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line. We also discuss same type of questions for atomic doubling measures defined on
certain midpoint Cantor sets.
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1. Introduction and notation

Our main goal in this paper is to study the size of Cantor sets on the real-line R from the point of view of doubling
measures. Recall that a measure µ on a metric space X is called doubling if there is a constant c < ∞ such that

0 < µ(B(x, 2r)) ≤ cµ(B(x, r)) < ∞

for all x ∈ X and r > 0. Here B(x, r) is the open ball with centre x ∈ X and radius r > 0. We note that the collection of
doubling measures on R, and more generally, on any complete doubling metric space where isolated points are not dense,
is rather rich. For instance, given ε > 0, there are doubling measures on R having full measure on a set of Hausdorff and
packing dimension at most ε. See [1–4].

Let D(R) be the collection of all doubling measures on R and denote

T = {C ⊂ R : µ(C) = 0 for all µ ∈ D(R)},

F = {C ⊂ R : µ(C) > 0 for all µ ∈ D(R)}.

In the literature, the sets in F have been called quasisymmetrically thick [1,5], thick for doubling measures [6], and very
fat [7] and those in T have been termed quasisymmetrically null [1,5], null for doubling measures [6], and thin [7]. We call
C ⊂ R thin if C ∈ T and fat if C ∈ F .

In this paper, we address the problems of finding sufficient and/or necessary conditions for a Cantor set C ⊂ R to be
fat (resp. thin). These problems arise naturally from the study of compression and expansion properties of quasisymmetric
maps f :R → R; see [1, 13.20]. A related problem is to characterise those subsets U ⊂ R which carry nontrivial doubling
measures [8, Open problem 1.18]; if C ⊂ R is a fat Cantor set, then it is easy to see that U = R \ C does not carry nontrivial
doubling measures. For if it did, then one could extend any doubling measure µ on U to R by letting µ(C) = 0, and this
would contradict C being fat.

We begin by discussing thinness and fatness for themiddle interval Cantor sets C(αn) determined via sequences (αn)
∞

n=1,
0 < αn < 1, as follows. We first remove an open interval of length α1 from the middle of I1,1 = [0, 1] and denote the
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remaining two intervals by I2,1 and I2,2. At the kth step, k ≥ 2, we have 2k−1 intervals Ik,1, . . . , Ik,2k−1 of length ℓk =

2−k+1k−1
n=1(1 − αn) and we remove an interval of length αkℓk from the middle of each Ik,i. Finally, the middle interval

Cantor set C = C(αn) is defined by

C =


k∈N

2k
i=1

Ik,i.

The theorem below follows by combining results of Wu [9, Theorem 1], Staples and Ward [5, Theorem 1.4], and Buckley
et al. [7, Theorem 0.3]. For 0 < p < ∞, we denote by ℓp the set of all sequences (αn)

∞

n=1, 0 < αn < 1, for which


∞

n=1
α

p
n < ∞.

Theorem 1.1. Let C = C(αn). Then

(1) C is thin if and only if (αn) ∉


0<p<∞
ℓp.

(2) C is fat if and only if (αn) ∈


0<p<∞
ℓp.

In a recent paper, Han et al. [6] generalised Theorem 1.1 for a broader collection of (still very symmetric) Cantor sets.
Related results on thin and fat sets may be found in [3,5,7,9–12].

The known proofs for Theorem 1.1 and its generalisation in [6] rely heavily on the symmetries of the sets C(αn). In
this paper, we wish to consider analogues of Theorem 1.1 for Cantor sets with much less symmetry. To be more precise,
we introduce the following notation. Suppose that for each n ∈ N, we have a collection of closed intervals In = {In,i}i
with mutually disjoint interiors and open intervals Jn = {Jn,i ⊂ In,i} such that each In+1,i is a subset of some In,j,

In+1 =


In \


Jn and that supj |In,j| → 0 as n → ∞. We also assume that


I1 is bounded. We refer to {In, Jn}n as
a Cantor construction. The resulting Cantor set is given by

C = C{In,Jn} =


n


i

In,i.

Given the collections In and Jn as above, we also denote I =


n In and J =


n Jn. If there exists 0 < c < 1 so that
cIn,i


Jn,i ≠ ∅ for all In,i, we say that our Cantor construction (and set) is nice.1Here cIn,i denotes the interval concentric

with In,i and with length c|In,i|. Furthermore, given a sequence 0 < αn < 1, we say that the Cantor set C = C{In,Jn}n is
(αn)-porous if |Jn,i| ≥ αn|In,i| for all In,i ∈ In and (αn)-thick, if |Jn,i| ≤ αn|In,i| for all In,i. Finally, C is called (αn)-regular if
λαn|In,i| ≤ |Jn,i| ≤ Λαn|In,i| for all In,i (here 0 < λ ≤ Λ < ∞ are constants that do not depend on n nor i). We underline
that these definitions do not refer only to the set C but also to the construction of C via {In, Jn}n.

Remarks 1.2. (a) Using our notation, it is possible that a Cantor set C contains isolated points as some of the intervals In,i
could be degenerated. We allow this for technical reasons although in most interesting cases, e.g. if C is nice, the set C is a
true Cantor set in the sense that it has no isolated points.
(b) Observe that in our definitions, we do not impose any conditions on the number or relative size of the intervals
In+1,j ⊂ In,i. Note also that In+1,i ∈ In+1 does not have to be a component of any In,j \ Jn,j.
(c) We formulate our results for Cantor sets, but it is reasonable to speak about (αn)-porosity and (αn)-thickness for general
subsets of R and not only for the ones obtained from Cantor constructions. Roughly speaking, A ⊂ R is (αn)-porous if it is
contained in an (αn)-porous Cantor set and (αn)-thick, if it contains an (αn)-thick Cantor sets. See [3,5] for more details. In
Section 4 we provide a notion of (αn)-porosity which is useful in any metric space.

Our main result concerning doubling measures and Cantor sets is the following theorem.

Theorem 1.3. Suppose that C = C{In,Jn} is a nice Cantor set. Then, for each 0 < p < ∞, there is µ ∈ D(R) and 0 <
λ ≤ Λ < ∞ so that

λ


|Jn,i|
|In,i|

p

≤
µ(Jn,i)
µ(In,i)

≤ Λ


|Jn,i|
|In,i|

p

(1.1)

for each In,i.

Remark 1.4. This result is interesting already for the middle interval Cantor sets C(αn). After the submission of this paper,
we were informed that for uniform Cantor sets, the result has been proved independently by Peng andWen. See [13] for the
precise formulation of their result.

