i even. These satisfy

Anen An�
(λ,n+1) = Anen Anen ⊗An−1 �(λ,n−1).

But

Anen Anen ⊗R F = A F
n A F

n−1en = A F
n en,

using framework axiom (6), so we have

Anen An �(λ,n+1) ⊗R F = �(λ,n+1) ⊗R F ,

by application of Lemma 2.19. �
4.2. Cell filtrations of restrictions and induced modules

Next we show that the restriction of a cell module from An+1 to An , and the induction of a cell
module from An to An+1, have cell filtrations.

Proposition 4.10. Let (λ,n + 1) ∈ Λn+1 , and let � = �(λ,n+1) be the corresponding cell module of An+1 .
Then the restriction of � to An has a cell filtration.

Proof. Write Res(�) for the restriction to An .
If An+1en An+1� = 0, then � is a Q n+1-module; moreover, by framework axiom (8) from Sec-

tion 3.1, Anen−1 An Res(�) = 0 as well, so Res(�) is a Q n-module. Then it follows from the assumption
of coherence of (Q k)k�0 that Res(�) has a cell filtration as a Q n-module, hence as an An-module.

If An+1en An+1� �= 0, then λ ∈ Λ
(0)
i for some i < n, and

� ∼= Anen ⊗An−1 �(λ,n−1).

Since Anen ∼= An as An–An−1 bimodules, Res(�) ∼= IndAn
An−1

(�(λ,n−1)), which has a cell filtration by the
induction assumption. �
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Lemma 4.11. Let R be an integral domain with field of fractions F . Let A be a unital R-algebra, P a right
A-module, and N1 ⊆ N2 left A-modules, such that

(1) A F = A ⊗R F is semisimple, and
(2) N2 and P ⊗A N1 are free R-modules.

Let ι : N1 → N2 denote the injection. Then

idP ⊗ ι : P ⊗A N1 → P ⊗A N2

is injective.

Proof. First, ι ⊗ idF : N1 ⊗R F → N2 ⊗R F is injective by Lemma 2.21. Write β = idP ⊗ ι, and let

β F = idP F ⊗ (ι ⊗ idF ) : P F ⊗A F N F
1 → P F ⊗A F N F

2 .

Since A F is semisimple, P F is projective; hence β F is injective.
Consider the following diagram:

P F ⊗A F N F
1

β F

P F ⊗A F N F
2

P ⊗A N1 ⊗R F
β⊗idF

τ1

P ⊗A N2 ⊗R F

τ2

P ⊗A N1
β

α1

P ⊗A N2

α2

where αi is determined by x �→ x ⊗ 1F and τi is the isomorphism of Lemma 2.19 (i = 1,2). Note
that α1 is injective by Lemma 2.20, since P ⊗A N1 is assumed to be free over R . One can check that
β F ◦ τ1 ◦ α1 = τ2 ◦ α2 ◦ β . It follows that β is injective. �
Lemma 4.12. Let M be an An−1 module with a cell filtration:

(0) = M0 ⊆ M1 ⊆ · · · ⊆ Mt = M,

with M j/M j−1 ∼= �(λ j ,n−1) for 1 � j � t. Then for 1 � j � t,

(1) Anen ⊗An−1 M j is a free R-module,
(2) Anen ⊗An−1 M j−1 imbeds in Anen ⊗An−1 M j , and
(3) (Anen ⊗An−1 M j)/(Anen ⊗An−1 M j−1) ∼= Anen ⊗An−1 �(λ j ,n−1) .

Thus, the An+1-module Anen ⊗An−1 M has a cell filtration with subquotients �(λ j ,n+1) = Anen ⊗An−1 �(λ j ,n−1)

(1 � j � t).

Proof. We have M1 ∼= �(λ1,n−1) , so Anen ⊗An−1 M1 is a free R-module. Fix j � 2 and suppose that
Anen ⊗An−1 M j−1 is a free R-module. Let ι : M j−1 → M j denote the injection and let

β = idAnen ⊗ ι : Anen ⊗An−1 M j−1 → Anen ⊗An−1 M j .



F.M. Goodman, J. Graber / Advances in Applied Mathematics 46 (2011) 312–362 335
Then β is injective by an application of Lemma 4.11, with A = An−1, P = Anen , N1 = M j−1, and
N2 = M j . The quotient

(Anen ⊗An−1 M j, )/β(Anen ⊗An−1 M j−1)

is free over R , because

(Anen ⊗An−1 M j)/β(Anen ⊗An−1 M j−1) ∼= Anen ⊗An−1 (M j/M j−1)

∼= Anen ⊗An−1 �(λ j ,n−1).

Consequently, Anen ⊗An−1 M j is free over R . All the assertions of the lemma now follow by induction
on j. �
Lemma 4.13. Let M be an An-module, and let Res(M) denote the restriction of M to An−1 . We have

Anen An ⊗An M ∼= Anen ⊗An−1 Res(M),

as An+1 modules.

Proof. By Corollary 4.6, we have Anen An ∼= Anen ⊗An−1 en An ∼= Anen ⊗An−1 An as An+1–An bimodules.
Thus

Anen An ⊗An M ∼= Anen ⊗An−1 An ⊗An M ∼= Anen ⊗An−1 Res(M). �
Proposition 4.14. Let (μ,n) ∈ Λn and let �(μ,n) be the corresponding cell module of An.

(1) Anen An ⊗An �(μ,n) has cell filtration (as an An+1-module). In particular, Anen An ⊗An �(μ,n) is free as
an R-module.

(2) Anen An ⊗An �(μ,n) imbeds in IndAn+1
An

(�(μ,n)), and

IndAn+1
An

(
�(μ,n)

)
/
(

Anen An ⊗An �(μ,n)
) ∼= Q n+1 ⊗An �(μ,n).

(3) Q n+1 ⊗An �(μ,n) has cell filtration (as a Q n+1-module, hence as an An+1-module).

(4) IndAn+1
An

(�(μ,n)) has a cell filtration.

Proof. For point (1), let Res(�(μ,n)) denote the restriction to An−1. By Lemma 4.13, we have
Anen An ⊗An �(μ,n) ∼= Anen ⊗An−1 Res(�(μ,n)), as An+1 modules. By the induction assumption stated
at the beginning of Section 4, Res(�(μ,n)) has cell filtration,

(0) = M0 ⊆ M1 ⊆ · · · ⊆ Mt = Res
(
�(μ,n)

)
,

with M j/M j−1 ∼= �(λ j ,n−1) for some (λ j,n − 1) ∈ Λn−1. By Lemma 4.12, Anen ⊗An−1 Res(�(μ,n)) has a
cell filtration with subquotients �(λ j ,n+1) = Anen ⊗An−1 �(λ j ,n−1) .

Point (2) follows from Lemma 4.11 (with left and right modules interchanged), taking A = An ,
P = �(μ,n) , N1 = Anen An , and N2 = An+1. Note that An+1 is a free R-module by Proposition 4.7, and
Anen An ⊗An �(μ,n) is a free R-module by point (1). The statement regarding the quotient follows from
the right exactness of tensor products.

For n = 1, A1 = Q 1, and �(μ,n) is a Q 1-cell module; statement (3) follows from the assumption of
coherence of (Q k)k�0. If n � 2, then by the induction assumption, either Anen−1 An �(μ,n) = �(μ,n) ,
or Anen−1 An �(μ,n) = (0). In the former case,
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Q n+1 ⊗An �(μ,n) = Q n+1 ⊗An Anen−1 An �(μ,n)

= Q n+1 Anen−1 An ⊗An �(μ,n) = 0,

because en−1 ∈ An+1en An+1, by the framework axiom (8). In the latter case, Anen−1 An annihi-
lates both Q n+1 and �(μ,n) , so both are An/(Anen−1 An) ∼= Q n-modules. Thus Q n+1 ⊗An �(μ,n) =
Q n+1 ⊗Q n �(μ,n) , which has a Q n+1-cell filtration by the assumption of coherence of (Q k)k�0. This
proves point (3).

Finally, we have an exact sequence

0 → Anen An ⊗An �(μ,n) → IndAn+1
An

(
�(μ,n)

) → Q n+1 ⊗An �(μ,n) → 0,

where both Anen An ⊗An �(μ,n) and Q n+1 ⊗An �(μ,n) have An+1-cell filtrations. Hence IndAn+1
An

(�(μ,n))

has an An+1-cell filtration. �
Corollary 4.15. The finite tower (Ak)0�k�n+1 is a coherent tower of cellular algebras.

Proof. Combine the induction hypothesis, Proposition 4.7, Proposition 4.10, and Proposition 4.14. �
Corollary 4.16. The branching diagram for the finite tower (A F

k )0�k�n+1 is that obtained by reflections from
the branching diagram of the finite tower (Q F

k )0�k�n+1 .

Proof. From the induction hypothesis, we already know that the branching diagram for (A F
k )0�k�n

is obtained by reflections from the branching diagram of the finite tower (Q F
k )0�k�n . So we have

only to consider the branching diagram for A F
n−1 ⊆ A F

n ⊆ A F
n+1; specifically, we need to show that if

λ ∈ Λ
(0)
i with i < n + 1 and n + 1 − i even, and (μ,n) ∈ Λn is arbitrary, then

(μ,n) ↗ (λ,n + 1) if and only if (λ,n − 1) ↗ (μ,n),

in the branching diagram for A F
n−1 ⊆ A F

n ⊆ A F
n+1, and the number of edges connecting (μ,n) and

(λ,n + 1) is the same as the number of edges connecting (λ,n − 1) and (μ,n). But this follows from
Lemma 2.22 and the proof of either Proposition 4.10, or Proposition 4.14, point (1). �
Conclusion of the proof of Theorem 3.2. Under the assumption that statements (1)–(4) of the theo-
rem are valid for the finite tower (Ak)0�k�n , for some fixed n, we had to show that they are also
valid for the tower (Ak)0�k�n+1. This was verified in Corollary 4.15, Corollary 4.8, Corollary 4.9, and
Corollary 4.16. �
5. Examples

5.1. Preliminaries on tangle diagrams

Several of our examples involve tangle diagrams in the rectangle R = [0,1] × [0,1]. Fix points
ai ∈ [0,1], i � 1, with 0 < a1 < a2 < · · · . Write i = (ai,1) and i = (ai,0).

Recall that a knot diagram means a collection of piecewise smooth closed curves in the plane
which may have intersections and self-intersections, but only simple transverse intersections. At each
intersection or crossing, one of the two strands (curves) which intersect is indicated as crossing over
the other.

An (n,n)-tangle diagram is a piece of a knot diagram in R consisting of exactly n topological
intervals and possibly some number of closed curves, such that: (1) the endpoints of the intervals
are the points 1, . . . ,n,1, . . . ,n, and these are the only points of intersection of the family of curves
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with the boundary of the rectangle, and (2) each interval intersects the boundary of the rectangle
transversally.

An (n,n)-Brauer diagram is a “tangle” diagram containing no closed curves, in which information
about over and under crossings is ignored. Two Brauer diagrams are identified if the pairs of boundary
points joined by curves is the same in the two diagrams. By convention, there is a unique (0,0)-
Brauer diagram, the empty diagram with no curves. For n � 1, the number of (n,n)-Brauer diagrams
is (2n − 1)!! = (2n − 1)(2n − 3) · · · (3)(1).

A Temperley–Lieb diagram is a Brauer diagram without crossings. For n � 0, the number of (n,n)-
Temperley–Lieb diagrams is the Catalan number 1

n+1

(2n
n

)
.

For any of these types of diagrams, we call P = {1, . . . ,n,1, . . . ,n} the set of vertices of the dia-
gram, P+ = {1, . . . ,n} the set of top vertices, and P− = {1, . . . ,n} the set of bottom vertices. A curve or
strand in the diagram is called a vertical or through strand if it connects a top vertex and a bottom
vertex, and a horizontal strand if it connects two top vertices or two bottom vertices.

5.2. The Brauer algebras

5.2.1. Definition of the Brauer algebras
Let S be a commutative ring with identity, with a distinguished element δ. The Brauer algebra

Bn(S, δ) is the free S-module with basis the set of (n,n)-Brauer diagrams, and with multiplication
defined as follows. The product of two Brauer diagrams is defined to be a certain multiple of another
Brauer diagram. Namely, given two Brauer diagrams a,b, first “stack” b over a; the result is a planar
tangle that may contain some number of closed curves. Let r denote the number of closed curves,
and let c be the Brauer diagram obtained by removing all the closed curves. Then ab = δrc.

