10 Evaluation of knowledge level of adolescents and adults with congenital heart disease: Effectiveness of a structured CHD education program in adolescents

M. Ladouceur^{1,*}, R. Cheurfi¹, C. Pagnon¹, S. Cohen¹, F. Bajolle¹, L. Iserin¹, P. Jourdain², D. Bonnet¹

¹ M3C, Hôpital Necker-Enfants malades, Centre Chirurgical Marie-Lannelongue, Hôpital européen Georges-Pompidou, Paris, France

² CH René-Dubos, Cardiologie, Pontoise, France

* Corresponding author.

E-mail address: magalie.ladouceur@gmail.com (M. Ladouceur)

Background Adolescents with congenital heart disease (CHD) constitute a growing population of individuals for whom a well-planned and well-executed "transition process" is essential. Transition program should include education about medical conditions and promote skills in decision-making and self-care. To improve their level of health related knowledge, a structured education program was implemented in a transition CHD program. This study aimed 1/to evaluate level of knowledge of adolescents who received structured CHD education as compared to adults who did not, 2/to evaluate whether patients who received structured education improve their knowledge.

Methods and results 42 adolescents (16 ± 2 years old, 21 girls) were included in a structured CHD education program and were compared to 22 adults (33 ± 7 , 6 women) with CHD who have never followed education program. Knowledge in adolescents was assessed before and after the educational program using questionnaire exploring specific issues related to CHD. A same questionnaire was used in non-educated adult patients. The mean total knowledge score in the educated adolescent group was significantly higher as compared to the non-educated adult with CHD (score = $15.6/20 \pm 3.6$ vs. 12.5 ± 4.5 , *P* < 0.01). Provision of structured CHD education and female sex were determinant of higher levels of knowledge. A significant improvement of knowledge was observed in adolescents group after CHD education program (range of increase was 23 to 44%). This result was not influenced by age, sex, education level, socio-economic status of parents and disease complexity, and persists at 10 months mean follow-up.

Conclusion A structured education program was associated with a higher level of knowledge, above all in male CHD patients. Education at transition period has a significant impact on the adolescent knowledge. Structured education program should improve adult CHD understanding of their heart condition, and could prevent potential complications.

Disclosure of interest The authors have not supplied their declaration of conflict of interest.

http://dx.doi.org/10.1016/j.acvd.2014.07.011

11

Long-term experience with heart transplantation in children and patients with congenital heart disease

S. Di Filippo^{1,*}, R. Henaine², M. Veyrier¹, C. Ducreux¹, J. Ninet², L. Sebbag³, P. Boissonnat³, A. Roussoulières³ ¹ Pediatric and Congenital Heart Disease, University Medical Center of Lyon, France

² Cardiac Surgery, University Medical Center of Lyon, France

³ Adult Heart Transplant Department, University Medical Center of Lyon, France

* Corresponding author.

E-mail address: sylvie.di-filippo@chu-lyon.fr (S. Di Filippo)

Methods Retrospective single-centre analysis of long-term posttransplant outcome, with chart collection of clinical and paraclinical data [this study assessed the long-term outcome of heart (HTx) and heart-lung transplantation (HLTx) in patients with congenital heart disease (CHD) and children with non-congenital cardiac or pulmonary disease.]

Results From 1984 to 2013, 111 first-HTx, 5 HLTx and 6 re-HTx were performed (62 males), in patients aged 11.7 ± 8.2 y: 96 (79%) aged < 18 y. Cardiopathy included 61 cardiomyopathies (50.8%), 50 CHD (41.7%), 6 retransplants (5%). HLTx included 1 Eisenmenger, 1 PPHT, and 2 pulmonary diseases. Patients with cardiomyopathy were younger than CHD (8.7 y vs. 14.9 y). Seventeen (14%) patients had circulatory mechanical support as bridge to transplant. Acute rejection occurred more frequently within the first year post-transplant or > 5th year in non-compliant teenagers. Overall, 33 patients died (27%), 3.5 ± 4.6 y post-Tx (1 day to 16.4 y, med 1.5 months), due to early multivisceral failure in 6 (18%), pulmonary hypertension in 3 (9%), acute rejection in 7 (21%), graft coronary disease in 6 (18%), sepsis in 5 (15%) and miscellaneous in 6. Graft coronary disease occurred in 15 (12.4%): 4 had re-HTx, 6 died and 5 are alive. Five lymphoma occurred, 4 months to 14 y after HTx, cured in 4 (1 died). Patients survival was 85% at 1 y, 81% at 5 y, 70% at 10 y and 61% at 20 y post-transplant. Graft survival rates were respectively 82%, 68% and 52% at 5 y, 10 y and 20 y post-transplant. Survival did not differ with pretransplant disease, age, gender, pretransplant mechanical support. Mortality was higher in patients with coronary disease (40%) than those free from (25%).

Conclusion Long-term prognosis after HTx and HLTx is favourable. Graft coronary disease is the main cause of failure, less frequent than in the adult non-CHD heart-transplanted population.

Disclosure of interest The authors have not supplied their declaration of conflict of interest.

CrossMark

http://dx.doi.org/10.1016/j.acvd.2014.07.012

12 Risk markers of cardiac events in patients with Marfan syndrome diagnosed during childhood

- T. Edouart (MD, PhD)⁴, F. Arnoult (MD)⁵, O. Milleron (MD)⁶
- C. Stheneur (MD)⁷, B. Chevallier (MD, PhD)⁸, C. Zordan (MD)⁹,
- S. Odent (MD, PhD)¹⁰, N. Philip (MD, PhD)¹¹,
- L. Olivier-Faivre (MD, PhD)¹², B. Leheup (MD)¹³,
- S. Dubois-Girod (MD)¹⁴, P. Acar (MD, PhD)¹⁵
- J. Ferrières (MD, PhD)¹⁶, G. Jondeau (MD)¹⁷

¹ Department of paediatric cardiology, centre de compétence pour le syndrome de Marfan et apparentés Children Hospital, Inserm/UPS UMR 1048, I2MC, CHU de Toulouse, Toulouse, France ² Department of paediatric cardiology, centre de compétence pour le syndrome de Marfan et apparentés Children Hospital, CHU de Toulouse, Toulouse, France

³ Department of epidemiology, Inserm/UPS UMR 1048, I2MC, CHU de Toulouse, Toulouse, France

⁴ Department of paediatric endocrinology, centre de compétence pour le syndrome de Marfan et apparentés Children Hospital, CHU de Toulouse, Toulouse, France

⁵ Department of cardiology, centre de référence pour le syndrome de Marfan et apparentés, Bichat Hospital, AP-HP, Paris, France ⁶ Department of cardiology, centre de référence pour le syndrome de Marfan et apparentés, Bichat Hospital, AP-HP, Paris, France ⁷ Department of pediatry Ambroise-Paré Hospital, AP-HP, Boulogne, France/centre de référence pour le syndrome de Marfan et apparentés, Bichat Hospital, AP-HP, Paris, France ⁸ Department of pediatry Ambroise-Paré Hospital, AP-HP, Boulogne, France

CrossMark