Let us now discuss what can be said about the validity of Theorem 1.1 for the general Cantor sets C{In,Jn}. Observe that
Theorem 1.1 includes the following four statements:

1 Geometrically, this only means that if the removed holes Jn,i are small, then they cannot lie too close to the boundary of In,i .
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(I) If (αn) ∉


0<p<∞
ℓp, then µ(C) = 0 for all µ ∈ D(R).

(II) If (αn) ∈


0<p<∞
ℓp, then there is µ ∈ D(R) with µ(C) > 0.

(III) If (αn) ∈


0<p<∞
ℓp, then µ(C) > 0 for all µ ∈ D(R).

(IV) If (αn) ∉


0<p<∞
ℓp, then there is µ ∈ D(R) so that µ(C) = 0.

The Claim (I) holds for general (αn)-porous sets A ⊂ R as shown byWu [3, Theorem 1]. In fact, her result remains true in all
metric spaces. We provide a simple proof in Lemma 4.1. The Claim (III) is a special case of a more general result of Staples
and Ward [5, Theorem 1.4]. They proved that if C ⊂ R is (αn)-thick for some (αn) ∈


0<p<∞

ℓp, then C is fat.
Our new results in Section 2 deal with the Claims (IV) and (II). These are the claims whose earlier proofs rely on the

symmetries of C(αn). We show that if


∞

n=1 α
p
n = ∞ for some p > 0, and C is a nice (αn)-porous Cantor set, then C ∉ F .

On the other hand, if there is p < ∞ with


∞

n=1 α
p
n < ∞, and if C is a nice (αn)-thick Cantor set, then C ∉ T . Putting all

these results together, we arrive at a complete analogue of Theorem 1.1 for nice (αn)-regular Cantor sets C ⊂ R. The proofs
of our results in Section 2 are all based on the Theorem 1.3.

In the last part of the paper in Section 5, we discuss purely atomic doublingmeasures. Recall that ameasureµ on ametric
space X is called purely atomic, if there is a countable set F ⊂ X so that µ(X \ F) = 0. Purely atomic doubling measures have
reached some attention recently, see e.g. [3,10,11,14].

Denote by FX the set of isolated points of a metric space X and let EX = X \ FX . If EX is nowhere dense, it is reasonable to
ask if there are purely atomic doubling measures on X and on the other hand, what conditions guarantee that all doubling
measures on X are purely atomic.Wewill treat these questions for a class ofmetric spaces obtained by adding themidpoints
of the intervals J ∈ J to the Cantor sets C = C{In,Jn}. If C is (αn)-regular, wewill classify in terms of the sequence (αn), which
of the corresponding midpoint sets carry purely atomic doubling measures. We find a characterisation of the same nature
for all doubling measures being purely atomic. The result, Theorem 5.1, is analogous to Theorem 1.1. We will also answer
two questions on atomic doubling measures posed by Kaufman and Wu [10], and Lou et al. [14].

We finish this section with some notation. By a measure on (a metric space) X , we always mean a Borel regular outer
measure, defined on all subsets of X . If A ⊂ X , we denote by µ|A the restriction of µ to A given by µ|A(B) = µ(A ∩ B)
for B ⊂ X . For an interval I ⊂ R, we denote by ∂ I the set of its endpoints. We adopt the convention that 0 < c < ∞

always denotes a constant that only depends on parameters which should be clear from the context. Sometimes we write
c = c(a, . . . , b) to emphasise that c depends only on the values of a, . . . , b. For notational convenience, the exact value of
c may vary even inside a given chain of inequalities. Given a family of numbers 0 < Aα, Bα < ∞, parametrised by α, we
denote Aα . Bα if there is a constant c so that Aα ≤ cBα for all α. By Aα ≈ Bα we mean that Aα . Bα and Bα . Aα .

2. Results for (αn)-porous and (αn)-thick sets

Our new results concerning (αn)-porous and (αn)-thick Cantor sets are based on Theorem 1.3.

Theorem 2.1. Suppose that C = C{In,Jn} is nice and (αn)-porous for some (αn) ∉


0<p<∞
ℓp. Then there is µ ∈ D(R) with

µ(C) = 0.

Proof. We may assume that C ⊂ [0, 1]. Choose p > 0 such that


∞

n=1 α
p
n = ∞. Let µ be a doubling measure given by

Theorem 1.3. Then µ(Jn,i) ≈

|Jn,i|/|In,i|

p
µ(In,i). As |Jn,i| ≥ αn|In,i|, we get

µ(Jn,i) & αp
nµ(In,i). (2.1)

This gives, for some c > 0,

µ

[0, 1] \


∪J1


· · ·


∪Jn


≤ (1 − cαp

n)µ

[0, 1] \


∪J1


· · ·


∪Jn−1


for all n ∈ N and consequently,

µ(C) = µ


[0, 1] \

∞
n=1

Jn


≤ µ[0, 1]

∞
n=1

(1 − cαp
n) = 0,

as


∞

n=1 α
p
n = ∞. �

Theorem 2.2. Suppose that C = C{In,Jn} ⊂ R is nice and (αn)-thick for some (αn) ∈


0<p<∞
ℓp. Then there is µ ∈ D(R) with

µ(C) > 0.

Proof. The proof is very similar to the proof of Theorem 2.1 and thus we skip the details. The estimate (2.1) gets replaced
by µ(Jn,i) . α

p
nµ(In,i) and this leads to µ(C) > 0 when


∞

n=1 α
p
n < ∞. �

Putting together Theorems 2.1 and 2.2, and the results of Wu [3, Theorem 1], and Staples and Ward [5, Theorem 1.4]
mentioned earlier, we get the following classification for the thinness and fatness of nice (αn)-regular Cantor sets.
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Corollary 2.3. If C ⊂ R is a nice (αn)-regular Cantor set, then

(1) C is thin if and only if (αn) ∉


0<p<∞
ℓp.

(2) C is fat if and only if (αn) ∈


0<p<∞
ℓp.

3. Proof of Theorem 1.3

We begin with the following simple lemma.

Lemma 3.1. For all 0 < p < ∞ there is c = c(p) < ∞ and a doubling measure µ on [0, 1] such that

c−1tp ≤ µ[0, t] = µ[1 − t, 1] ≤ ctp

for all 0 < t < 1.

Proof. We obey the following construction. Letm be an integer so large that 2−mp+1 < 1. Define

µ[0, 2−m
] = µ[1 − 2−m, 1] = 2−mp

and let µ be uniformly distributed on [2−m, 1 − 2−m
] with total measure 1 − 2−mp+1. For each integer k ≥ 2, put

µ[0, 2−km
] = µ[1 − 2−km

] = 2−kmp

and let µ be uniformly distributed on the interval [2−km, 2−(k−1)m
] (resp. [1 − 2−(k−1)m, 1 − 2−km

]) with total measure
2−(k−1)mp

− 2−kmp. It is now easy to see that µ has the required properties. �

We now start to prove Theorem 1.3. We assume without loss of generality that inf C = 0 and sup C = 1. Fix 0 < p < ∞

and letc < 1 be a constant so thatcIn,i ∩ Jn,i ≠ ∅ (3.1)

for all In,i ∈ I (such a constant exists since the Cantor construction is nice). From now on, in this proof, all constants of
comparability will only depend on p andc.

