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Abstract

To each polynomial ϕ ∈ F[x, y, z] is associated a Poisson structure on F3, a surface and a Poisson
structure on this surface. When ϕ is weight homogeneous with an isolated singularity, we determine
the Poisson cohomology and homology of the two Poisson varieties obtained.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The first Poisson structures appeared in classical mechanics. In 1809, D. Poisson intro-
duced a bracket of functions, given by:

{f,g} =
r∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)
, (1)

for two smooth functions f,g on R2r . It permits one to write the Hamilton’s equations
as differential equations, where positions (qi ) and impulsions (pi ) play symmetric roles.
Indeed, denoting by H the total energy of the system, these equations become:

q̇i = {qi,H }, ṗi = {pi,H }, 1 � i � r.

D. Poisson also pointed out that if f and g are constants of motion, then {f,g} is also a
constant of motion and this phenomenon was explained in 1839 by C. Jacobi, who proved
that (1) satisfies what is now called the Jacobi identity:{{f,g}, h} + {{g,h}, f } + {{h,f }, g} = 0. (2)

This important identity leads to the definition of a Poisson algebra as an algebra B equipped
with a skew-symmetric biderivation {·,·}, satisfying (2), for all f,g,h, elements of B. Said
differently, a Poisson algebra is a Lie algebra (B, {·,·}), where {·,·} satisfies the Leibniz
rule {fg,h} = f {g,h} + {f,h}g, for all f,g,h ∈ B. One talks about a Poisson variety,
when its algebra of functions is equipped with a Poisson structure. This notion generalizes
the notion of symplectic manifold.

For a given Poisson algebra (B, {·,·}), one defines a cohomology, called Poisson coho-
mology, introduced by A. Lichnerowicz in [11]; see also [9] for an algebraic approach.
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The cochains are the skew-symmetric multi-derivations of A and the coboundary operator
is −[π,·]S , where π := {·,·} is the Poisson bracket and [·,·]S is the Schouten bracket. The
resulting Poisson complex, defined in detail in Section 2.1, can be viewed as the contravari-
ant version of the de Rham complex. Its cohomology gives very interesting information
about the Poisson structure, as for small k, the kth Poisson cohomology space Hk(B,π)

has the following interpretation:

H 0(B,π) = {Casimir functions} := {
f ∈ B | {f ,·} = 0

}
,

H 1(B,π) = {Poisson derivations}
{Hamiltonian derivations} ,

H 2(B,π) = {skew-symmetric biderivations compatible with π}
{Lie derivatives of π} ,

H 3(B,π) = {obstructions to deformations of Poisson structures}.

Moreover, H 2(B,π) is fundamental in the study of normal forms of Poisson structures
(see [4]). We also denote by Cas(B,π) the space of all Casimir functions of (B, {·,·})
(that is to say H 0(B,π)) and we point out that each Hk(B,π) is a Cas(B,π)-module in a
natural way.

To determine the Poisson cohomology of a given Poisson algebra explicitly is, in gen-
eral, difficult. One of the reasons seems to be that Poisson cohomology is not a functor:
a morphism π :A1 → A2 between Poisson algebras does not lead to a morphism between
their cochains (multi-derivations), nor between their corresponding Poisson cohomology
groups. In a few specific cases, Poisson cohomology has been determined. For a symplectic
manifold, there exists a natural isomorphism between Poisson and de Rham cohomology
(see [11]). In [19,22], one finds some partial results about the case of regular Poisson mani-
folds, while, for Poisson–Lie groups, one can refer to [7]. Finally, the Poisson cohomology
in dimension two was computed in the germified and algebraic cases in [13,16]. See also
[6,14,15].

Our purpose is to determine the Poisson cohomology of two classes of Poisson vari-
eties, intimately linked. The first class is composed of the singular surfaces Fϕ : {ϕ = 0}
in F3 (F is a field of characteristic zero) that are defined by the zeros of polynomials
ϕ ∈ F[x, y, z] and the second one is the class of the Poisson varieties that are the am-
bient space F3, equipped with Poisson structures associated to each ϕ. It means that we
consider Poisson structures on the algebras of regular functions on Fϕ and F3, given by
Aϕ := F[x, y, z]/〈ϕ〉 and A := F[x, y, z] and that we determine the Poisson cohomology
of the Poisson algebras obtained.