Definition 5.1. For n � 1, the Brauer algebra Bn(S, δ) over S with parameter δ is the free S-module
with basis the set of (n,n)-Brauer diagrams, with the bilinear product determined by the multiplica-
tion of Brauer diagrams. In particular, B0(S, δ) = S .

Note that the Brauer diagrams with only vertical strands are in bijection with permutations of
{1, . . . ,n}, and that the multiplication of two such diagrams coincides with the multiplication of per-
mutations. Thus the Brauer algebra contains the group algebra SSn of the permutation group Sn . The
identity element of the Brauer algebra is the diagram corresponding to the trivial permutation.

5.2.2. Brief history of the Brauer algebras
The Brauer algebras were introduced by Brauer [7] as a device for studying the invariant theory

of orthogonal and symplectic groups. Wenzl [55] observed that generically, the sequence of Brauer
algebras (over a field) is obtained by repeated Jones basic constructions from the symmetric group
algebras; he used this to show that Bn(k, δ) is semisimple, when k is a field of characteristic zero
and δ is not an integer. Graham and Lehrer [23] showed that the Brauer algebras are cellular, and
classified the simple modules of Bn(k, δ) when k is a field and δ is arbitrary. Another illuminating
proof of cellularity of the Brauer algebras was given by König and Xi [40]. Enyang’s two proofs of
cellularity for Birman–Wenzl algebras [14,15] also apply to the Brauer algebras.

5.2.3. Some properties of the Brauer algebras
In this section, write Bn for Bn(S, δ). For n � 1, let ι denote the map from (n,n)-Brauer diagrams

to (n + 1,n + 1)-Brauer diagrams that adds an additional strand to a diagram, connecting n + 1 to
n + 1.

ι: �→
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The linear extension of ι to Bn is an injective unital homomorphism into Bn+1. Using ι, we identify
Bn with its image in Bn+1.

For n � 1 define a map cl from (n,n)-Brauer diagrams into Bn−1 as follows. First “partially close”
a given (n,n)-Brauer diagram by adding an additional smooth curve connecting n to n,

�→ .

In case the resulting “tangle” contains a closed curve (which happens precisely when the original
diagram already had a strand connecting n to n), remove this loop and replace it with a factor of
δ. The linear extension of cl to Bn is a (non-unital) Bn−1–Bn−1 bimodule map, and cl◦ι(x) = δ x for
x ∈ Bn .

If δ is invertible in S , we can define εn = (1/δ) cl, which is a conditional expectation, that is, a
unital Bn−1–Bn−1 bimodule map. We have εn+1 ◦ ι(x) = x for x ∈ Bn . The map ε = ε1 ◦ · · · ◦ εn : Bn →
B0 ∼= S is a normalized trace; that is, ε(1) = 1 and ε(ab) = ε(ba) for all a,b. The value of ε on a Brauer
diagram d is obtained as follows: first close all the strands of d by introducing new curves joining j
to j for all j; let c be the number of components (closed loops) in the resulting (0,0)-tangle; then
ε(d) = δc−n if d ∈ Bn . The trace and condition expectation play an essential role in Wenzl’s treatment
of the structure of the Brauer algebra over Q(δ) [55], and thus implicitly in our verification of the
framework axioms in Proposition 5.4.

The involution i on (n,n)-Brauer diagrams which reflects a diagram in the axis y = 1/2 extends
linearly to an algebra involution of Bn . We have ι ◦ i = i ◦ ι and cl ◦i = i ◦ cl.

The products ab and ba of two Brauer diagrams have at most as many through strands as a.
Consequently, the span of diagrams with at most r through strands (r � n and n − r even) is a two-
sided ideal Jr in Bn . Jr is i-invariant.

Let e j and s j denote the (n,n)-Brauer diagrams:

e j = , s j = .

Note that e2
j = δe j , so e j is an essential idempotent if δ �= 0, and nilpotent if δ = 0. We have i(e j) = e j

and i(s j) = s j . It is easy to see that e1, . . . , en−1 and s1, . . . , sn−1 generate Bn as an algebra.
Let r � n with n − r even, and let fr = er+1er+3 · · · en−1. Any Brauer diagram with exactly r through

strands can be factored as π1 frπ2, where πi are permutation diagrams. Consequently, Jr is generated
by fr . In particular the ideal J = Jn−2 spanned by diagrams with fewer than n through strands is
generated by en−1. We have Bn/ J ∼= SSn , as algebras with involutions.

Lemma 5.2. Write Bn for Bn(S, δ).

(1) For n � 2, en Bnen = Bn−1en.
(2) e1 B1e1 = δB0e1 .
(3) For n � 2, en commutes with Bn−1 .

Proof. For n � 2, if x is an (n,n)-Brauer diagram, then enxen ∈ Bn−1en . Thus, en Bnen ⊆ Bn−1en . On the
other hand, for x ∈ Bn−1, we have enxen−1en = xen . Hence, en Bnen ⊇ Bn−1en . This proves (1). Points
(2) and (3) are obvious. �
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Lemma 5.3. Write Bn for Bn(S, δ). For n � 1, Bn+1en = Bnen. Moreover, x �→ xen is injective from Bn to Bn+1 .

Proof. By [55], Proposition 2.1, any (n + 1,n + 1)-Brauer diagram is either already in Bn , or can be
written in the form aχnb, with a,b ∈ Bn and χn ∈ {en, sn}. Applying this again to b, either b ∈ Bn−1, or
b can be factored as b1χn−1b2, with bi ∈ Bn−1 and χn−1 ∈ {en−1, sn−1}. Since e2

n = δen and snen = en , it
follows that if b ∈ Bn−1, then aχnben = abχnen ∈ Bnen . If b = b1χn−1b2, then aχnben = ab1χnχn−1enb2.
Now we can apply the following identities: enχn−1en = en for χn−1 ∈ {en−1, sn−1}, snen−1en = sn−1en ,
and snsn−1en = en−1en to conclude that aχnben ∈ Bnen . This shows that Bn+1en = Bnen .

For x ∈ Bn , we have cl(xen) = x, so the map x �→ xen is injective from Bn to Bnen . �
5.2.4. Verification of framework axioms for the Brauer algebras

We take R = Z[δ], where δ is an indeterminant. Then R is the universal ground ring for the Brauer
algebras; for any commutative ring S with distinguished element δ, we have Bn(S, δ) ∼= Bn(R, δ)⊗R S .
Let F = Q(δ) denote the field of fractions of R . Write Bn = Bn(R, δ).

Proposition 5.4. The two sequence of R-algebras (Bn)n�0 and (RSn)n�0 satisfy the framework axioms of
Section 3.1.

Proof. According to Example 2.16, (RSn)n�0 is a coherent tower of cellular algebras, so axiom (1)
holds. Framework axioms (2) and (3) are evident. B F

n is split semisimple by [55], Theorem 3.2, so
axiom (4) holds.

We take en−1 ∈ Bn to be the element defined in the previous section. Let us verify the axioms
(5)–(8) involving en−1. As observed above, en−1 is i-invariant, J = Bnen−1 Bn is the ideal spanned
by diagrams with fewer than n through strands, and Bn/ J ∼= RSn as algebras with involution. This
verifies axiom (5). Axiom (6) follows from Lemma 5.2 and axiom (7) from Lemma 5.3. Axiom (8)
holds because en−1enen−1 = en−1. �
Corollary 5.5. For any commutative ring S and for any δ ∈ S, the sequence of Brauer algebras (Bn(S, δ))n�0 is
a coherent tower of cellular algebras. Bn(S, δ) has cell modules indexed by all Young diagrams of size n, n − 2,
n − 4, . . . . The cell module labeled by a Young diagram λ has a basis labeled by up-down tableaux of length n
and shape λ.

5.3. The Jones–Temperley–Lieb algebras

5.3.1. Definition of the Jones–Temperley–Lieb algebras
Let S be a commutative ring with identity, with distinguished element δ. The Jones–Temperley–

Lieb algebra Tn(S, δ) is the unital S-algebra with generators e1, . . . , en−1 satisfying the relation:

(1) e2
j = δe j ,

(2) e je j±1e j = e j ,
(3) e jek = eke j , if | j − k| � 2,

whenever all indices involved are in the range from 1 to n − 1.

5.3.2. Diagramatic realization of the Jones–Temperley–Lieb algebras
The S-span T̃n(S, δ) of Temperley–Lieb diagrams is a subalgebra of the Brauer algebra. We have an

algebra map ϕ from Tn(S, δ) to T̃n(S, δ), determined by e j �→ e j for 1 � j � n − 1. Kauffman shows
[36, Theorem 4.3] that the map is an isomorphism. In fact, to show that ϕ is surjective, it suffices
to show that any Temperley–Lieb diagram can be written as a product of e j ’s. Kauffman indicates
by example how this is to be done, and it is not difficult to invent a measure of complexity of
Temperley–Lieb diagrams and to show this formally, by induction on complexity. For injectivity, Jones
shows [32, p. 14] that Tn(S, δ) is spanned by a family B of 1

n+1

(2n
n

)
reduced words in the e j ’s. Since
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ϕ is surjective and T̃n(S, δ) is a free S-module of rank 1
n+1

(2n
n

)
, it follows easily that B is a basis and

ϕ is an isomorphism. Because of this, we will no longer distinguish between Tn(S, δ) and T̃n(S, δ).

5.3.3. Brief history of the Jones–Temperley–Lieb algebras
The Jones–Temperley–Lieb algebras were introduced by Jones in his study of subfactors [32] and

then employed by him to define the Jones link invariant [33]. The name derives from the appear-
ance of specific representations of the algebras in statistical mechanics that had been found some
years earlier. By now, there is a huge literature related to these algebras because of their multiple
roles in subfactor theory, invariants of links and 3-manifolds, statistical mechanics and quantum field
theory. The Jones–Temperley–Lieb algebras were shown to be cellular in [23]. Several other proofs of
cellularity are known, for example [57,24].

5.3.4. Some properties of the Jones–Temperley–Lieb algebra
The Brauer algebra maps ι, cl, εn (when δ is invertible), and i restrict to maps of the Jones–

Temperley–Lieb algebras having similar properties. For example, i is an algebra involution on each
Tn(S, δ) and i ◦ ι = ι ◦ i.

The span of Temperley–Lieb diagrams having at least one horizontal strand is an ideal J in Tn(S, δ),
and Tn(S, δ)/ J ∼= S . The proof of surjectivity of ϕ sketched above shows that any Temperley–Lieb
diagram with at least one horizontal edge can be written as a non-trivial product of e j ’s; so J is
equal to the ideal generated by all of the e j ’s. However, the identities e je j+1e j = e j imply that J is
the ideal generated by en−1.

5.3.5. Verification of the framework axioms for the Jones–Temperley–Lieb algebras
We take R = Z[δ], where δ is an indeterminant. Then R is the universal ground ring for the

Jones–Temperley–Lieb algebras; for any integral domain S with distinguished element δ, we have
Tn(S, δ) ∼= Tn(R, δ) ⊗R S . Let F = Q(δ) denote the field of fractions of R . Write Tn = Tn(R, δ).

Proposition 5.6. The two sequences of R-algebras (Tn)n�0 and (R)n�0 satisfy the framework axioms of Sec-
tion 3.1.

Proof. Axioms (1), (2), and (3) are obvious. For semisimplicity of T F
n , see [18], Theorem 2.8.5. This

gives axiom (4). We checked axiom (5) in the previous section. The proof for axiom (6) is the same
as for the Brauer algebras.

According to [32], Lemma 4.1.2, any (n + 1,n + 1)-Temperley–Lieb diagram is either already in Tn ,
or can be written in the form aenb, with a,b ∈ Tn . Given this, the verification of axiom (7) is the same
as for the Brauer algebras; we have to use only the identity enen−1en = en in place of several similar
identities for the Brauer algebras.