Let η > 0 be a small constant so that ηp < 1
4 . We start by dividing the interval [0, 1] into construction intervals2 of

level 1 and gaps of level 1 as follows. For all integers k ≥ 2, we choose gaps J, J ′ ∈ J so that J ∩ [2−k, 2−k+1
] ≠ ∅ and

J ′ ∩ [1 − 2−k+1, 1 − 2−k
] ≠ ∅. Denote the union of all these gaps by Gi

1. Let also Gb
1 = {Jn,i : In,i ∩ {0, 1} ≠ ∅} and

G1 = Gb
1 ∪Gi

1. Call the elements of G1 gaps of level one and their complementary intervals the construction intervals of level
one. Denote the collection of all construction intervals of level one by C1.

Next we describe how the total measure µ[0, 1] = 1 is distributed among the construction intervals and gaps of level 1.
Denote by G1

l the rightmost gap for which dist(G1
l , 0) < η and by G1

r the leftmost gap so that dist(G1
r , 1) < η. Let G1, . . . ,Gn

be the gaps between G1
l and G1

r and K1, . . . , Kn+1 the complementary intervals in between G1
l ,G1, . . . ,Gn,G1

r . It is possible
that G1

l = G1
r (if there is a huge gap in the middle) and in this case, the collection {G1, . . . ,Gn, K1, . . . , Kn+1} is considered

to be empty.

Claim 1. n ≤ c.

Proof of Claim. Clearly, there are at most −c log(η) gaps in Gi
1 whose distance to the boundary of [0, 1] is at least η (here

and in what follows log = log2). Taking (3.1) into account, we observe that a similar estimate applies also to the number of
elements in Gb

1 whose distance to the boundary of [0, 1] is greater than η. �

Let K 1
l = [0, dist(0,G1

l )] and K 1
r = [1 − dist(1,G1

r ), 1] and define

µ(K 1
l ) = |K 1

l |
p, µ(K 1

r ) = |K 1
r |

p and

µ(U) = γ |U|
p, for U ∈ {G1

l ,G
1
r ,G1, . . . ,Gn, K1, . . . , Kn+1} where

γ =
1 − |K 1

l |
p
− |K 1

r |
p

|G1
l |

p + |G1
r |

p +

n
i=1

|Gi|
p +

n+1
i=1

|Ki|
p

.

(In case Gl = Gr , we simply let µ(Gl) = 1− |Kl|
p
− |Kr |

p.) It follows from the Claim 1 and the choice of η that 1
c ≤ γ ≤ c for

some c > 1 and thus µ(U) ≈ |U|
p. We continue distributing the mass inside K 1

l (and K 1
r ). Denote by G2

l the rightmost gap
inside K 1

l with dist(G2
l , 0) < η|K 1

l |. Define K 2
l = [0, dist(0,G2

l )] and µ(K 2
l ) = (|K 2

l |/|K 1
l |)pµ(K 1

l ) = |K 2
l |

p. If U is one of the

2 This refers to the construction of the measure rather than construction of the set C .
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Fig. 1. The gaps and construction intervals of level one.

gaps of level one between G2
l and G1

l (resp. G2
r and G1

r ) or one of the complementary intervals of level one in between these
gaps, we put µ(U) = γ |U|

p, where γ is a constant defined so that the total measure of K 1
l (resp K 1

r ) remains unchanged.
A similar argument as in the proof of Claim 1 implies again that γ ≈ 1. We continue the construction inductively inside
K 2
l (and K 2

r ) by letting G3
l be the rightmost gap inside K 2

l for which dist(0,G3
l ) < η|K 2

l |, K 3
l = [0, dist(0,G3

l )], µ(K 3
l ) =

(|K 3
l |/|K 2

l |)pµ(K 2
l ) = |K 3

l |
p and so on. Continuing in this manner, we eventually get to define the measure of each gap and

construction interval of level one. See Fig. 1.
We proceed with the mass distribution process inside the construction intervals of level one. For such an interval I , we

consider gaps Gb
I = {Jn,i ⊂ I : In,i ∩ ∂ I ≠ ∅} and also let Gi

I consist of a dyadic sequence of gaps defined similarly as
Gi

[0,1] = Gi
1 was defined for I = [0, 1]. More precisely, if I = [a, b], for each k ≥ 2 we choose gaps J, J ′ ∈ J so that

J ∩ [a + 2−k(b − a), a + 2−k+1(b − a)] ≠ ∅ and J ′ ∩ [b − 2−k+1(b − a), b − 2−k(b − a)] ≠ ∅. Put GI = Gi
I ∪ Gb

I . We call
the elements of GI the gaps of I . Their complementary intervals inside I are called the sub-construction intervals of I . The
mass µ(I) is distributed for the gaps and construction intervals of level two inside I by the same procedure as the unit mass
was distributed for the gaps and construction intervals of level one. The only difference is, that we replace 1 = µ[0, 1] by
µ(I). We repeat this process inductively for all construction intervals of all levels. We denote by Gn the set of all gaps of
level n and by Cn the collection of construction intervals of level n. Observe that the construction intervals do not have to be
covering intervals (i.e. members of I). So most likely, Cn ≠ In and also Gn ≠ Jn even though


n Gn =


n Jn = J. Let us

further denote C =


∞

n=1 Cn.
We have nowdefined themeasure of all the gaps and construction intervals andwemay use a standardmass distribution

principle, see e.g. [15, Proposition 1.7], to define the measure µ|C . Inside the gaps the measure will be distributed in the
following manner: Let G =]a, b[∈ J. Then we let µ|G be a doubling measure on G given by a scaled version of Lemma 3.1 so
that

µ]a, a + t] = µ[b − t, b[≈


t
|G|

p

µ(G) (3.2)

for all 0 < t < b − a. By the proof of Lemma 3.1, this may be done in such a way that the doubling constant of µ|G is
independent of G ∈ J. This completes the construction of µ. To complete the proof of Theorem 1.3, we have to show that µ
is doubling and satisfies (1.1).

Our next claim follows directly from the way µ is defined.

Claim 2. Let K ∈ Cn and I ⊂ K , I ∈ Cn+1 ∪ Gn+1. Then

µ(I) ≈


|I|
|K |

p

µ(K).