We point out that the dimension three is the first one in which there is a real condition
for a biderivation to be a Poisson biderivation. The Jacobi identity is indeed trivial in di-
mension two and every polynomial ψ ∈ F[x, y] leads to a Poisson structure on the affine
space F[x, y], given by ψ ∂

∂x
∧ ∂

∂y
. One can consider the singular locus of such a struc-

ture, given by Γψ : {ψ = 0}. In [16], the authors determine the dimensions of the Poisson
cohomology spaces, when ψ is a homogeneous polynomial. They observe that these di-
mensions are linked to the type of the singularity of Γψ . Conversely, in our context, we
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consider a surface Fϕ , with a singularity, and a Poisson bracket that do not bring other
singularities. That is to say, this Poisson structure is symplectic everywhere except on the
singularities of Fϕ . In fact, it will be the restriction of a Poisson structure {·,·}ϕ on F3,
which is completely defined by the brackets:

{x, y}ϕ = ∂ϕ

∂z
, {y, z}ϕ = ∂ϕ

∂x
, {z, x}ϕ = ∂ϕ

∂y
(ϕ ∈ A). (3)

We suppose that Fϕ has only one weight homogeneous isolated singularity (at the origin).
In fact, the hypothesis is that ϕ is a weight homogeneous polynomial with an isolated
singularity.

An other way to approach our context is to consider the Poisson structures on A that
admit a weight homogeneous Casimir and a singular locus reduced to the origin. That
leads to study the Poisson structures of the form {·,·}ϕ , with ϕ weight homogeneous with
an isolated singularity. As ϕ is a Casimir for this structure, 〈ϕ〉 is a Poisson ideal of the
Poisson algebra (A, {·,·}ϕ). This implies that {·,·}ϕ goes down to the quotient algebra
Aϕ = F[x, y, z]/〈ϕ〉. The singular surface Fϕ is then the union of a symplectic leave of
{·,·}ϕ and the origin.

For each ϕ ∈ A weight homogeneous with an isolated singularity, what we determine
is the Poisson cohomology of both the Poisson algebras introduced. Moreover, we turn
these results to good account to give the Poisson homology of these algebras. The Pois-
son cohomology spaces are respectively denoted by Hk(A, ϕ) for (A, {·,·}ϕ) and Hk(Aϕ)

for the singular surface, while the Poisson homology spaces are denoted by Hk(A, ϕ)

and Hk(Aϕ).
To develop a first idea about our results, one may think of ϕ as a homogeneous poly-

nomial, of degree denoted by �(ϕ), such that its three partial derivatives have only one
common zero that is the origin. This implies that

Asing := A
/〈

∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
is a finite-dimensional F-vector space. Its dimension is the so-called Milnor number μ

(see [12]). This space gives information about the (isolated) singularity of the surface Fϕ

(like multiplicity, see also [3]) as it is exactly the algebra of regular functions on this sin-
gularity. It plays an important role in the Poisson cohomology of the algebra (A, {·,·}ϕ),
so that this Poisson cohomology is closely related to the type of the singularity of Fϕ . We
consider a family u0 = 1, u1, . . . , uμ−1 of homogeneous elements of A, whose images in
Asing give a F-basis of this F-vector space.