As for the Brauer algebras, axiom (8) follows from the identity en−1enen−1 = en−1. �

Corollary 5.7. For any ring S and δ ∈ S, the sequence of Jones–Temperley–Lieb algebras (Tn(S, δ))n�0 is a
coherent tower of cellular algebras. The cell modules of Tn(S, δ) can be labeled by Young diagrams with one or
two rows and size n, and the basis of the cell module labeled by λ by standard tableaux of shape λ.

Proof. We only have to remark that the vertices on the n-th row of the branching diagram for
(T F

k )k�0 (see [18], Lemma 2.8.4) can be labeled by Young diagrams of size n with no more than
2 rows, and the paths on the branching diagram by standard tableaux. (Alternatively, the vertices on
the n-th row of the branching diagram can be labeled by Young diagrams with one row and size n,
n − 2, n − 4, . . . , and the paths on the branching diagram by up-down tableaux.) �
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5.4. The Birman–Wenzl–Murakami (BMW) algebras

5.4.1. Definition of the BMW algebras
The BMW algebras were first introduced by Birman and Wenzl [6] and independently by Mu-

rakami [49] as abstract algebras defined by generators and relations. The version of the presentation
given here follows [48].

Definition 5.8. Let S be a commutative unital ring with invertible elements ρ and q and an element δ

satisfying ρ−1 −ρ = (q−1 −q)(δ − 1). The Birman–Wenzl–Murakami algebra Wn(S;ρ,q, δ) is the unital
S-algebra with generators g±1

i and ei (1 � i � n − 1) and relations:

(1) (Inverses) gi g−1
i = g−1

i gi = 1.
(2) (Essential idempotent relation) e2

i = δei .
(3) (Braid relations) gi gi+1 gi = gi+1 gi gi+1 and gi g j = g j gi if |i − j| � 2.
(4) (Commutation relations) gie j = e j gi and eie j = e jei if |i − j| � 2.
(5) (Tangle relations) eiei±1ei = ei , gi gi±1ei = ei±1ei , and ei gi±1 gi = eiei±1.
(6) (Kauffman skein relation) gi − g−1

i = (q − q−1)(1 − ei).
(7) (Untwisting relations) giei = ei gi = ρ−1ei , and ei gi±1ei = ρei .

5.4.2. Geometric realization of the BMW algebras
A geometric realization of the BMW algebra is as the algebra of framed (n,n)-tangles in the disc

cross the interval, modulo certain skein relations. It is more convenient, at least for our purposes, to
describe this geometric version in terms of tangle diagrams.

First, tangle diagrams can be multiplied by stacking, as for Brauer or Temperley–Lieb diagrams (but
closed loops are allowed, and there is no reduction by removing closed loops after stacking). Recall
that our convention is that the product ab of tangle diagrams is given by stacking b over a. This
makes (n,n)-tangle diagrams into a monoid, the identity being the tangle diagram in which each top
vertex j is connected to the bottom vertex j by a vertical line segment, when n � 1. (The identity for
the monoid of (0,0)-tangle diagrams is the empty tangle.)

I ←→ ←→

II ←→

III ←→

Reidemeister moves

Two tangle diagrams are said to be regularly isotopic if they are related by a sequence of Reide-
meister moves of types II and III, followed by an isotopy of R fixing the boundary. (Reidemeister
moves of type I are not allowed.) See the figure above for the Reidemeister moves.

Stacking of tangle diagrams respects regular isotopy; thus one obtains a monoid structure on the
regular isotopy classes of (n,n)-tangle diagrams. Let us denote this monoid by Un . Let S be a ring
with elements ρ , q and δ as in the definition of the BMW algebras. The Kauffman tangle algebra
KTn(S;ρ,q, δ) is the monoid algebra S Un modulo the following skein relations:
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(1) Crossing relation:

− = (
q−1 − q

)( −
)
.

(2) Untwisting relation:

= ρ and = ρ−1 .

(3) Free loop relation: T ∪© = δT , where T ∪© means the union of a tangle diagram T and a closed
loop having no crossings with T .

Let E j and G j denote the following (n,n)-tangle diagrams:

E j = , G j = .

Morton and Wassermann [48] showed that the assignments e j �→ E j and g j �→ G j determine an
isomorphism from Wn(S;ρ,q, δ) to KTn(S;ρ,q, δ). Given this, we will no longer distinguish between
the BMW algebras and the Kauffman tangle algebras. (However, we remark that it is possible to use
our techniques to recover the theorem of Morton and Wasserman, using only results in the original
paper of Birman and Wenzl; we prove the analogous isomorphism theorem for the cyclotomic BMW
algebras in Section 5.5, and the result for the ordinary BMW algebras is a special case.)

5.4.3. Brief history of the BMW algebras
The origin of the BMW algebras was in knot theory. Kauffman defined [36] an invariant of regular

isotopy for links in S3, determined by skein relations. Birman and Wenzl [6] and Murakami [49]
then defined the BMW algebras in order to give an algebraic setting for the Kauffman invariant. The
BMW algebras were implicitly modeled on algebras of tangles. The definition of the Kauffman tangle
algebra was made explicit by Morton and Traczyk [47], who also showed that KTn(S;ρ,q, δ) is free
as an S-module of rank (2n − 1)!!. Morton and Wassermann [48] showed that the BMW algebras and
Kauffman tangle algebras are isomorphic.

Xi showed [62] that the tangle basis of Morton and Traczyk is a cellular basis. Enyang has exhibited
two cellular bases of BMW algebras; the first [14] is a tangle type basis, and the second [15] is a
basis indexed by up-down tableaux, which demonstrates the coherence of the cellular structures on
(Wn)n�0.

5.4.4. Some properties of the BMW algebras
In the following, we write Wn for Wn(S;ρ,q, δ).
The BMW algebras have an algebra involution i uniquely determined by i(e j) = e j and i(g j) = g j

for all j. The action of i on tangle diagrams is by the rotation through the axis y = 1/2. (It is by
rotation rather than reflection, since the reflection would take g j �→ g−1

j .)
For n � 0, there is a unique homomorphism ι from Wn to Wn+1 determined by ei �→ ei and

gi �→ gi for 1 � i � n − 1. On the level of tangle diagrams, the map is given by adding a new vertical
strand connecting n + 1 and n + 1, as for the Brauer algebras.

For n � 1, a map cl from (n,n)-tangle diagrams to (n − 1,n − 1)-tangle diagrams can be defined as
for Brauer diagrams. The linear extension of this map respects regular isotopy and the Kauffman skein
relations, so determines a linear map from Wn to Wn−1. We have i ◦cl = cl ◦i and cl ◦ι = δx. Moreover,



F.M. Goodman, J. Graber / Advances in Applied Mathematics 46 (2011) 312–362 343
for x ∈ Wn , we have x = cl(ι(x)en), so it follows that ι : Wn → Wn+1 is injective. The involution i and
inclusion ι satisfy i ◦ ι = ι ◦ i. Using ι, we identify Wn as a subalgebra of Wn+1.

If δ is invertible in S , we can define εn = (1/δ) cl, which is a conditional expectation, that is, an
unital Wn−1–Wn−1 bimodule map. We have εn+1 ◦ ι(x) = x for x ∈ Wn .

The ideal J in Wn generated by en−1 contains e j for all j because of the relations e je j+1e j = e j .
It follows from the BMW relations that Wn/ J is isomorphic to the Hecke algebra Hn(S;q2) with the
quadratic relation g j − g−1

j = q − q−1, or (g j − q)(g j + q−1) = 0.

Lemma 5.9.

(1) For n � 2, en Wnen = Wn−1en.
(2) e1W1e1 = δW0e1 .
(3) For n � 1, en commutes with Wn−1 .

Proof. The proof is the same as that of Lemma 5.2 for the Brauer algebras, using the tangle realization
of the BMW algebras. �
Lemma 5.10. For n � 1, Wn+1en = Wnen. Moreover, x �→ xen is injective from Wn to Wnen.

Proof. According to [6], Lemma 3.1, any (n + 1,n + 1)-tangle is already in Wn , or it can be written as
a linear combination of elements aχnb, with a,b ∈ Wn and χn ∈ {en, gn}. Given this, the proof of the
lemma is the same as the proof of Lemma 5.3 for the Brauer algebras, using the tangle relations and
untwisting relations of Definition 5.8 in place of similar identities for the Brauer algebras. �
5.4.5. Verification of the framework axioms for the BMW algebras

The generic or universal ground ring for the BMW algebras is

R = Z
[
ρ±1,q±1, δ

]
/
〈
ρ−1 − ρ = (

q−1 − q
)
(δ − 1)

〉
,

where ρ , q, and δ are indeterminants over Z. Suppose that S is an appropriate ground ring for the
BMW algebras; that is, S is a commutative unital ring with invertible elements ρ and q and an
element δ satisfying ρ−1 − ρ = (q−1 − q)(δ − 1). Then Wn(S;ρ,q, δ) ∼= Wn(R;ρ,q, δ) ⊗R S .

R is an integral domain whose field of fractions is F ∼= Q(ρ,q) (with δ = (ρ−1 − ρ)/(q−1 − q) + 1
in F .) We write Wn for Wn(R;ρ,q, δ) and Hn for Hn(R;q2) in this section.

Proposition 5.11. The two sequences of algebras (Wn)n�0 and (Hn)n�0 satisfy the framework axioms of
Section 3.1.

Proof. According to Example 2.16, (Hn)n�0 is a coherent tower of cellular algebras, so axiom (1)
holds. Axioms (2) and (3) are evident. W F

n is semisimple by [6], Theorem 3.7, or [56], Theorem 3.5.
Thus axiom (4) holds.

We observed above that Wn/Wnen−1Wn ∼= Hn; it is easy to check that the isomorphism re-
spects the involutions. Thus axiom (5) holds. Axiom (6) follows from Lemma 5.9 and axiom (7) from
Lemma 5.10. Finally, axiom (8) holds again because of the relation en−1enen−1 = en−1. �
Corollary 5.12. Let S be any ground ring for the BMW algebras, with parameters ρ , q, and δ. The sequence of
BMW algebras (Wn(S;ρ,q, δ))n�0 is a coherent tower of cellular algebras. Wn(S;ρ,q, δ) has cell modules
indexed by all Young diagrams of size n, n − 2, n − 4, . . . . The cell module labeled by a Young diagram λ has a
basis labeled by up-down tableaux of length n and shape λ.
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5.5. The cyclotomic Birman–Wenzl–Murakami (BMW) algebras

5.5.1. Definition of the cyclotomic BMW algebras
In general, our notation will follow [22]. In order to simplify statements, we establish the following

convention.

Definition 5.13. Fix an integer r � 1. A ground ring S is a commutative unital ring with parameters ρ ,
q, δ j ( j � 0), and u1, . . . , ur , with ρ , q, and u1, . . . , ur invertible, and with ρ−1 −ρ = (q−1 −q)(δ0 −1).

Definition 5.14. Let S be a ground ring with parameters ρ , q, δ j ( j � 0), and u1, . . . , ur . The cyclotomic

BMW algebra Wn,S,r(u1, . . . , ur) is the unital S-algebra with generators y±1
1 , g±1

i and ei (1 � i � n −1)
and relations:

(1) (Inverses) gi g−1
i = g−1

i gi = 1 and y1 y−1
1 = y−1

1 y1 = 1.
(2) (Idempotent relation) e2

i = δ0ei .
(3) (Affine braid relations)

(a) gi gi+1 gi = gi+1 gi gi+1 and gi g j = g j gi if |i − j| � 2,
(b) y1 g1 y1 g1 = g1 y1 g1 y1 and y1 g j = g j y1 if j � 2.

(4) (Commutation relations)
(a) gie j = e j gi and eie j = e jei if |i − j| � 2,
(b) y1e j = e j y1 if j � 2.

(5) (Affine tangle relations)
(a) eiei±1ei = ei ,
(b) gi gi±1ei = ei±1ei and ei gi±1 gi = eiei±1,
(c) for j � 1, e1 y j

1e1 = δ je1.
(6) (Kauffman skein relation) gi − g−1

i = (q − q−1)(1 − ei).
(7) (Untwisting relations) giei = ei gi = ρ−1ei and ei gi±1ei = ρei .
(8) (Unwrapping relation) e1 y1 g1 y1 = ρe1 = y1 g1 y1e1.
(9) (Cyclotomic relation) (y1 − u1)(y1 − u2) · · · (y1 − ur) = 0.