If K = [a, b], then for all 0 < t < 1,

µ[a, a + t(b − a)] ≈ tpµ(K) ≈ µ[b − t(b − a), b].

Denote N = {0, 1} ∪


G∈J ∂G.

Claim 3. Suppose that I ⊂ [0, 1] is an interval with I ∩ N ≠ ∅ and let K ∈ C be the shortest construction interval containing I.
Then

µ(I) ≈


|I|
|K |

p

µ(K).

Proof of Claim 3. Denote K = [a, b] and let c > 1 be a constant from the Claim 2 so that

tpµ(K)

c|K |p
≤ µ]a, a + t], µ[b − t, b[≤

ctpµ(K)

|K |p
(3.3)

for all 0 < t < |K |. Fix ε = ε(p) > 0 so that εp
≤ 1/(2c2).

Assume first, that dist(I, {a, b}) ≥ ε|I|. Let K1, . . . , Kn be the sub-construction intervals of K intersecting I and G1, . . . ,
Gm (m ∈ {n − 1, n, n + 1}) the gaps of K intersecting I . It may happen that U \ I ≠ ∅ for some (but at most two)
U ∈ {K1, . . . , Kn,G1, . . . ,Gm}. In this case, we replace U by U ∩ I in the calculation below. As dist(I, {a, b}) ≥ ε|I|, it
follows as in the proof of Claim 1, that n,m ≤ c. Using Claim 2 and (3.2), it now follows that

µ(I) =

n
i=1

µ(Ki) +

m
j=1

µ(Gj) ≈

n
i=1


|Ki|

|K |

p

µ(K) +

m
j=1


|Gj|

|K |

p

µ(K) ≈


|I|
|K |

p

µ(K).
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Fig. 2. Illustration for the proof of Claim 4.

Suppose then that δ = dist(I, {a, b}) < ε|I|. We may assume by symmetry, that dist(a, I) < ε|I|. The claimed upper
bound now follows from Claim 2 since

µ(I) ≤ µ[a, a + 2|I|] ≈


2|I|
|K |

p

µ(K).

For the lower bound, we use (3.3) to obtain

µ(I) = µ([a, a + δ + |I|]) − µ([a, a + δ]) ≥
µ(K)

|K |p


1
c
(δ + |I|)p − cδp


≥ (|I|/|K |)p µ(K)


1
c

− cεp


& (|I|/|K |)p µ(K)

where the last estimate follows from the choice of ε. �

Now we are ready to verify (1.1). Fix J = Jn,i ∈ J, and let K be the smallest construction interval containing I = In,i. By
Claim 3, we have

µ(I) ≈


|I|
|K |

p

µ(K). (3.4)

If J is a gap of K , it follows fromClaim 2 thatµ(J) ≈ (|J|/|K |)p µ(K). Combining this with (3.4), we getµ(J)/µ(I) ≈ (|J|/|I|)p.
If J is not a gap of K , we argue as follows: Since K is the smallest construction interval containing I , there is a gap of K
intersecting I . Thus, if K ′ is the sub-construction interval of K containing J , we have I ∩ ∂K ′

≠ ∅ and consequently J ∈ Gb
K ′ .

Now, using Claim 2, we obtain

µ(J) ≈


|J|
|K ′|

p

µ(K ′) ≈


|J|
|K ′|

p 
|K ′

|

|K |

p

µ(K) =


|J|
|K |

p

µ(K)

and it follows as above that µ(J)/µ(I) ≈ (|J|/|I|)p. Whence, (1.1) follows.
It remains to show that µ is doubling on [0, 1]. For this, it is clearly enough to show that

µ(I1) ≈ µ(I2) (3.5)
if I1 and I2 are closed sub-intervals of [0, 1] with equal length and I1 ∩ I2 ≠ ∅. Let I1 and I2 be such intervals aligned from
left to right. If (I1 ∪ I2) ∩ N = ∅, then I1 ∪ I2 ⊂ G for some G ∈ G and (3.5) follows from the way µ|G was defined.

Suppose next that I1 ∩ N ≠ ∅ ≠ I2 ∩ N . Let K1 (resp. K2) be the smallest construction interval containing I1 (resp. I2).
Then K1 ⊂ K2 or K2 ⊂ K1 since I1 ∩ I2 ≠ ∅ and any two construction intervals are either disjoint or within each other. We
may assume without loss of generality, that K1 ⊂ K2.

Claim 4. If K1 ∈ Cn and K2 ∈ Cm, then n ≤ m + 3.
Proof of Claim 4. If K1 = K2, we are done, so assume K2 \ K1 ≠ ∅. Let G be the leftmost gap of K2 that intersects I2 and let
K ∈ Cm+1 be the construction interval next to G on the left-hand side. As I1 ⊂ K2 and G ∩ I1 = ∅ (otherwise K1 = K2), the
intervals K and G are well defined. Moreover, we have I1 ⊂ K . Consider the collection GK . If I1 ∩ ∪GK ≠ ∅, it follows that
K1 = K (i.e. n = m + 1) and we are done. Otherwise, there are two consecutive gaps G1,G2 ∈ GK and a sub-construction
interval of K denoted by K ′

∈ Cm+2 in between G1 and G2 so that I1 ⊂ K ′. Let us denote by a the right endpoint of G1 (= left
endpoint of K ′), by b the left endpoint of G2 (= right endpoint of K ′), and by c the right endpoint of K (= left endpoint of G),
see Fig. 2. From the way Gi

K is constructed, it follows that |a − c| < 4|b − c| and so

|K ′
| = |a − b| < 3|b − c| ≤ 3|I2| = 3|I1|.

We also know, by considering Gi
K ′ that all sub-construction intervals of K ′ have length at most |K ′

|/2 and similarly their
sub-construction intervals are shorter than |K ′

|/4 < 3
4 |I1|. Thus, |I1| cannot be contained in a construction interval of level

m + 4 and the claim follows. �
The Claims 2 and 4 now imply that µ(K1) ≈ (|K1|/|K2|)

p µ(K2). On the other hand, by Claim 3, we have µ(I1) ≈

(|I1|/|K1|)
p µ(K1) as well as µ(I2) ≈ (|I2|/|K2|)

p µ(K2). Putting these estimates together implies

µ(I1) ≈


|I1|
|K1|

p

µ(K1) ≈


|I1|
|K1|

p 
|K1|

|K2|

p

µ(K2)

=


|I2|
|K2|

p

µ(K2) ≈ µ(I2).
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Suppose finally, that only one of the intervals I1 or I2, say I2, hits N . Then I1 is a subset of a gap G =]a, b[ and δ =

dist(I1, b) ≤ |I1|. Letting I3 = I1 + δ, we haveµ(I1) ≈ µ(I3) asµ|G is doubling. On the other hand, since I3 ∩N ≠ ∅ ≠ I2 ∩N ,
and I2 ∩ I3 ≠ ∅, we already know that µ(I3) ≈ µ(I2). Combining these estimates, we get µ(I1) ≈ µ(I2). This completes the
proof of Theorem 1.3. �

It is natural to ask ifwe could drop theword ‘‘nice’’ from the assumptions in Theorems 1.3, 2.1 and 2.2 and in Corollary 2.3.
The example below shows that, at least, in Theorems 1.3 and 2.1 this is not possible. We do not know if one could remove
this assumption from Theorem 2.2.