The algebra of Casimir functions of the algebra (A, {·,·}ϕ) is given in Proposition 4.2
and is simply the algebra generated by ϕ, that is to say Cas(A, ϕ) = H 0(A, ϕ) �⊕

i∈N Fϕi . In Proposition 4.5, we see that the first Poisson cohomology space of A is equal
to zero if the degree of ϕ, �(ϕ), is equal to 3 and otherwise H 1(A, ϕ) is the Cas(A, ϕ)-
module given by

H 1(A, ϕ) � Cas(A, ϕ)�e,
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where �e := (x, y, z) corresponds to the Euler derivation x ∂
∂x

+ y ∂
∂y

+ z ∂
∂z

. Notice that
the cubic polynomials play a special role here; in the weight homogeneous case, this
role is played by the polynomials of degree the sum of the weights of the three variables
x, y, z. Moreover, with Proposition 4.8, we see that the case �(ϕ) = 3 is also the unique
case where the biderivation {·,·}ϕ is not an exact Poisson structure, i.e., {·,·}ϕ , which is
a 2-cocycle of the Poisson cohomology of (A, {·,·}ϕ), is not a 2-coboundary (see [9]).
Proposition 4.8 affirms indeed that the second Poisson cohomology space is exactly

H 2(A, ϕ) �
⊕
j�1

�(uj ) 	=�(ϕ)−3

Cas(A, ϕ) �∇uj ⊕
⊕

�(uj )=�(ϕ)−3

Cas(A, ϕ)uj
�∇ϕ

⊕
⊕
j�1

�(uj )=�(ϕ)−3

F �∇uj .

This writing has been obtained from the third Poisson cohomology space, which is deter-
mined in Proposition 4.7, and is exactly the free Cas(A, ϕ)-module

H 3(A, ϕ) � Cas(A, ϕ) ⊗F Asing.

It may be remarked that H 2(A, ϕ) is the unique Poisson cohomology space of (A, {·,·}ϕ)

which is not always a free module over the algebra of Casimirs.
In Chapter 5, we give the Poisson cohomology spaces of the singular surface Fϕ , by

considering the algebra Aϕ . For this Poisson algebra, the Casimirs are simply the elements
of F and, according to Propositions 5.5 and 5.6, we have:

H 1(Aϕ) �
⊕

�(uj )=�(ϕ)−3

Fuj �e, H 2(Aϕ) �
⊕

�(uj )=�(ϕ)−3

Fuj
�∇ϕ.

Finally, in Chapter 6, we determine the Poisson homology of the algebra (F3, {·,·}ϕ) and
of the singular surface Fϕ . We explain first, in Proposition 6.1, that we have isomorphisms

Hk(A, ϕ) � H 3−k(A, ϕ), for all k = 0,1,2,3.

Then, using the results about Poisson cohomology of (A, {·,·}ϕ), we compute the Poisson
homology spaces of Fϕ and we obtain, in Proposition 6.5,

H0(Aϕ) � H2(Aϕ) � Asing; H1(Aϕ) �
μ−1⊕
j=1

F �∇uj .

Since the coboundary operator is a weight homogeneous operator (see Section 2.2),
all our arguments remain true if we replace the algebra A = F[x, y, z] by the algebra of
all formal power series Ā := F [[x, y, z]], still equipped with the Poisson structure {·,·}ϕ ,
with ϕ a weight homogeneous element of A. It suffices to replace Cas(A, ϕ) = F[ϕ] by
Cas(Ā, ϕ) = F[[ϕ]], the algebra of formal power series in ϕ.
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2. The Poisson cohomology complex associated to a polynomial

2.1. Poisson structures on A = F[x, y, z] and their cohomology

Let A be the polynomial algebra A = F[x, y, z], where F is a field of characteristic zero
and let ϕ ∈ A. A Poisson structure on A is defined by the brackets:

{x, y}ϕ = ∂ϕ

∂z
, {y, z}ϕ = ∂ϕ

∂x
, {z, x}ϕ = ∂ϕ

∂y
. (4)

Recall that a Poisson bracket on an associative and commutative algebra B is a skew-
symmetric bilinear map {·,·}, from B2 to B (element of Hom(∧2B,B)), which is a deriva-
tion in each of its arguments and which satisfies the Jacobi identity:{{f,g}, h} + {{g,h}, f } + {{h,f }, g} = 0, (5)

for each f,g,h ∈ B. In the particular case of A, the brackets of the generators x, y, z define
totally the Poisson bracket, in view of the derivation property, and moreover the Jacobi
identity is satisfied for all f,g,h ∈ A if and only if it is satisfied for x, y, z (see [21]).
Here, an easy computation shows that this condition is satisfied by the bracket {·,·}ϕ so
that it equips A with a Poisson structure, explicitly given by:

{·,·}ϕ = ∂ϕ

∂z

∂

∂x
∧ ∂

∂y
+ ∂ϕ

∂x

∂

∂y
∧ ∂

∂z
+ ∂ϕ

∂y

∂

∂z
∧ ∂

∂x
. (6)

Our first purpose is to determine the Poisson cohomology of this Poisson algebra
(A, {·,·}ϕ) when ϕ is a weight homogeneous polynomial with an isolated singularity at
the origin.

We recall that the Poisson complex is constructed in the following way (see [4] and [10]
for details). First, the k-cochains of the Poisson complex of (A, {·,·}ϕ) are the skew-
symmetric k-derivations of A (i.e., the skew-symmetric k-linear maps Ak → A that are
derivations in each of their arguments). We denote by Xk(A) the A-module of all skew-
symmetric k-derivations of A and the elements of the A-module X∗(A) = ⊕

k∈N Xk(A)

are called skew-symmetric multi-derivations of A. By convention, the A-module of the
0-derivations of A is X0(A) = A.

The Poisson coboundary operator δk
ϕ :Xk(A) → Xk+1(A) is defined, for an element

Q ∈ Xk(A), by:

δk
ϕ(Q)(f0, . . . , fk) :=

k∑
i=0

(−1)i
{
fi,Q(f0, . . . , f̂i , . . . , fk)

}
ϕ

+
∑

(−1)i+jQ
({fi, fj }ϕ, f0, . . . , f̂i , . . . , f̂j , . . . , fk

)
, (7)
0�i<j�k
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where the symbol f̂i , means that we omit the term fi . It is easy to see that δk
ϕ(Q)

is indeed a skew-symmetric (k + 1)-derivation while the fact that δk+1
ϕ ◦ δk

ϕ = 0 is an
easy consequence of the Jacobi identity (5). The cohomology of this complex is called
the Poisson cohomology of (A, {·,·}ϕ). We denote by Zk(A, ϕ), respectively Bk(A, ϕ),
the vector space of all k-cocycles, respectively of all k-coboundaries, and we denote by
Hk(A, ϕ) := Zk(A, ϕ)/Bk(A, ϕ), the kth cohomology space. As the space H 0(A, ϕ) is
exactly the F-vector space of the Casimirs of {·,·}ϕ (i.e., the elements that belong to
the center of this bracket), we will also denote this space by Cas(A, ϕ). Notice that, if
ψ ∈ Cas(A, ϕ), the operator δϕ commutes with the multiplication by ψ . This implies that
each of the Poisson cohomology spaces Hk(A, ϕ) is a Cas(A, ϕ)-module.

In the case of the polynomial algebra A = F[x, y, z], we have:

X0(A) � X3(A) � A, X1(A) � X2(A) � A3, (8)

and Xk(A) � {0}, for k � 4. We choose these natural isomorphisms as follows:

X1(A) → A3, X2(A) →A,

V �→ (
V [x],V [y],V [z]), V �→ (

V [y, z],V [z, x],V [x, y]),
and X3(A) → A :V �→ (V [x, y, z]).

The elements of A3 are viewed as vector-valued functions on A, so we denote them with
an arrow, like �f ∈ A3. Sometimes, it will be important to distinguish A3 � X1(A) from
A3 � X2(A); then we will rather write �f ∈ X1(A) or �f ∈ X2(A). In A3, let ·,× denote
respectively the usual inner and cross products, while �∇ , �∇×,Div denote respectively the
gradient, the curl and the divergence operators. For example, with these notations and the
above isomorphisms, the skew-symmetric biderivation {·,·}ϕ (defined in (6)) is identified
with the element �∇ϕ of A3.