Thus, a cyclotomic BMW algebra is the quotient of the affine BMW algebra [20], by the cyclotomic
relation (y1 − u1)(y1 − u2) · · · (y1 − ur) = 0.

5.5.2. Geometric realization
We recall from [20] that the affine BMW algebra is isomorphic to the affine Kauffman tangle

algebra, which is an algebra of “affine tangle diagrams,” modulo Kauffman skein relations. An affine
(n,n)-tangle diagram is just an ordinary (n + 1,n + 1)-tangle diagram with a fixed vertical strand
connecting 1 and 1, as in the following figure.

The affine Kauffman tangle algebra is generated by the following affine tangle diagrams:

X1 = , Gi = , Ei = .
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One can also define a cyclotomic Kauffman tangle algebra KTn,S,r(u1, . . . , ur) as the quotient of the
affine Kauffman tangle algebra by a cyclotomic skein relation, which is a “local” version of the cyclo-
tomic relation of Definition 5.14(9). See [21] for the precise definition. We denote the images of X1, Ei
and Gi in the cyclotomic Kauffman tangle algebra by the same letters. The assignments ei �→ Ei , gi �→
Gi and y1 �→ ρ X1 defines a surjective homorphism from ϕ : Wn,S,r(u1, . . . , ur) → KTn,S,r(u1, . . . , ur),
see [21], p. 1114.

It is shown in [21,22] and in [60] that the map ϕ is an isomorphism, assuming admissibility
conditions on the ground ring (see Section 5.5.5). However, we are not going to assume this result
here, but will give a new proof of the isomorphism.

5.5.3. Brief history of cyclotomic BMW algebras
Affine and cyclotomic BMW algebras were introduced by Häring–Oldenberg [27] and have recently

been studied by three groups of mathematicians: Goodman and Hauschild Mosley [20–22,16], Rui, Xu,
and Si [53,52], and Wilcox and Yu [58–60,63]. Under (slightly different) admissibility assumptions on
the ground ring (see Section 5.5.5) all three groups have shown that the algebra Wn,S,r is free over S
of rank rn(2n − 1)!! and in fact is cellular. (Wilcox and Yu produced cellular basis satisfying the strict
equality i(cλ

s,t) = cλ
t,s , while the other groups only established cellularity in the weaker sense of Defi-

nition 2.3.) The cellular bases produced by all three groups are essentially tangle bases, i.e. cyclotomic
analogues of the basis of Morton, Traczyk, and Wassermann for the ordinary BMW algebras. Goodman
& Hauschild Mosley and Wilcox & Yu have shown that the algebras can be realized as algebras of tan-
gles, when the ground ring is admissible. Rui et al. have achieved additional representation theoretic
results. Further background on cyclotomic BMW algebras, motivation for the study of these algebras,
relations to other mathematical topics (quantum groups, knot theory), and further literature citations
can be found in [21] and in the other papers cited above.

5.5.4. Advantages of our approach to cellularity
Our proof of cellularity is more direct than the previous proofs cited above, in that it bypasses the

lengthy proof (in [21], Proposition 3.7, or [60], Theorem 3.2) that these algebras have a finite spanning
set of the appropriate cardinality. Our method does not depend on the isomorphism of the cyclotomic
BMW algebras and cyclotomic Kauffman tangle algebras [21,22] or [60]; in fact, we can give a new
proof of this isomorphism.

One might say that the difficulty in our proof has been displaced, because instead of the finite
spanning set result cited above, we require Mathas’ recent theorem on coherence of cellular structures
for cyclotomic Hecke algebras [46].

5.5.5. Admissibility conditions on the ground ring.
The cyclotomic BMW algebras can be defined over arbitrary ground rings. However, it is necessary

to impose conditions on the parameters in order to get a satisfactory theory.
One can see by a simple computation why one has to expect conditions on the parameters. First,

one can show that there are elements δ− j in the ground ring S for j � 1 such that e1 y− j
1 e1 = δ− je1;

moreover, δ− j is a polynomial in ρ−1, q − q−1, and δ0, δ1, . . . , δ j ; see [22], Lemma 2.5. If one now
multiplies the cyclotomic relation, Definition 5.14(9), by ya

1 and pre- and post-multiplies by e1, one
gets (

∑r
k=0 akδk+a)e1 = 0, for a ∈ Z, where the ak are signed elementary symmetric polynomials in

u1, . . . , ur . Therefore, either e1 is a torsion element over S , or the following weak admissibility condi-
tions hold:

r∑
k=0

akδk+a = 0, for a ∈ Z.

If S is a field and the weak admissibility conditions do not hold, then e1 = 0; it follows that all the
ei are zero, and the algebra reduces to the cyclotomic Hecke algebra over S with parameters q2 and
u1, . . . , ur .
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The weak admissibility conditions are complicated and not strong enough to give satisfactory re-
sults on the representation theory of the algebras. Therefore, one wishes to find conditions that are
both simpler and stronger. Two apparently different conditions have been proposed, one by Wilcox
and Yu [58], and another by Rui and Xu [53]. It has been shown in [17] that the two conditions
are equivalent in the case of greatest interest, when S is an integral domain with q − q−1 �= 0. We
consider only this case from now on.

Definition 5.15. Let S be an integral ground ring with parameters ρ , q, δ j ( j � 0) and u1, . . . , ur ,
with q − q−1 �= 0. One says that S is admissible (or that the parameters are admissible) if
{e1, y1e1, . . . , yr−1

1 e1} ⊆ W2,S,r is linearly independent over S .

It is shown in [58] that admissibility is equivalent to finitely many (explicit) polynomial relations
on the parameters. Moreover, these relations give ρ and (q − q−1)δ j as Laurent polynomials in the
remaining parameters q, u1, . . . , ur ; see [58] and [22] for details.

5.5.6. Morphisms of ground rings and a universal admissible ground ring
We consider what are the appropriate morphisms between ground rings for cyclotomic BMW al-

gebras. The obvious notion would be that of a ring homomorphism taking parameters to parameters;
that is, if S is a ground ring with parameters ρ , q, etc., and S ′ another ground ring with parameters
ρ ′ , q′ , etc., then a morphism ϕ : S → S ′ would be required to map ρ �→ ρ ′ , q �→ q′ , etc.

However, it is better to require less, for the following reason: The parameter q enters into the
cyclotomic BMW relations only in the expression q−1 − q, and the transformation q �→ −q−1 leaves
this expression invariant. Moreover, the transformation gi �→ −gi , ρ �→ −ρ , q �→ −q (with all other
generators and parameters unchanged) leaves the cyclotomic BMW relations unchanged.

Taking this into account, we arrive at the following notion:

Definition 5.16. Let S be a ground ring with parameters ρ , q, δ j ( j � 0), and u1, . . . , ur . Let S ′ be
another ground ring with parameters ρ ′ , q′ , etc.

A unital ring homomorphism ϕ : S → S ′ is a morphism of ground rings if it maps{
ρ �→ ρ ′, and
q �→ q′ or q �→ −q′−1

,

or {
ρ �→ −ρ ′, and
q �→ −q′ or q �→ q′−1

,

and strictly preserves all other parameters.

Suppose there is a morphism of ground rings ψ : S → S ′ . Then ψ extends to a homomorphism
from Wn,S,r to Wn,S ′,r . Moreover, Wn,S,r ⊗S S ′ ∼= Wn,S ′,r as S ′-algebras. These statements are discussed
in [22], Section 2.4.

Let S be a ground ring with admissible parameters ρ , q, δ j ( j � 0), and u1, . . . , ur . Then

ρ,−q−1, δ j ( j � 0), and u1, . . . , ur

and

−ρ,−q, δ j ( j � 0), and u1, . . . , ur

are also sets of admissible parameters. Suppose that S is an integral ground ring with admissible
parameters, with q − q−1 �= 0, and that S ′ is another integral ground ring; if ϕ : S → S ′ is a morphism
of ground rings such that ϕ(q − q−1) �= 0, then S ′ is also admissible.
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It is easy to show (see [22], Theorem 3.19) that there is a universal integral admissible ground
ring R , with parameters ρ , q, δ j ( j � 0), and u1, . . . , ur , with the following properties:

(1) The parameters q, u1, . . . , ur of R are algebraically independent over Z.
(2) R is generated as a ring by q±1, ρ±1, δ0, δ1, . . . , δr−1, and u±1

1 , . . . , u±1
r .

(3) Whenever S is an integral ground ring with admissible parameters, with q − q−1 �= 0, there exists
a morphism of ground rings from R to S; thus Wn,S,r ∼= Wn,R,r ⊗R S .

(4) The field of fractions of R is Q(q, u1, . . . , ur).
(5) Let p = ∏r

j=1 u j . Then one has ρ = p if r is even and ρ = q−1 p if r is odd. Since ρ−1 − ρ =
(q−1 − q)(δ0 − 1), and q, u1, . . . , ur are algebraically independent, one has δ0 �= 0.

5.5.7. Some properties of cyclotomic BMW and Kauffman tangle algebras
We restrict attention to the case of an integral admissible ground ring S with q − q−1 �= 0. We

write Wn for Wn,S,r(u1, . . . , ur) and KTn for KTn,S,r(u1, . . . , ur).
The cyclotomic BMW algebras have an algebra involution i uniquely determined by i(e j) = e j and

i(g j) = g j for all j, and i(y1) = y1. Likewise, the cyclotomic Kauffman tangle algebras have an algebra
involution i, whose action on affine tangle diagrams is by the rotation through the axis y = 1/2. The
surjective homomorphism ϕ : Wn → KTn respects the involutions.

For n � 0, there is a homomorphism (of involutive algebras) ι from Wn to Wn+1 determined by
ei �→ ei and gi �→ gi for 1 � i � n − 1, and y1 �→ y1; it is not clear a priori that ι is injective.

Likewise, there is a homomorphism (of involutive algebras) ι from KTn to KTn+1. On the level of
affine tangle diagrams, the map is given by adding a new vertical strand connecting n + 1 and n + 1,
as for the Brauer algebras. This map is injective, as we will now explain.

For n � 1, a map cl from affine (n,n)-tangle diagrams to affine (n − 1,n − 1)-tangle diagrams can
be defined as for Brauer diagrams and ordinary tangle diagrams. The linear extension of this map
respects regular isotopy and all the skein relations defining the cyclotomic Kauffman tangle algebras,
so determines a linear map from KTn to KTn−1. (See [20], Section 2.7, and [21], Section 3.3 for details.)
The map cl respects the involutions, i ◦ cl = cl ◦i. Moreover, for x ∈ KTn , we have x = cl(ι(x)en), so it
follows that ι : KTn → KTn+1 is injective. Using ι, we identify KTn as a subalgebra of KTn+1.

If δ0 is invertible in S , we can define εn = (1/δ0) cl, which is a conditional expectation, that is, an
unital KTn−1–KTn−1 bimodule map. We have εn+1 ◦ ι(x) = x for x ∈ Wn .

5.5.8. The cyclotomic Hecke algebra
We recall the definition of the affine and cyclotomic Hecke algebras, see [1].

Definition 5.17. Let S be a commutative unital ring with an invertible element q. The affine Hecke
algebra Ĥn,S (q2) over S is the S-algebra with generators t1, g1, . . . , gn−1, with relations:

(1) The generators gi are invertible, satisfy the braid relations, and gi − g−1
i = (q − q−1).

(2) The generator t1 is invertible, t1 g1t1 g1 = g1t1 g1t1 and t1 commutes with g j for j � 2.

Let u1, . . . , ur be additional elements in S . The cyclotomic Hecke algebra Hn,S,r(q2; u1, . . . , ur) is the
quotient of the affine Hecke algebra Ĥn,S(q2) by the polynomial relation (t1 − u1) · · · (t1 − ur) = 0.

We remark that since the generator t1 can be rescaled by an arbitrary invertible element of S ,
only the ratios of the parameters ui have invariant significance in the definition of the cyclotomic
Hecke algebra. The affine and cyclotomic Hecke algebras have unique algebra involutions determined
by gi → gi and t1 → t1.