Example 3.2. If E ⊂ R is nowhere dense and 0 < p < 1, then there is a Cantor set C ⊃ E which is (αn)-porous for some
(αn) ∉ ℓp.

Proof. We construct inductively the required intervals In,i and Jn,i that satisfy E ⊂ [0, 1] \


n,i Jn,i.
Step 1: Pick any sub-interval G ⊂ [0, 1] \ E of length ≤

1
2 so that G ∩ [

1
4 ,

3
4 ] ≠ ∅ and denote r = |G|. Choose a number

M1 ∈ N so that

M1−p
1 (r/2)p ≥ 1. (3.6)

Let J1, . . . , J2M1 be disjoint open sub-intervals of G with length δ = r/(2M1), enumerated from left to right. Define α1 =

α2 = · · · αM1 = δ. From (3.6), we get
M1

n=1 α
p
n ≥ 1. If a is the centre point of G, define I1 = {[0, a], [a, 1]}J1 = {JM1 , JM1+1},

I2 = {[0, a − δ], [a + δ, 1]}, J2 = {JM1−1, JM1+2},. . . , IM1 = {[0, a − r/2 + δ], [a + r/2 − δ, 1]}, JM1 = {J1, J2M1}.
Step m: Suppose that M1, . . . ,Mm−1 ∈ N as well as the collections Ij, Jj for 1 ≤ j ≤

m−1
k=1 Mk have been defined. We

now perform the step 1 construction inside each of the elements of Im−1
k=1 Mk

. The numberMm as well as αn for
m−1

k=1 Mk <

n ≤
m

k=1 Mk will be determined according to the smallest relative gap chosen inside the intervals I ∈ Im−1
k=1 Mk

, and we
choose the numberMm so large, thatm

k=1 Mk
n=
m−1

k=1 Mk

αp
n ≥ 1.

It is now evident from the construction, that (αn) ∉ ℓp and that the set C =


∞

j=1


Ij is (αn)-porous. �

Remark 3.3. To formally fulfil the requirement


In+1 =


In \


Jn we should add to each In+1 the boundary points of
the deleted intervals J ∈ Jn and also empty sets as their ‘‘holes’’ to Jn+1. For those readers who consider this cheating, we
suggest to modify the construction so that


In+1 =


In \


Jn holds and the resulting Cantor set C = C{In,Jn}n contains

no isolated points. It is also possible to modify the construction so that (αn) ∉


0<q<1 ℓq.

4. A lemma on (αn)-porous sets in metric spaces

For the purpose of proving results for midpoint Cantor sets in Section 5, we present here a metric space version of Wu’s
result on (αn)-porous sets being null for all doubling measures if (αn) ∉


0<p<∞

ℓp. Her argument to prove the result in R
readilyworks inmuch general situations oncewe find a reasonable definition of (αn)-porosity to use. There are basically two
options: If one wants that the covering collection consists of distinct elements, then one has to use more general covering
objects than just balls or intervals. The second option, which is more useful for us, is to relax the disjointness condition a bit
and still keep using coverings with balls. For an analogous result using the first mentioned option, see [16, Theorem 4.9].

We say that a subset E ⊂ X of a metric space X is (αn)-porous for a sequence (αn)
∞

n=1, 0 < αn < 1, if there is a constant
N ∈ N and a sequence of (finite or countably infinite) coveringsBn = {Bn,j}i of E by balls Bn,j = B(xn,j, rn,j)with the following
properties:

(P1) Each Bn,j contains a sub ball B′

n,j = B(yn,j, αnrn,j) ⊂ Bn,j \ E.
(P2) Each point x ∈ X belongs to at most N different balls B′

n,j.

It is clear that if C = C{In,Jn} ⊂ R is (αn)-porous in the sense defined in the introduction, then it is also (αn)-porous in the
sense of the above definition.

Lemma 4.1. Let X be a metric space. If (αn) ∉


0<p<∞
ℓp, and E ⊂ X is (αn)-porous, then µ(E) = 0 for all doubling measures

µ on X.

Proof. Let Bn be the coverings that fulfil the (αn)-porosity conditions (P1) and (P2) and let µ be a doubling measure on X
with doubling constant 1 < c < ∞. Without loss of generality, we may assume that E is bounded and that Bn,j ⊂ B for



M. Csörnyei, V. Suomala / J. Math. Anal. Appl. 393 (2012) 680–691 687

some fixed ball B ⊂ X . For each n, let kn be the smallest integer so that kn ≥ − log(αn) + 1. Then Bn,i ⊂ B(yn,j, 2knαnrn,j) for
all Bn,i ∈ Bn and thus the doubling condition gives

µ(E) ≤


i

µ(Bn,i) ≤ c− log(αn)+1


i

µ(B′

n,i) = c α−p
n


i

µ(B′

n,i),

where p = log c > 0. Let ε > 0. To complete the proof it suffices to find n ∈ N so that


i µ(B′

n,i) ≤ εα
p
n . But if this is not

the case, then (P2) yields

∞ > µ(B) ≥
1
N


n


i

µ(B′

n,i) > ε

∞
n=1

αp
n = ∞

giving a contradiction. �

5. Purely atomic doubling measures

5.1. On midpoint Cantor sets

In this subsection, we show how the theorems of Section 2 can be turned to theorems on atomic doubling measures for
certain class of midpoint Cantor sets.

For each Cantor set C = C{In,Jn}, we define amidpoint Cantor set M = M{In,Jn} by lettingM = C ∪J∈J{xJ}, where xJ is the
centre point of J ∈ J. If C is a middle interval Cantor set C = C(αn), we denote the corresponding midpoint Cantor set by
M(αn). We consider each suchM as a metric space, with the inherited Euclidean metric.

For these midpoint Cantor sets, we verify the following results analogous to the results obtained for doubling measures
on the real-line.

Theorem 5.1. Suppose that C = C{In,Jn} is a Cantor set and let M = M{In,Jn}. Then:

(1) If C is (αn)-porous for some (αn) ∉


0<p<∞
ℓp, then all doubling measures on M are purely atomic.