Now let S be a ground ring with parameters ρ , q, δ j , and u1, . . . , ur . For each n, let In be the
two sided ideal in Wn,S,r generated by en−1. Because of the relations e je j±1e j = e j , the ideal In is
generated by any ei (1 � i � n − 1) or by all of them. It is easy to check that the quotient of Wn,S,r

by In is isomorphic (as involutive algebras) to the cyclotomic Hecke algebra Hn,S,r(q2; u1, . . . , ur).
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Let λ = (λ(1), . . . , λ(r)) be an r-tuple of Young diagrams. The total size of λ is |λ| = ∑
i |λ(i)|. If μ

and λ are r-tuples of Young diagrams of total size f − 1 and f respectively, we write μ ⊂ λ if μ is
obtained from λ by removing one box from one component of λ.

Theorem 5.18. (See [1].) Let F be a field. The cyclotomic Hecke algebra Hn,F ,r(q2; u1, . . . , ur) is split semisim-
ple for all n as long as q is not a proper root of unity and, for all i �= j, ui/u j is not an integer power of q.
In this case, the simple components of Hn,F ,r(q; u1, . . . , ur) are labeled by r-tuples of Young diagrams of to-
tal size n, and a simple Hn,F ,r module Vλ decomposes as a Hn−1,F ,r module as the direct sum of all Vμ

with μ ⊂ λ.

Let us call the branching diagram for the cyclotomic Hecke algebras, as described in the theorem,
the r-Young lattice. Note that, as for the usual Young’s lattice, the r-Young lattice has no multiple
edges.

Theorem 5.19 (Ariki, Koike, Dipper, James, Mathas). The sequence of cyclotomic Hecke algebras (Hn,S,r(q2;
u1, . . . , ur))n�0 is a coherent tower of cellular algebras.

Proof. Write Hn for Hn,S,r(q2; u1, . . . , ur). Ariki and Koike showed that the cyclotomic Hecke algebras
are free as S modules [2], which implies that Hn imbeds naturally in Hn+1. Moreover, the algebras Hn

have involutions that are consistent with the inclusions. Dipper, James and Mathas [12] constructed
a cellular basis of the cyclotomic Hecke algebras, generalizing the Murphy basis of ordinary Hecke
algebras. Ariki and Mathas showed [3], Proposition 1.9, that restrictions of cell modules from Hn+1 to
Hn have cell filtrations. Finally, Mathas has shown [46] that the module obtained from inducing a cell
module from Hn to Hn+1 has a cell filtration. �
5.5.9. Verification of the framework axioms for the cyclotomic BMW algebras

Let R be the generic admissible integral ground ring, with parameters ρ , q, δ j ( j � 0),
and u1, . . . , ur , as introduced at the end of Section 5.5.6. In this section, we write Wn for
Wn,R,r(u1, . . . , ur), KTn for KTn,R,r(u1, . . . , ur), and Hn for Hn,R,r(q2; u1, . . . , ur). Recall that the
field of fractions of R is F = Q(q, u1, . . . , ur). Let W F

n = Wn ⊗R F , and similarly for the other
algebras.

If we would assume the isomorphism of Wn and KTn , then we could verify the framework axioms
for the pair of sequences (Wn)n�0 and (Hn)n�0 without difficulty, using elementary observations and
some deeper results from the literature, and consequently apply Theorem 3.2 to the cyclotomic BMW
algebras. However, we wish to give an independent proof of the isomorphism. Consequently, we have
to verify the framework axioms and prove the isomorphism Wn ∼= KTn inductively, in tandem with
the inductive step in the proof of Theorem 3.2.

Lemma 5.20. W0 ∼= KT0 ∼= R.

Proof. Wilcox and Yu [60], Proposition 6.2, show that KT0 is a free R module with basis {∅}, where
∅ denotes the empty affine tangle diagram, which is also the identity element of KT0. �
Lemma 5.21. If for some n and for some admissible ground ring S, we have ϕ : W S

n → KTS
n is an isomorphism,

then ι : W S
n → W S

n+1 is injective.

Proof. ϕ ◦ ι = ι ◦ ϕ : W S
n → KTS

n+1 is injective, because ϕ : W S
n → KTS

n and ι : KTS
n → KTS

n+1 are injec-
tive. Thus ι : W S

n → W S
n+1 is injective. �

Lemma 5.22. For all n � 0, W F
n

∼= KTF
n , W F

n is split semisimple of dimension rn(2n − 1)!!, and ι : W F
n →

W F
n+1 is injective.
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Proof. This is proved in [22], Theorem 4.8. We stress that the result is independent of the finite
spanning set theorem, [21], Proposition 3.7. One thing that is not made clear in the proof of [22],
Theorem 4.8 is why ι : W F

n → W F
n+1 is injective. But if one assumes inductively that the conclusions

of the theorem hold for W F
f , f � n, for some fixed n, and in particular that ϕ : W F

n → KTF
n is an

isomorphism, then ι : W F
n → W F

n+1 is injective by Lemma 5.21. One can then continue with the proof
of the inductive step of [22], Theorem 4.8. �
Lemma 5.23. If for some n, Wn is a free R-module, then its rank is rn(2n − 1)!!.

Proof. x �→ x ⊗ 1 takes an R-basis of Wn to an F -basis of Wn ⊗R F = W F
n . �

Lemma 5.24. If for some n, Wn has a spanning set A of cardinality rn(2n − 1)!!, then ϕ : Wn → KTn is an
isomorphism, and A is an R-basis of Wn.

Proof. Say Wn has a spanning set A of cardinality rn(2n − 1)!!. To prove both conclusions, it suffices
to show that ϕ(A) is linearly independent in KTn . But{

ϕ(a) ⊗ 1: a ∈ A
} ⊆ KTn ⊗R F = KTF

n

is a spanning set of cardinality rn(2n − 1)!!, which is the dimension of KTF
n , according to Lemma 5.22.

Therefore {ϕ(a) ⊗ 1 : a ∈ A} is linearly independent in KTF
n , and hence ϕ(A) is linearly independent

in KTn . �
Lemma 5.25. W1 ∼= KT1 ∼= H1 , W1 is a free R-module of rank r, and both ι : W0 → W1 and ι : W1 → W2
are injective.

Proof. By definition, W1 ∼= H1 ∼= R[X]/((X − u1) · · · (X − ur)), and these algebras are free R-modules
of rank r. Hence ϕ : W1 → KT1 is an isomorphism by Lemma 5.24. The injectivity statements follow
from Lemma 5.21. �
Lemma 5.26. Suppose that for some n � 1 one has Wk

∼= KTk for 0 � k � n. Then the maps ι : Wk → Wk+1
are injective for 0 � k � n. Using the maps ι, regard Wk as a subalgebra of Wk+1 for 0 � k � n. One has:

(1) δ0 Re1 ⊆ e1W1e1 ⊆ Re1 .
(2) For 2 � k � n, ek Wkek = Wk−1ek.
(3) For 1 � k � n, ek commutes with Wk−1 .
(4) For 1 � k � n, Wk+1ek = Wkek. Moreover, x �→ xek is injective from Wk to Wkek.

Proof. The statement about injectivity of the maps ι follows from Lemma 5.21.
Point (1) follows from the relations e1 y j

1e1 = δ je1 for j � 0. Point (2) and the first part of point (4)
follows from the corresponding facts for the affine BMW algebras, [20], Proposition 3.17, and Propo-
sition 3.20. Point (3) follows from the defining relations for the cyclotomic BMW algebras. For the
injectivity statement in point (4), note that for x ∈ Wk ,

cl
(
ϕ(xek)

) = cl
(
ϕ(x)Ek

) = ϕ(x).

Since ϕ : Wk → KTk is injective, so is x �→ xek . �
Theorem 5.27.

(1) The two sequences of algebras (Wk)k�0 and (Hk)k�0 satisfy the framework axioms of Section 3.1.
(2) For all k � 0, ϕ : Wk → KTk is an isomorphism, and ι : Wk → Wk+1 is injective.
(3) The conclusions of Theorem 3.2 are valid for the sequence (Wk)k�0 .
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Proof. According to Proposition 5.19, (Hk)k�0 is a coherent tower of cellular algebras, so axiom (1)
of the framework axioms holds. Axiom (3) holds by Lemmas 5.20 and 5.25. Axiom (4) holds by
Lemma 5.22. We observed above that Wk/Wkek−1Wk

∼= Hk as involutive algebras; thus axiom (5)
holds. Axiom (8) holds because of the relation ek−1ekek−1 = ek−1.

Suppose that for some n � 0, it is known that the maps ϕ : Wk → KTk are isomorphisms for
0 � k � n. Then, from Lemma 5.26, we have the following versions of framework axioms (2), (6)
and (7):

(2′) Wk is an i-invariant subalgebra of Wk+1 for 0 � k � n.
(6′) For 1 � k � n, ek commutes with Wk−1 and ek Wkek ⊆ Wk−1ek .
(7′) For 1 � k � n, Wk+1ek = Wkek , and the map x �→ xek is injective from Wk to Wkek .

Now we consider the following:

Claim. For all n � 0,

(a) for 0 � k � n, the maps ϕ : Wk → KTk are isomorphisms, and therefore Wk may be regarded as an i-
invariant subalgebra of Wk+1 , and

(b) the statements (1)–(4) of Theorem 3.2 hold for the finite tower (Wk)0�k�n.

For n = 0 and n = 1, the claim follows from Lemmas 5.20 and 5.25. We assume the claim holds for
some n � 1 and show that it also holds for n+1. Then, by the discussion above, the framework axioms
hold for the finite tower (Wk)0�k�n with axioms (2), (6) and (7) replaced by the finite versions (2′),
(6′), and (7′). Now the inductive step in the proof of Theorem 3.2 goes through without change and
yields part (b) of the claim for the tower (Wk)0�k�n+1. In particular, Wn+1 is a cellular algebra; the
cardinality of its cellular basis is rn+1(2n + 1)!!, by Lemma 5.23. But then Lemma 5.24 gives that
ϕ : Wn+1 → KTn+1 is an isomorphism, so part (a) of the claim also holds for n + 1. �
Corollary 5.28. Let S be any admissible integral ground ring with q − q−1 �= 0.

(1) The sequence of cyclotomic BMW algebras (Wn,S,r)n�0 is a coherent tower of cellular algebras. Wn,S,r

has cell modules indexed by all r-tuples of Young diagrams of total size n, n − 2, n − 4, . . . . The cell
module labeled by an r-tuple of Young diagrams λ has a basis labeled by up-down tableaux of length n
and shape λ.

(2) Wn,S,r ∼= KTn,S,r for all n � 0.

Remark 5.29. It is possible to combine our results with the results of Wilcox and Yu [59] to obtain
Murphy type bases of the cyclotomic BMW algebras that are strictly cellular, i.e. i(cλ

s,t) = cλ
t,s for all

λ, s, t . To do this, all we need, according to Remark 2.14, is an i-invariant R-module complement
to the ideal W̆ (λ,n)

n in Wn
(λ,n) . However, one can check that the ideals W̆ (λ,n)

n and W (λ,n)
n for our

cellular structure are the same as for the cellular structure of Wilcox and Yu, and therefore, since
their cellular basis satisfies the strict equality i(cλ

s,t) = cλ
t,s for all λ, s, t , the desired i-invariant R-

module complement exists.

Remark 5.30. Our framework also applies to the degenerate cyclotomic BMW algebras (cyclotomic
Nazarov Wenzl algebras) studied in [4]. For the details, see [19].

5.6. The walled Brauer algebras

5.6.1. Definition of the walled Brauer algebras
Let S be a commutative ring with identity, with a distinguished element δ. The walled (or rational)

Brauer algebra Br,s(S, δ) is a unital subalgebra of the Brauer algebra Br+s(S, δ) spanned by certain
Brauer diagrams. Divide the r + s top vertices into a left cluster consisting of the leftmost r vertices
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and a right cluster consisting of the remaining s vertices, and similarly for the bottom vertices. The
walled Brauer diagrams are those in which no vertical strand connects a left vertex and a right vertex,
and every horizontal strand connects a left vertex and a right vertex. (If we draw a vertical line—the
wall—separating left and right vertices, then vertical strands are forbidden to cross the wall, and
horizontal strands are required to cross the wall.) One can easily check that the span of walled Brauer
diagrams is a unital subalgebra of Br+s(S, δ).