Suppose further that C is nice and let c be a constant so that Jn,i ∩ cIn,i ≠ ∅ for all In,i. If

|Jn,i| <
1 − c
3

|In,i| for all In,i (5.1)

then also the following holds:

(2) If C is (αn)-thick for some (αn) ∈


0<p<∞
ℓp, then there are doubling measures µ on M with µ(C) > 0.

(3) If C is (αn)-thick for some (αn) ∈


0<p<∞
ℓp, then there are no purely atomic doubling measures on M.

(4) If C is (αn)-porous and (αn) ∉


0<p<∞
ℓp, then there are purely atomic doubling measures on M.

(5) Finally, suppose that C is nice and (αn)-regular. Then all doubling measures on M are purely atomic if and only if (αn) ∉
0<p<∞

ℓp. There are no purely atomic doubling measures on M if and only if (αn) ∈


0<p<∞
ℓp.

Our main tool to prove Theorem 5.1 is the following lemma. We denote by δx the Dirac unit mass located at x ∈ R.

Lemma 5.2. Suppose that C = C{In,Jn} is a nice Cantor set and assume that (5.1) holds. Let M = M{In,Jn}. If µ is a doubling
measure on [inf C, sup C], we may define a doubling measure ν on M by setting ν = µ|C +


J∈J µ(J)δxJ . On the other hand, if

ν is a doubling measure on M, there is a doubling measure µ on [inf C, sup C] so that ν|C = µ|C and µ(J) = ν{xJ} for all J ∈ J.

Before starting to prove Lemma 5.2, we state a couple of auxiliary results. The first one is a direct consequence of the
doubling property.

Lemma 5.3. Let µ be a doubling measure on a metric space X and let 1 < Λ < ∞. Suppose that x, y ∈ X, d(x, y) ≤ Λr, and
1/Λ ≤ r/s ≤ Λ. Then µ(B(x, r)) ≈ µ(B(y, s)) where the constants of comparability only depend on Λ and the doubling
constant of µ.

Lemma 5.4. Under the assumptions of Lemma 5.2, there is c > 0 so that the following holds: If J, J ′ ∈ J and K is the interval
between J and J ′, then |K | ≥ c min{|J|, |J ′|}.

Proof. Let I (resp. I ′) be the smallest interval from I containing J (resp. J ′). Then I ⊂ I ′, I ′ ⊂ I or I ∩ I ′ = ∅. In any case,
J∩I ′ = ∅ or J ′∩I = ∅. Wemay assume that J ′∩I = ∅. Using (5.1), we get |K | = dist(J, J ′) ≥ dist(J, ∂ I) ≥ (1−c)|I|/2−|J| ≥

|I|(1 − c)/6 > |J|(1 − c)/6. �
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Proof of Lemma 5.2. We assume without loss of generality that inf C = 0, sup C = 1. By B(x, r) we denote the Euclidean
interval B(x, r) =]x − r, x + r[ whereas BM(x, r) = B(x, r) ∩ M , for x ∈ M .

To prove the first assertion, suppose thatµ is a doublingmeasure on [0, 1] and let ν be defined as in the lemma.We have
to verify that ν is a doublingmeasure onM . Fix x ∈ M and r > 0. If B(x, 2r)∩C = ∅, we have BM(x, r) = BM(x, 2r) = {x} and
there is nothing to prove. Proving that ν is doubling thus reduces to showing the following. If x ∈ M and B(x, 2r) ∩ C ≠ ∅,
then

ν(BM(x, 2r)) . µ(B(x, r)) and (5.2)
ν(BM(x, r)) & µ(B(x, r)). (5.3)

We may write ν(BM(x, 2r)) = µ[a, b] + ν(E), where a = inf(B(x, 2r) ∩ C), b = sup(B(x, 2r) ∩ C) and E is either empty or
contains one or two isolated points ofM . By the construction of ν, we have ν(E) ≤ µ(B(x, 4r)) and thus

ν(BM(x, 2r)) ≤ µ[a, b] + µ(B(x, 4r)) ≤ µ(B(x, 2r)) + µ(B(x, 4r))
. µ(B(x, r))

since µ is doubling. Thus (5.2) follows.
To show (5.3), assume first that B(x, r/2) ∩ C ≠ ∅. If we let a = inf(B(x, r) ∩ C), b = sup(B(x, r) ∩ C), then Lemma 5.4

implies |b − a| & r and thus

ν(BM(x, r)) ≥ ν([a, b] ∩ M) = µ[a, b] & µ(B(x, r))

by Lemma 5.3. If B(x, r/2) ∩ C = ∅, then B(x, r/2) ⊂ J for some J ∈ J with |J| ≥ r , and we have

ν(BM(x, r)) ≥ ν{x} = µ(J) & µ(B(x, r)).

Thus we have (5.3) and it follows that ν is a doubling measure onM .
To give the details for the latter claim of the lemma requires a bit more work. Consider a doubling measure ν on M .

We define µ by the following procedure: Let c > 0 be the constant of Lemma 5.4 and choose 1/(1 + c) < t < 1. For
J =]x − r, x + r[∈ J, consider its division to Whitney type sub-intervals

J+k =]x + r − (1 − t)kr, x + r − (1 − t)k+1r[,

J−k =]x − r + (1 − t)k+1r, x − r + (1 − t)kr[

for k ∈ {0, 1, 2, . . .}. Next define

mJ+k
= ν([x + r + (1 − t)k+1r, x + r + (1 − t)kr[∩M),

mJ−k
= ν(]x − r − (1 − t)kr, x − r − (1 − t)k+1r] ∩ M).

If K is one of the intervals J+k or J−k , let µ|K be uniformly distributed on K with total measure

µ(K) =
mKν{xJ}

ν

(2J ∩ M) \ {xJ}

 .
Observe that the scaling factor ν{xJ}/ν((2J ∩ M) \ {xJ}) is bounded away form 0 and ∞ as ν is doubling. Thus we have

µ(K) ≈ mK (5.4)

for all K ∈ {J+k , J−k }
∞

k=0. To complete the definition of µ, we set µ|C = ν|C .
It is now evident that µ(J) = ν{xJ} for each J ∈ J and it remains to show that µ is doubling. For this purpose, we prove

the following chain of claims. We formulate some of the claims for u2 and J+k but due to symmetry, similar claims are valid
for u1 and J−k as well.

Let J =]u1, u2[∈ J. Then
(i) For each J+k , there is y ∈ M with y − u2 ≈ |J+k | such that ν(BM(y, |J+k |)) ≈ µ(J+k ).
(ii) If K0 and K1 are two consecutive intervals among J+k , J−k , then mK0 ≈ mK1 .
(iii) µ(J+k ) ≈ µ(∪n>k J+k ).
(iv) If 0 < s < |J|/2, then ν([u2, u2 + s] ∩ M) ≈ µ[u2 − s, u2].
(v) If I is an interval with I ∩ C ≠ ∅ and κ > 1, then µ(I) ≤ c(κ, t)ν(κ I ∩ M).
(vi) If 0 < s < |J|, then µ[u2, u2 + s] ≈ ν([u2, u2 + s] ∩ M).