5.6.2. Brief history of the walled Brauer algebras
The walled Brauer algebras were introduced by Turaev [54] and by Koike [37], and studied by

Benkart et al. [5] and by Nikitin [51]. The walled Brauer algebras arise in connection with the invariant
theory of the general linear group acting on mixed tensors. Cellularity of walled Brauer algebras was
proved by Green and Martin [24] and by Cox et al. [9]; the latter authors show that walled Brauer
algebras can be arranged into coherent cellular towers.

5.6.3. Some properties of the walled Brauer algebras
The walled Brauer algebra Br,s is invariant under the involution i of the Brauer algebra Br+s .

Moreover, the inclusion map ι : Br+s → Br+s+1 maps Br,s to Br,s+1, and the closure map cl : Br+s →
Br+s−1 maps Br,s to Br,s−1, when s � 1. If δ is invertible, εr,s = (1/δ) cl : Br,s → Br,s−1 is a conditional
expectation, and, of course, the trace ε on Br+s restricts to a trace on Br,s .

The Brauer algebras have an involutive inner automorphism ρ which maps each Brauer diagram
to its reflection in the vertical line x = 1/2. (We might as well take the vertical line to coincide with
our wall.) It is clear that ρ restricts to an isomorphism from Br,s to Bs,r . Given this, we can define
“left versions” of ι, cl and εr,s by ι′ = ρ ◦ ι ◦ ρ : Br,s → Br+1,s , cl′ = ρ ◦ cl◦ρ : Br,s → Br−1,s , and
ε′ = ρ ◦ ε ◦ ρ : Br,s → Br−1,s . Note that ι′ adds a vertical strand on the left, and cl′ partially closes
diagrams on the left.

Let ea,b be the Brauer diagram with horizontal strands connecting a to b and a to b and vertical
strands connecting j to j for all j �= a,b. One can easily check the following properties:

Lemma 5.31.

(1) e2
a,b = δea,b.

(2) ea,bea,b±1ea,b = ea,b and ea,bea±1,bea,b = ea,b.
(3) For ea,b ∈ Br,s , ι(ea,b) = ea,b and ι′(ea,b) = ea+1,b+1 .
(4) For x ∈ Br,s+1 , we have e1,r+s+2ι

′(x)e1,r+s+2 = ι′ ◦ ι ◦ cl(x)e1,r+s+2 .
(5) For x ∈ Br+1,s , we have e1,r+s+2ι(x)e1,r+s+2 = ι′ ◦ ι ◦ cl′(x)e1,r+s+2 .
(6) e1,r+s+2 commutes with ι′ ◦ ι(x) for all x ∈ Br,s .

The following statement is also easy to check:

Lemma 5.32. The ideal J in Br,s(S, δ) generated by e1,r+s is the ideal spanned by diagrams with fewer than
r + s through strands, and Br,s(S, δ)/ J ∼= S(Sr × Ss).

Lemma 5.33.

(1) Br,s+1e1,r+s+1 = ι(Br,s)e1,r+s+1 .
(2) Br+1,se1,r+s+1 = ι′(Br,s)e1,r+s+1 .

Proof. To prove part (1), we have to show that if d is a diagram in Br,s+1, then there is a diagram
d′ ∈ ι(Br,s) such that de1,r+s+1 = d′e1,r+s+1. We can suppose that d is not already in ι(Br,s); therefore,
the vertex r + s + 1 in d is connected to some vertex v other than 1 and r + s + 1. There are two
cases to consider.

The first is that the vertices 1 and r + s + 1 are not connected to each other in d; let a and b be
the vertices connected to 1 and r + s + 1. Now let d′ be the diagram in which a and b are connected



352 F.M. Goodman, J. Graber / Advances in Applied Mathematics 46 (2011) 312–362
to each other; r + s + 1 is connected to r + s + 1; 1 is connected to v; and all other strands are as
in d. Then we have de1,r+s+1 = d′e1,r+s+1. The case that the vertices 1 and r + s + 1 are connected to
each other is similar and will be omitted.

Part (2) is proved by applying the map ρ to both sides of the equality in part (1) and then inter-
changing the roles of r and s. �

A unital trace ε on an S-algebra A is non-degenerate if for every non-zero x ∈ A there exists a
y ∈ A such that ε(xy) �= 0.

Lemma 5.34.

(1) The trace ε on Bn(Q(δ), δ) is non-degenerate, for any n.
(2) The trace ε on Br,s(Q(δ), δ) is non-degenerate, for any r, s.

Sketch of proof. The argument for part (1) is from [47]. It suffices to show that the determinant of
the Gram matrix ε(dd′)d,d′ , where d,d′ run over the list of all Brauer diagrams (in some order), is non-
zero. Recall that ε(dd′) is qc(dd′)−n , where c(dd′) is the number of components in the tangle obtained
by closing all the strands of dd′ . One can check that c(di(d)) = n and c(dd′) < n for all diagrams other
than i(d). Therefore, each row and column of the Gram matrix has exactly one entry equal to 1 and
all other entries have the form q−k for some k > 0.

The argument for part (2) is identical. �
5.6.4. Verification of the framework axioms for the walled Brauer algebras

To fit the walled Brauer algebras to our framework, we have to reduce the double sequence of
algebras to a single sequence. We adopt the following scheme, as in [51], or [9]: Fix some integer
t � 0. For any S and δ ∈ S , we consider the sequence of walled Brauer algebras An = An(S, δ), where
A2k(S, δ) = Bk,k+t(S, δ), and A2k+1(S, δ) = Bk,k+t+1(S, δ), with the inclusions

A2k
ι−→ A2k+1

ι′−→ A2k+2.

We put f2k−1 = e1,2k+t ∈ A2k and f2k = e1,2k+t+1 ∈ A2k+1. We identify An as a subalgebra of An+1
via these embeddings. With these conventions, Lemma 5.31, points (2) and (3) give fn fn±1 fn = fn .
Moreover, if we write cln = cl when n is even and cln = cl′ when n is odd, then we have fn−1xfn−1 =
cln−1(x) fn−1 for x ∈ An−1, by Lemma 5.31, points (4) and (5). Point (6) of the lemma says that fn−1
commutes with An−2.

If J is the ideal in An generated by fn−1, then we have A2k/ J ∼= S(Sk × Sk+t), and A2k+1/ J ∼=
S(Sk × Sk+t+1). So we set Q 2k(S) = S(Sk ×Sk+t) and Q 2k+1(S) = S(Sk × Sk+t+1), with the natural
embeddings.

Since A0 = B0,t ∼= SSt , and A1 = B0,t+1 ∼= SSt+1, we cannot hope to satisfy our framework ax-
iom (3). However, we can replace axiom (3) with the weaker

(3′) A0 ∼= Q 0, and A1 ∼= Q 1.

We also have to drop our usual convention (see Definition 2.17) regarding branching diagrams that
the 0-th row of the branching diagram has a single vertex. Our conclusions will have to be modified,
but not severely.

We now take R = Z[δ] and δ = δ. R is the generic ground ring for walled Brauer algebras; if S is
any commutative unital ring with parameter δ, then Br,s(S,q) = Br,s(R,q) ⊗R S . Let F = Q(δ). In the
remainder of this section, we write An = An(R, δ) and Q n = Q n(R). (Recall that Q n(R) = R(Sk ×Sk+t)

if n = 2k, and Q n(R) = R(Sk × Sk+t+1) if n = 2k + 1.)
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Lemma 5.35. The walled Brauer algebra Br,s(Q(δ), δ) is split semisimple.

Sketch of proof. It suffices to show that (for any t) the algebras in the sequence An are split semisim-
ple. This was proved by Nikitin in [51], following Wenzl’s method for the Brauer algebra in [55].
Nikitin’s proof involves obtaining the weights of the trace ε, but little detail is given. For our purposes,
we can bypass this issue, and use Lemma 5.34 instead. Then the method of proof of Theorem 3.2
from [55] applies. �
Proposition 5.36. The two sequence of R-algebras (An)n�0 and (Q n)n�0 satisfy the framework axioms of
Section 3.1, with axiom (3) replaced by (3′), specified above, and with the elements fn taking the role of the
elements en in the list of framework axioms.

Proof. The sequence (Q n)n�0 is clearly a coherent tower of cellular algebras, so axiom (1) holds.
Axiom (2) is evident, and we have remarked about substituting axiom (3′) for axiom (3). A F

n is split
semisimple by Lemma 5.35. Thus axiom (4) holds.

We have fn−1 is an essential idempotent with i( fn−1) = fn−1. We have An/(An fn−1 An) ∼= Q n by
Lemma 5.32, which gives axiom (5).

We have seen that fn−1 commutes with An−2 and fn−1 An−1 fn−1 ⊆ An−2 fn−1. Moreover, if x ∈
An−2, then fn−1xfn−1 = δxfn−1, so fn−1 An−1 fn−1 ⊇ δAn−2 fn−1. Therefore, fn−1 A F

n−1 fn−1 = A F
n−2 fn−1,

so axiom (6) holds.
Axiom (7) results from Lemma 5.33, and axiom (8) from fn−1 fn fn−1 = fn−1. �

Remark 5.37. The branching diagram for the sequence (Q F
n ) is the following: Each row has vertices

labeled by pairs of Young diagrams; on an even row 2k, the the first Young diagram in a pair has k
boxes and the second k + t boxes; on an odd row 2k + 1, the first Young diagram has k boxes and the
second k + t + 1 boxes; finally, there is an edge between pairs of Young diagrams in successive rows
that differ by exactly one box.

Corollary 5.38. Let S be any commutative unital ring with parameter δ.

(1) The walled Brauer algebras Br,s(S, δ) are cellular algebras.
(2) The family is coherent in the sense that the restriction of a cell module from Br,s(S, δ) to Br−1,s(S, δ)

or to Br,s−1(S, δ) and induction of a cell module from Br,s(S, δ) to Br+1,s(S, δ) or to Br,s+1(S, δ) have
filtrations by cell modules.

(3) The cell modules of Br,s(S, δ) are labeled by pairs of Young diagrams (λ(1), λ(2)), where |λ(2)| − |λ(1)| =
s − r and |λ(2)| + |λ(1)| � s + r.

A basis for any cell module for Br,s can be labeled by paths on a certain branching diagram. Sup-
pose without loss of generality that t = s − r � 0. Let (An)n�0 and (Q n)n�0 be the two sequences of
algebras defined above, depending on t , so in particular, Br,s = A2r . Let B0 be the branching diagram
for (Q F

n )n�0, which was described above, and let B be that obtained by reflections from B0. On the
0-th row, B has vertices labeled by all pairs (∅, λ), where λ is a Young diagram of size t . Finally, aug-
ment B with a copy of Young’s lattice up to the (t − 1)-st level, with vertices labeled by pairs (0,μ)

with 0 � |μ| � t − 1. The pairs of Young diagrams labeling the cell modules of Br,s are located on the
r + s-th row of the augmented branching diagram, and a basis of any cell module can be labeled by
paths on the augmented branching diagram from (∅,∅) to the pair in question.

We note that several of the results of Section 3 of [9] follow from the application of our method
to the walled Brauer algebras.

5.7. Partition algebras

5.7.1. Definition of the partition algebras
Let n be an integer, n � 1. Let [n] = {1, . . . ,n} and [n] = {1, . . . ,n} be disjoint sets of size n, and

let Xn be the family of all set partitions of [n] ∪ [n].
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We can represent an element x of Xn by any graph with vertex set equal to [n] ∪ [n] whose
connected components are the blocks or classes of the partition x. We picture such a graph as a
diagram in the rectangle R, with the vertices in [n] arranged on the top edge and those in [n]
arranged on the bottom edge of R, as in the tangle diagrams discussed in Section 5.1.

Let S be any commutative ring with identity, with a distinguished element δ. We define a product
on Xn as follows: Let x and y be elements of Xn . Realize y as a set partition of [n] ∪ [n′] (with
[n′] the set of bottom vertices). Realize x as a set partition of [n′] ∪ [n] (with [n′] the set of top
vertices). Let Ex and E y be the corresponding equivalence relations, regarded as equivalence relations
on [n] ∪ [n′] ∪ [n]. Let E be the smallest equivalence relation on [n] ∪ [n′] ∪ [n] containing Ex ∪ E y .
Let r be the number of equivalence classes of E contained in [n′]. Let Exy be the equivalence relation
obtained by restricting E to [n] ∪ [n], and let z be the corresponding set partition of [n] ∪ [n]. Then
xy is defined to be δr z.