We now start to prove the claims (i)–(vi). Let c > 0 be the constant of Lemma 5.4. Since t > 1/(1 + c), we may choose
ϱ = ϱ(t) > 0 such that 1 − t + ϱt < c(1 − 2ϱ)t . Let K = J+k . By scaling, we may assume that (1 − t)kr = 1 so that |K | = t
and dist(K , u2) = 1 − t . Denote

K ′
= [u2 + (1 − t), u2 + 1[,

(1 − 2ϱ)K ′
= [u2 + (1 − t) + ϱt, u2 + 1 − ϱt[.
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Fig. 3. Illustration for the proof of (i).

It follows from Lemma 5.4 and the choice of t and ϱ that (1 − 2ϱ)K ′
∩ M ≠ ∅. Thus, we may choose y ∈ M so that

BM(y, ϱt) ⊂ K ′. See Fig. 3. Using the doubling property of ν, and the way µ is defined, we get

µ(K) ≈ ν(K ′
∩ M) ≥ ν(BM(y, ϱt)) & ν(BM(y, t)) ≥ ν(K ′

∩ M) ≈ µ(K).

As (1 − t) ≤ |y − u2| ≤ 1, we have |y − u2| ≈ t = |J+k | and (i) follows.
Let K0 and K1 be two consecutive intervals among {J+k , J−k }, and y0, y1 ∈ M be points given by (i). Then |y0 − y1| . |K0| ≈

|K1| and combined with (5.4) and Lemma 5.3, we get mK0 ≈ µ(K0) ≈ ν(BM(y0, |K0|)) ≈ ν(BM(y1, |K1|)) ≈ µ(K1) ≈ mK1
implying (ii).

For k = 0, 1, 2, . . . , let yk ∈ M be a point satisfying (i). Since ν is doubling, we get (using (5.4) and Lemma 5.3)

µ


∞

n=k+1

J+n


= µ[u2 −

1 − t
t

|J+k |, u2] ≈


n>k

mJ+n

= ν


[u2, u2 +

1 − t
t

|J+k |[∩M


. νBM(yk, |J+k |) ≈ µ(J+k ).

On the other hand, using (ii) we see that µ(J+k ) ≈ mJ+k
≈ mJ+k+1

≈ µ(J+k+1) ≤ µ(


∞

n=k+1 J
+
n ) and (iii) follows.

By construction, we have

µ


u2 −

1
t
|J+k |, u2


≈


n≥k

mJ+n
= ν


u2, u2 +

1
t
|J+k |


.

Combining this with (iii) yields (iv).
Let s < |J| and let K be the largest interval among {J+k } contained in [u2 − s, u2]. With the help of (i)–(iii), we see that

µ[u2 − s, u2] ≈ µ(K) ≈ mK ≤ ν([u2, u2 + s] ∩ M)

(and similarly µ[u1, u1 + s] . ν[u1 − s, u1] ∩ M). To prove (v), we apply this observation for the components of I \ C to
obtain µ(I \ C) . ν(3I ∩ M). Choosing y ∈ I ∩ C , we have

µ(I) = ν(I ∩ C) + µ(I \ C) . 2ν(3I ∩ M) . c(κ, t) ν


BM(y,

κ − 1
2

I)


≤ c(κ, t)ν(κ I ∩ M)

for each κ > 1.
To prove (vi), let v = sup C ∩ [u2, u2 + s]. Using Lemma 5.4, we may find y ∈ M and r & s so that BM(y, r) ⊂ [u2, v].

Now

ν([u2, u2 + s] ∩ M) . ν(BM(y, r)) ≤ ν([u2, v] ∩ M) = µ[u2, v] ≤ µ[u2, u2 + s].

On the other hand, we have µ[u2, v] = ν([u2, v] ∩ M) and

µ[v, u2 + s] . ν([u2, v + s] ∩ M) . ν(BM(y, r)) ≤ ν([u2, u2 + s] ∩ M)

using (v). Thus (vi) follows and we have verified all the claims (i)–(vi).
Let I1, I2 ⊂ [0, 1] be two adjacent closed intervals of the same length. To finish the proof we have to show that

µ(I1) ≈ µ(I2). (5.5)

To achieve this goal, we consider several different cases and subcases.
Case a: Both intervals I1 and I2 are contained in a gap J =]u1, u2[∈ J. Let K = {J+k , J−k : k = 0, 1, 2, . . .}.

Subcase a1: If both intervals I1 and I2 intersect at most 2 intervals of K , the estimate (5.5) follows directly from (ii).
Subcase a2: If both intervals Ii intersect at least 3 elements of K , let Ki be the largest element K ∈ K contained in Ii. Then, it
follows from (iii) and (ii) that µ(Ii) ≈ µ(Ki). On the other hand, there is at most one interval K ∈ K in between K1 and K2
and thus, using (ii) once again, we get µ(K1) ≈ µ(K2).
Subcase a3: Suppose that I1 intersects at least three sub-intervals K ∈ K whereas I2 intersects at most two of them. Again,
letting K1 be the largest element of K contained in I1, we have µ(I1) ≈ µ(K1). Now, if K2 ∈ K and K2 ∩ I2 ≠ ∅, there are at
most two intervals of K in between K1 and K2. Thus, from (ii) we getmK2 ≈ mK1 giving µ(I1) ≈ µ(I2).
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Case b: I1 is contained in a gap but I2 ∩ C ≠ ∅. We may assume by symmetry that I1 = [a, b], I2 = [b, c] (where
c − b = b − a). Let d = inf(I2 ∩ C).
Subcase b1: If d − b ≥ c − d, the claims (vi) and (iv) imply µ[b, c] ≈ µ[b, d] and from the case a and Lemma 5.3, we obtain
µ[b, d] ≈ µ[a, b].
Subcase b2: If d − b ≤ c − d, we first use the case a to get µ[a, b] ≈ µ[d − (c − d), d] and then (vi) and (iv) to conclude
µ[d − (c − d), d] ≈ µ[d, c] ≈ µ[b, c].