Here is an example of two set partitions represented by graphs and their product.

y = , x = , xy = δ .

We let A2n(S, δ) be the free S module with basis Xn . We give A2n(S, δ) the bilinear product
extending the product defined on Xn . One can check the multiplication is associative. Note that
A0(S, δ) ∼= S . For n � 1, the multiplicative identity of A2n(S, δ) is the partition with blocks {i, i} for
1 � i � n.

For n � 1, let X ′
n ⊂ Xn be the family of set partitions with n and n in the same block. The S-span

of X ′
n is a unital subalgebra of A2n(S, δ), which we denote by A2n−1(S, δ).

The algebras Ak(S, δ) for k � 0 are called the partition algebras.
Note that the set partitions x ∈ Xn each of whose blocks has size 2 can be identified with Brauer

diagrams on 2n vertices, and the product of such diagrams in the Brauer algebra Bn(S, δ) agrees with
the product in A2n . Thus Bn(S, δ) can be identified with a unital subalgebra of A2n(S, δ).

5.7.2. Brief history of the partition algebras
The partition algebras A2n were introduced independently by Martin [41,42] and Jones [34]. Parti-

tion algebras arise as centralizer algebras for the symmetric group Sk acting as a subgroup of GL(k,C)

on tensor powers of Ck [34,43]. The algebras A2n+1 have been used as an auxiliary device for study-
ing the partition algebras, by Martin and others. Halverson and Ram [26] emphasized putting the
even and odd algebras on an equal footing, which reveals the role played by the basic construction.
Cellularity of the partition algebras was proved in [61,13,57]. For further literature citations, see the
review article [26].

5.7.3. Some properties of the partition algebras
Fix a ground ring S and δ ∈ S . In this section write Ak for Ak(S, δ).
For n � 1, A2n−1 is defined as a subalgebra of A2n . The map ι : Xn → X ′

n+1 which adds the ad-

ditional block {n + 1,n + 1} to x ∈ Xn is an imbedding; the linear extension of ι to A2n is a unital
algebra monomorphism into A2n+1. Using ι, we identify A2n with its image in A2n+1.

For n � 1, let p2n−1 ∈ A2n be the set partition of [n] ∪ [n] with blocks {n}, {n}, and {i, i} for
1 � i � n − 1. The element p2n−1 satisfies p2

2n−1 = δp2n−1. Let p2n ∈ A2n+1 be the set partition of

[n + 1]∪ [n + 1] with blocks {n,n + 1,n,n + 1} and {i, i} for 1 � i � n − 1. Then p2n is an idempotent.
Here are graphs representing the pk for k even and odd:

p8 = , p9 = .
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One can check that

pk pk±1 pk = pk for all k. (5.1)

Define an involution i on Xn by interchanging j with j for each j. The map i reflects a graph
d(x) representing x ∈ Xn in the line y = 1/2. The linear extension of i to An is an algebra involution.
Note that X ′

n and A2n−1 are invariant under i. The embeddings of Ak in Ak+1 commute with the
involutions. The elements pk are invariant under i.

Define a map cl : Xn → X ′
n by merging the blocks containing n and n, and define cl : A2n → A2n−1

as the linear extension of the map cl : Xn → X ′
n .

Define a map cl : X ′
n → A2n−2 as follows: For x ∈ X ′

n , if {n,n} is a block of x, then cl(x) = δx′ , where
x′ ∈ Xn−1 is obtained by removing the block {n,n}. Otherwise, cl(x) ∈ Xn−1 is obtained by intersecting
each block of x with [n − 1] ∪ [n − 1]. Define cl : A2n−1 → A2n−2 as the linear extension of the map
cl : X ′

n → A2n−2.
One can check that for all k, cl : Ak → Ak−1 is a non-unital Ak−1–Ak−1 bimodule map. Moreover,

tr = cl◦ cl◦ · · · ◦ cl : Ak → A0 ∼= S is a non-unital trace. The trace tr can be computed as follows: given
x ∈ Xn , let d(x) be any graph representing x and let d′(x) be the graph augmented by drawing edges
between each pair of vertices { j, j}; then tr(x) = δr , where r is the number of components of d′(x).

The maps cl commute with the algebra involutions i, and tr(a) = tr(i(a)). Moreover,

pkxpk = cl(x)pk for all x ∈ Ak , k � 1. (5.2)

If δ is invertible, define ε2n : A2n → A2n−1 by ε2n = cl, and ε2n−1 : A2n−1 → A2n−2 by ε2n−1 =
δ−1 cl. Then the maps εk are unital conditional expectations, and the map ε=ε1 ◦· · ·◦εk : Ak → A0 ∼= S
is a unital trace.

Let x ∈ Xn . Call a block of x a through block if the block has non-empty intersection with both [n]
and [n]. The number of through blocks of x is called the propagating number of x, denoted pn(x).
Clearly, pn(x) � n for all x ∈ Xn . The only x ∈ Xn with propagating number equal to n are Brauer
diagrams with only vertical strands, i.e. permutation diagrams.

If x, y ∈ Xn and xy = δr z, then pn(z) � min{pn(x),pn(y)}. Hence the span of the set of x ∈ Xn with
pn(x) < n is an ideal J2n ⊂ A2n . Moreover, J2n−1 := J2n ∩ A2n−1 is the span of x ∈ X ′

n with pn(x) < n.

Lemma 5.39. For n � 1, A2n/ J2n ∼= SSn, and A2n−1/ J2n−1 ∼= SSn−1 , as algebras with involution.

Proof. The span of permutation diagrams is a linear complement to J2n , and is an i-invariant subal-
gebra of A2n isomorphic to SSn; hence, A2n/ J2n ∼= SSn . The span of permutation diagrams π with
π(n) = n is a linear complement to J2n−1 in A2n−1; hence A2n−1/ J2n−1 ∼= SSn−1. �
Lemma 5.40. For k � 2, Jk = Ak−1 pk−1 Ak−1 .

Proof. It is straightforward to check that if x ∈ Xn has propagating number strictly less than n, then
x can be factored as x = x′ p2n−1x′′ , with x′, x′′ ∈ X ′

n . Likewise, if n � 2 and x ∈ X ′
n has propagating

number strictly less than n, then x can be factored as x = x′ p2n−2x′′ with x′, x′′ ∈ X ′
n−1. �

Lemma 5.41.

(1) For k � 3, pk−1 Ak−1 pk−1 = Ak−2 pk−1 .
(2) p1 A1 p1 = δA0 p1 .
(3) For k � 2, pk−1 commutes with Ak−2 .

Proof. Let x ∈ A2n with n � 1. Then p2n−1xp2n−1 is contained in the span of y ∈ Xn such that {n}
and {n} are blocks of y, and any such y can be written as y = zp2n−1, where z ∈ A2n−2.
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Now consider x ∈ A2n+1 with n � 1. Then p2nxp2n is contained in the span of y ∈ X ′
n+1 such that

{n,n + 1,n,n + 1} is contained in one block of y. Any such y can be written as y = zp2n where
z ∈ A2n−1.

This shows that pk−1 Ak pk−1 ⊆ Ak−2 pk−1 for all k � 3. On the other hand, if x ∈ Ak−2 then xpk−1 =
xpk−1 pk−2 pk−1 = pk−1xpk−2 pk−1 ∈ pk−1 Ak pk−1, so pk−1 Ak pk−1 ⊇ Ak−2 pk−1. This proves (1).

Points (2) and (3) are easy to check. �
Lemma 5.42. For k � 2, Ak pk−1 = Ak−1 pk−1 . Moreover, x �→ xek−1 is injective from Ak−1 to Ak.

Proof. For k = 2, we have A2 p1 = Sp1 = A1 p1. For k � 3, we have

Ak pk−1 = Ak pk−1 pk−2 pk−1

⊆ Jk pk−1 = Ak−1 pk−1 Ak−1 pk−1

⊆ Ak−1 Ak−2 pk−1 = Ak−1 pk−1.

Checking k odd and even separately, one can check that x = cl(xpk−1) for k � 2 and x ∈ Ak−1. �
Lemma 5.43. The trace ε on Ak(Q(δ), δ) is non-degenerate.

Proof. For any set partition x ∈ Xn , let r(x) be the number of blocks of x. Let Ex be the equivalence
relation on [n] ∪ [n] whose equivalence classes are the blocks of x.

For any x, y ∈ Xn , define an integer r(x, y) as follows: Let E(x, y) be the smallest equivalence
relation on [n] ∪ [n] containing Ex ∪ Ei(y) and let r(x, y) be the number of equivalence classes of
E(x, y). Clearly, r(x, y) � min{r(x), r(y)}. Moreover, if r(x) = r(y), then r(x, y) < r(x) unless y = i(x),
and r(x, i(x)) = r(x).

It is not hard to see that tr(xy) = δr(x,y) , so ε(x, y) = δr(x,y)−n . It follows that the Gram determinant
det(ε(xy))x,y is a Laurent polynomial that has a unique term of highest degree namely ±∏

x ε(xi(x)).
In particular the Gram determinant is non-zero. This shows that the trace on A2n(Q(δ), δ) is non-
degenerate, and the same method shows that the restriction of the trace to A2n−1(Q(δ), δ) is non-
degenerate. �
Lemma 5.44. Ak(Q(δ), δ) is split semisimple. The branching diagram for (Ak(Q(δ), δ))k�0 has vertices on
levels 2n and 2n + 1 labeled by all Young diagrams of size j, 0 � j � n. There is an edge connecting λ on level
2n and μ on level 2n ± 1 if, and only if, λ = μ or μ is obtained by removing one box from λ.

Proof. This is proved by Martin [41]. It can also be proved using the method of Wenzl from [55],
using Lemma 5.43. �
5.7.4. Verification of framework axioms for the partition algebras

We take R = Z[δ], where δ is an indeterminant. Then R is the universal ground ring for the
partition algebras; for any commutative ring S with distinguished element δ, we have Ak(S, δ) ∼=
Ak(R, δ) ⊗R S . Let F = Q(δ) denote the field of fractions of R . Write Ak = Ak(R, δ). Define Q 2n =
Q 2n+1 = RSn .

Proposition 5.45. The two sequence of R-algebras (Ak)k�0 and (Q k)k�0 satisfy the framework axioms of
Section 3.1.

Proof. According to Example 2.16, (Q k)k�0 is a coherent tower of cellular algebras, so axiom (1)
holds. Framework axioms (2) and (3) are evident. A F

k is split semisimple by Lemma 5.44. This verifies
axiom (4).
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We take pk−1 ∈ Ak to be the element defined in the previous section. Then pk−1 is an i-invariant
essential idempotent. With Jk = Ak pk−1 Ak , we have Ak/ Jk

∼= Q k as algebras with involution by
Lemma 5.39. This verifies axiom (5).

Axiom (6) follows from Lemma 5.41, and axiom (7) from Lemma 5.42. Axiom (8) holds because
pn−1 pn pn−1 = pn−1. �
Corollary 5.46. For any commutative ring S and for any δ ∈ S, the sequence of partition algebras
(An(S, δ))n�0 is a coherent tower of cellular algebras. An(S, δ) has cell modules indexed by all Young dia-
grams of size j, 0 � j � n. The cell module labeled by a Young diagram λ has a basis labeled by paths on the
branching diagram for (Ak(Q(δ), δ))k�0 , described in Lemma 5.44.

5.8. Contour algebras

We define generalizations of the contour algebras of Cox et al. [8], which in turn include several
sorts of diagram algebras. The algebras are obtained as a sort of wreath product of the Jones–
Temperley–Lieb algebras with some other algebra A with involution; varying A gives a wide variety
of examples.

5.8.1. Definition of contour algebras
Let S be a commutative ring with distinguished element δ. Let A be an S-algebra with involution

i and with a unital S-valued trace ε. We first define the A-Temperley–Lieb algebras Tn(A) and then
the contour algebras Cd

n(A) as subalgebras of Tn(A). In case we need to emphasize the ground ring S
and parameter δ, we write Cd

n(A, S, δ).
An A-Temperley–Lieb diagram is a Temperley–Lieb (TL) diagram with strands labeled by elements

of A. For convenience, we adopt the convention that an unlabeled strand is the same as a strand
labeled with the identity of A.

We will define the product of two A-Temperley–Lieb diagrams. First we note that ordinary TL
diagrams have an inherent orientation. Label the top vertices of a TL diagram by 1, . . . ,n and the
bottom vertices by 1, . . . ,n. Place a small arrow pointing down at each odd numbered vertex (top or
bottom) and a small arrow pointing up at each even numbered vertex. Then because of the planarity
of TL diagrams, each strand of a TL diagram must connect one arrow pointing into the rectangle R
of the diagram with one arrow pointing out of R; the strand can be thought of as oriented from
the inward pointing arrow to the outward pointing arrow. When two TL diagrams are multiplied by
stacking, the orientation of composed strands agrees.

Now consider two A-Temperley–Lieb diagrams X and Y . To form the product XY , stack Y over X
as for tangles, forming a composite diagram X ◦ Y . Label each non-closed composite strand with the
product of the labels of its component strands from X and Y , taken in the order of their occurrence
as the strand is traversed according to its orientation. For each closed strand s in X ◦ Y , let ε(s)
be the trace of the product of the labels of its component strands; the product is unique up to
cyclic permutation of the factors, so the trace is uniquely determined. Let r be the number of closed
strands and let Z be the labeled diagram obtained by removing all the closed strands. Then XY =
δr(

∏
s ε(s))Z .

As an S-module, Tn(A) is A⊗n ⊗ Tn(S, δ) = ⊕
x(A⊗n ⊗ x), where the sum is over ordinary

Temperley–Lieb diagrams x. We identify a simple tensor a1 ⊗· · ·⊗an ⊗ x with a labeling of x with the
labels a1, . . . ,an . We have to specify how to place the labels. We fix an ordering of the vertices, for
example 1 < · · · < n < 1 < · · · < n, and then order the strands of x according to the order of the initial
vertex of each (oriented) strand. The simple tensor a1 ⊗ · · · ⊗ an ⊗ x is identified with the diagram
with underlying TL diagram x, with the j-th strand of x labeled by a j for each j.

Fix TL diagrams x and y. The product of A-Temperley–Lieb diagrams with underlying TL diagrams
x and y, defined above, determines a multilinear map A2n → A⊗n ⊗ xy, and hence a bilinear map
(A⊗n ⊗ x) × (A⊗n ⊗ y) → A⊗n ⊗ xy. This product extends to a bilinear product on Tn(A), which one
can check to be associative.

Next we define an involution on Tn(A). Define i on an A-labeled TL diagram by flipping the dia-
gram over the line y = 1/2 and applying the involution in A to the label of each strand. For a fixed TL
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diagram x, this gives a multilinear map from An to A⊗n ⊗ i(x), and hence a linear map from A⊗n ⊗ x
to A⊗n ⊗ i(x). Now i extends to a linear map on Tn(A). One can check that i is an algebra involution.

This completes the definition of the A-Temperley–Lieb algebra, as an algebra with involution.
Next we define the A-contour algebras. We assign a depth to each strand in an ordinary TL dia-

gram x, as follows: Draw a curve from a point on a given strand s to the western boundary of R,
having only transverse intersections with any strands of x. The depth of s is the minimum, over all
such curves γ , of the number of points of intersection of γ with the strands of x (including s). The
depth of an A-labeled TL diagram is the maximum depth of the strands with non-identity labels.

Fix d � n. As an S-module Cd
n(A) is the span of those A-labeled TL diagrams of depth no greater

than d. It is easy to check as in [8] Lemma 2.1 that Cd
n(A) is an i-invariant subalgebra of Tn(A).

For a ∈ A and 1 � j � n let a( j) be the identity TL diagram in Tn(A) with the j-th strand labeled
with a (and the other strands unlabeled). We have a( j) and b(k) commute if j �= k. Also a( j) commutes
with ek unless j ∈ {k,k + 1} and eka(k) = eka(k+1) , and, likewise, a(k)ek = a(k+1)ek . Note that a �→ a(k)

is an algebra homomorphism if k is odd, but an algebra anti-homomorphism if k is even.

Lemma 5.47. Cd
n(A) is generated as an algebra by e1, . . . , en−1 and by {a(k): 1 � k � d}.

Sketch. It is enough to show that if x is a Temperley–Lieb diagram and X = xa(k) has depth r, then X
can be rewritten as a product of a(r) and TL diagrams. First one can check that X can be written as
x1x2a(k′)x3 where the xi are TL diagrams, x2 is a product of commuting ei ’s, and the depth of x2a(k′)

is r. Finally, it suffices to show that x2a(k′) can be written as a product of TL diagrams with a(r) . We
give an example that captures the idea: e1e3a(6) has depth 2. We have

e1e3a(6) = (e1e3)(e2e4)(e1e3)a
(6)

= (e1e3)(e2e4)(e3e5)(e2e4)(e1e3)a
(6)

= (e1e3)(e2e4)(e3e5)a
(2)(e2e4)(e1e3),

by repeated use of the relations listed before the statement of the lemma. �
5.8.2. Brief history of contour algebras

The contour algebras introduced by Cox et al. [8] are the special case with A the group algebra of
the cyclic group Zm . On the other hand, the A-Temperley–Lieb algebras Tn(A) have been considered
in [31], Example 2.2. The contour subalgebras of Tn(A) were discussed in [25].

5.8.3. Some properties of A-Temperley–Lieb and contour algebras
We deal with the contour algebras and the A-Temperley–Lieb algebras together; regard Tn(A) as

C∞
n (A).

We define maps ι : Cd
n(A) → Cd

n+1(A) as for other classes of diagram or tangle algebras, and like-

wise maps cl : Cd
n(A) → Cd

n−1(A); if closing the rightmost strand of an A-Temperley–Lieb diagram
produces a closed loop, remove the loop and multiply the resulting diagram by δ times the trace of
the product of labels along the loop. The map ι is injective, since x = cl(ι(x)en) for x ∈ Cd

n(A). The
maps ι and cl commute with the involutions.

If δ is invertible in S , we can define εn = (1/δ) cl : Cd
n(A) → Cd

n−1(A), which is a unital conditional

expectation. We have εn+1 ◦ ι(x) = x for x ∈ Cd
n(A). The map ε = ε1 ◦ · · · ◦ εn : Cd

n(A) → Cd
0(A) ∼= S is

a normalized trace. The value of ε on an A-Temperley–Lieb diagram X with n strands is obtained as
follows: first close all the strands of X by introducing new curves joining j to j for all j; let r be the
number of closed loops in the resulting diagram; then ε(X) = δr−n ∏

s ε(s), where the product is over
the collection of closed loops s, and ε(s) denotes the trace in A of the product of labels along the
loop s.

The span J of A-Temperley–Lieb diagrams of depth � d and with at least one horizontal strand
is an ideal in Cd

n(A). By Lemma 5.47, any A-Temperley–Lieb diagram with depth � d can be written
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as a word in the ei ’s and in elements a(k) with k � d; the diagram is in J if, and only if, some ei
appears in the word. Thus J is the ideal generated by the ei ’s. Because of the relations eiei±1ei = ei ,
J is generated by en−1. The quotient Cd

n(A)/ J is isomorphic (as algebras with involution) to the
subalgebra generated by the a(k) with k � d, and thus to A⊗d if n � d and A⊗n if n < d.

Lemma 5.48.

(1) For n � 3, en−1Cd
n−1(A)en−1 = Cd

n−2(A)en−1 .

(2) e1Cd
1(A)e1 = δSe1 .

(3) For n � 2, en−1 commutes with Cd
n−2(A).

Proof. The proof is the same as that of Lemma 5.2 for the Brauer algebras. �
Lemma 5.49. For n � 2, Cd

n(A)en−1 = Cd
n−1(A)en−1 . Moreover, x �→ xen−1 is injective from Cd

n−1(A) to

Cd
n−1(A)en−1 .

Proof. Any A-TL diagram in Cd
n(A) is either already in Cd

n−1(A), or it can be written as αχβ , with

α,β ∈ Cd
n−1(A), and χ ∈ {en−1,a(n)} if n � d, or χ = en−1 if n > d.

The remainder of the proof is the same as the proof of Lemma 5.3 for the Brauer algebras, using
the identities: a(n)xen−1 = xa(n−1)en−1, and en−1xen−1 = cl(x)en−1 for x ∈ Cd

n−1(A). �
5.8.4. Hypotheses on the algebra A

We will suppose that the algebra A has a generic version defined over an integral domain R0. Let
F0 be the field of fractions of R0. We suppose that A = A(R0) satisfies the following hypotheses:

(1) A = A(R0) is cellular.
(2) A(F0) = A(R0) ⊗R0 F0 is split semisimple.
(3) The trace ε on A(R0) is non-degenerate.

We take R = R0[δ], where δ is an indeterminant, and let F = F0(δ) denote the field of fractions
of R . We will show that (Cd

n(A, R, δ))n�0 is a coherent tower of cellular algebras.

5.8.5. Special instances
The cellular algebra A in Section 5.8.4 can be taken to be the generic version of any of the diagram

or tangle algebras treated in this paper. A could be taken to be a generic Hecke algebra or cyclotomic
Hecke algebra, or the group ring of a symmetric group over R0 = Z.

The contour algebras of Cox et al. [8] are recovered by taking R0 = Z[δ1, . . . , δm−1] and A the
group algebra of Zm over R0. The trace on A is determined by ε([k]) = δk for [k] �= [0] and ε([0]) = 1.
The parameter δ0 in [8] becomes identified with our δ.

5.8.6. Verification of the framework axioms for contour algebras
Adopt the hypotheses and notation of Section 5.8.4.

Lemma 5.50. The trace ε on Cd
n(A, F , δ) is non-degenerate.

Proof. We take any basis A of A over F0 with 1 ∈ A. As a basis B of Cd
n(A) over F we take all

n-strand TL diagrams decorated up to depth d with elements of A. We consider the modified Gram
determinant det[ε(Xi(Y ))]X,Y ∈B . If X and Y have different underlying TL diagrams, then ε(Xi(Y )) ∈
δ−1 F0.

Next consider matrix entries ε(Xi(Y )) where X and Y have the same underlying TL diagram,
say x. Suppose x has 	 strands at depth d or less and these strands are decorated by basis elements
a1, . . . ,a	 in X , respectively b1, . . . ,b	 in Y . Then ε(Xi(Y )) = ∏	

j=1 ε(a j i(b j)). The determinant of
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the square submatrix of [ε(Xi(Y ))] consisting of those entries for which X and Y both have under-
lying TL diagram x is therefore D	 , where D is the determinant of [ε(ai(b))]a,b∈A . It follows that
det[ε(Xi(Y ))]X,Y ∈B is equal to a power of D modulo δ−1 R0, and is therefore non-zero. �

Consider

Q n = Cd
n(A)/ J ∼=

{
A⊗n if n < d,

A⊗d if n � d.

By the assumptions in Section 5.8.4, Q n(R) is cellular and Q n(F ) is split semisimple. Moreover, it is
easy to see that (Q n)n�0 is a coherent tower of cellular algebras.

Lemma 5.51. Cd
n(A, F , δ) is split semisimple for all n.

Proof. The method of Wenzl from [55] applies, using the non-degeneracy of the trace and the split
semisimplicity of Q n(F ) for all n. �
Proposition 5.52. The pair of sequences (Cd

n(A, R, δ))n�0 and (Q n(R))n�0 satisfy the framework axioms of
Section 3.1. Hence, (Cd

n(A, R, δ))n�0 is a coherent tower of cellular algebras.

Proof. We observed above that (Q k)k�0 is a coherent tower of cellular algebras, so axiom (1) holds.
Framework axioms (2) and (3) are evident. Framework axiom (4) follows from Lemma 5.51.

The elements ek are i-invariant essential idempotents. With J = Cd
k (A)ek−1Cd

k (A), we have
Cd

k (A)/ J ∼= Q k as algebras with involution. This verifies axiom (5). Axiom (6) follows from Lemma 5.48,
and axiom (7) from Lemma 5.49. Axiom (8) holds because en−1enen−1 = en−1. �
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