Case c: I1 ∩ C ≠ ∅ ≠ I2 ∩ C . By symmetry, we assume again that I1 = [a, b], I2 = [b, c], and denote r = b − a = c − b.
Let v1 = inf(I1 ∩ C), v2 = sup(I1 ∩ C), v3 = inf(I2 ∩ C), and v4 = sup(I2 ∩ C).
Subcase c1: If v2 − v1 ≥ r/2 and v4 − v3 ≥ r/2, we can find y1 ∈ M so that BM(y1, r/8) ⊂ [v1, v2] ∩ M and

µ(I1) ≥ µ[v1, v2] = ν([v1, v2] ∩ M) ≈ ν(BM(y1, r/8)).

As also µ(I1) . ν(2I1 ∩ M) by (v), 2I1 ∩ M ⊂ BM(y1, 2r), and ν is doubling, we thus get µ(I1) ≈ ν(BM(y1, r)). Re-
peating the argument for I2 yields BM(y2, r/8) ⊂ [v3, v4] ∩ M with µ(I2) ≈ ν(BM(y2, r)). Using Lemma 5.3, we get
ν(BM(y1, r)) ≈ ν(BM(y2, r)) yielding (5.5).
Subcase c2: Suppose v2 − v1 ≥ r/2 and v4 − v3 < r/2. Now, as in subcase c1, we find BM(y1, r/8) ⊂ [v1, v2] ∩ M with
µ(I1) ≈ ν(BM(y1, r)). On the other hand, letting I3 be the longer of the intervals [b, v3] and [v4, c], with the help of (i)–(iii),
we find y2 ∈ M with dist(I3, y2) . r and s ≈ r such thatµ(I3) ≈ ν(BM(y2, s)). Again, as ν is doubling we can use Lemma 5.3
to conclude that µ(I1) ≈ ν(BM(y1, r)) ≈ ν(BM(y2, s)) ≈ µ(I2) as desired.
Subcase c3: Finally, if both v2 − v1 < r/2 and v4 − v3 < r/2, we let I3 be the longer of the intervals [a, v1], [v2, b] and I4
the longer of the sub-intervals [b, v3], [v4, c]. As above, we find BM(y1, s1) and BM(y2, s2) so that µ(I1) ≈ ν(BM(y1, s1)) ≈

ν(BM(y2, s2)) ≈ µ(I2). �

Proof of Theorem 5.1. Suppose first that C is (αn)-porous as a subset of R. The Claim (1) follows from the Lemma 4.1
since C is (αn/2)-porous as a subset of M . Indeed, for each Jn,i, let xn,i = xJn,i and consider Bn,i = BM(xn,i, |In,i|) and
B′

n,i = BM(xn,i, |Jn,i|/2). Then B′

n,i ∩ B′

l,j = ∅ if (n, i) ≠ (l, j) and moreover, |Jn,i|/2 ≥ (αn/2)|In,i| for all n and i.
To prove the claims (2)–(4), we use Lemma 5.2. Then (2) follows from Theorem 2.2, (3) from the result of Staples and

Ward [5, Theorem 1.4], and (4) from Theorem 2.1. Finally, (5) follows putting (1)–(4) together. �

Remarks 5.5. (a) Our choice to put one isolated point in themiddle of each gap is somewhat arbitrary. The Theorem5.1 (and
Lemma 5.2) holds true for many other choices of (collections) of isolated points as well. For instance, instead of choosing
the middle point of each J ∈ J, one could consider a Whitney decomposition WJ of J and choose all the midpoints of the
elements of WJ to be the collection of isolated points inside J . Doubling measures on this kind of Whitney modification sets
have been considered in [10], and [11].
(b) In many situations, the technical assumption (5.1) (used only to prove Lemma 5.4) may be omitted. For the middle
interval midpoint setsM(αn), for instance, the claims (2)–(4) in Theorem 5.1 hold also without this assumption.

Kaufman and Wu [10] have posed the following problem: Does there exist a compact set X ⊂ R with X = FX and a
doubling measure ν on X so that ν|EX is a doubling measure on EX? Recall that FX is the set of isolated points of X and
EX = X \ FX . The following example yields a positive answer to their question.

Example 5.6. Let (αn) ∈ ℓ1, X = M(αn), C = C(αn), µ = L|[0,1], and let ν be a doubling measure on X given by Lemma 5.2.
Then FX = ∪J∈J{xJ}, EX = C , and X = FX . Moreover, it is easy to see that ν|C = L|C is a doubling measure on C since there
exists c = c(αn) so that L(C ∩ (x − r, x + r)) > cr for all x ∈ C and 0 < r < 1.

5.2. On sets with positive Lebesgue measure

To complete the discussion on purely atomic doubling measures, we answer a question posed by Lou et al. in [14]. As
observed by Wu [3, Example 1], see also Lou et al. [14, Theorem 1], it is possible to construct compact sets X ⊂ [0, 1] with
Hausdorff dimension one so that all doubling measures on X are purely atomic. The examples of Wu [3] and Lou et al. [14]
are countable unions of self-similar Cantor sets whose dimensions gets closer and closer to one. Another, more direct, way
to obtain such a set is given by Theorem 5.1: Choosing X = M(αn) for any sequence (αn) ∉


0<p<∞

ℓp such that

lim
n→∞

log


n
k=1

(1 − αk)


n

= 0 (5.6)

will do. Note that (5.6) always holds if limn→∞ αn = 0. It was asked by Lou et al. [14] whether there are compact sets X ⊂ R
with positive Lebesgue measure so that all doubling measures µ on X are purely atomic. The answer is negative.

Proposition 5.7. If X ⊂ R is compact and L(X) > 0, there are doubling measures on X with nontrivial continuous part.
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Proof. The claim is a direct consequence of the results of Vol’berg and Konyagin [17], see also [1, Section 13]. For subsets of
Rn, they proved the existence of n-homogeneous measures. In our case this gives a constant c < ∞ and a measure µ on X
so that

µ(B(x, λr)) ≤ cλµ(B(x, r)) for all x ∈ X, λ ≥ 1, and r > 0.

Putting λ = 1/r , it follows that cµ(B(x, r)) ≥ r for all x ∈ X and 0 < r < 1. Now we may define ν = µ + L|X . If c ′ is the
doubling constant of µ, it follows that for all x ∈ X and 0 < r < 1,

ν(B(x, 2r)) = µ(B(x, 2r)) + L(X ∩ B(x, 2r)) ≤ µ(B(x, 2r)) + 2r
≤ (c ′

+ 2c)µ(B(x, r)) ≤ (c ′
+ 2c)ν(B(x, r))

so ν is a doubling measure on X . As L(X) > 0, it follows that ν has a nontrivial (absolutely) continuous part. �

Remark 5.8. While this paper was in preparation, there has been some independent research on the topics of the last
section. Wang and Wen [18] have constructed a set X with the same properties as in Example 5.6 and Lou and Wu [19]
have also observed that Proposition 5.7 follows from the above mentioned result of Vol’berg and Konyagin.
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