Each of the Poisson coboundary operators δk
ϕ , given in (7), can now be written in a

compact form:

δ0
ϕ(f ) = �∇f × �∇ϕ, for f ∈A � X0(A),

δ1
ϕ( �f ) = −�∇( �f · �∇ϕ) + Div( �f ) �∇ϕ, for �f ∈A3 � X1(A),

δ2
ϕ( �f ) = −�∇ϕ · ( �∇ × �f ) = −Div( �f × �∇ϕ), for �f ∈A3 � X2(A), (9)

and the Poisson cohomology spaces of (A, {·,·}ϕ) take the following forms

H 0(A, ϕ) = Cas(A, ϕ) � {f ∈A | �∇f × �∇ϕ = �0},
H 1(A, ϕ) � { �f ∈ A3 | − �∇( �f · �∇ϕ) + Div( �f ) �∇ϕ = �0}

{ �∇f × �∇ϕ | f ∈A} ,

H 2(A, ϕ) � { �f ∈ A3 | �∇ϕ · ( �∇ × �f ) = 0}
� � � � � � 3

,
{−∇(f · ∇ϕ) + Div(f )∇ϕ | f ∈ A }
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H 3(A, ϕ) � A
{ �∇ϕ · ( �∇ × �f ) | �f ∈A3} .

In order to compute these cohomology spaces, we will often use, for �f , �g, �h ∈ A3 and
f ∈ A, the following formulas, well known from vector calculus in R3:

�∇ × (f �g ) = �∇f × �g + f ( �∇ × �g ), (10)

Div(f �g ) = �∇f · �g + f Div(�g ), (11)

Div( �f × �g ) = ( �∇ × �f ) · �g − �f · ( �∇ × �g ). (12)

2.2. Weight homogeneous multi-derivations

As we said, our results concern weight homogeneous Poisson structures on A.
A nonzero multi-derivation P ∈ X∗(A) is said to be weight homogeneous of (weighted)
degree r ∈ Z, if there exist positive integers �1,�2,�3 ∈ N∗ (the weights of the variables
x, y, z), without a common divisor, such that L�e�

[P ] = rP , where L�e�
is the Lie deriva-

tive with respect to the (weight homogeneous) Euler derivation �e� = �1x
∂
∂x

+ �2y
∂
∂y

+
�3z

∂
∂z

. The degree of a weight homogeneous multi-derivation P ∈ X∗(A) is also denoted
by �(P ) ∈ Z. For f ∈ A, it amounts to the usual (weighted) degree of a polynomial. No-
tice that the degree of a nonzero k-derivation may be negative for k > 0. By convention,
the zero k-derivation is weight homogeneous of degree −∞.

The Euler derivation �e� is identified, with the isomorphisms given in Section 2.1, to
the element �e� = (�1x,�2y,�3z) ∈ A3. We denote by |� | the sum of the weights �1 +
�2 + �3, so that |� | = Div(�e� ). Euler’s formula for a weight homogeneous f ∈A,

�∇f · �e� = �(f )f, (13)

then yields, using (11):

Div(f �e� ) = (
�(f ) + |� |)f. (14)

Fixing weights �1,�2,�3 ∈ N∗, it is clear that A = ⊕
i∈N Ai , where A0 = F and

for i ∈ N∗, Ai is the F-vector space generated by all weight homogeneous polynomials
of degree i. Denoting by Xk(A)i the F-vector space given by Xk(A)i := {P ∈ Xk(A) |
�(P ) = i} ∪ {0}, we have the following isomorphisms:

X0(A)i � Ai ,

X1(A)i � Ai+�1 ×Ai+�2 ×Ai+�3,

X2(A)i � Ai+�2+�3 ×Ai+�1+�3 ×Ai+�1+�2,

X3(A)i � Ai+�1+�2+�3 . (15)

Notice that even if X1(A) � X2(A) and X0(A) � X3(A), these isomorphisms do not re-
spect the weight decompositions (15).
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One of our purposes is to determine the Poisson cohomology of (A, {·,·}ϕ) when ϕ ∈A
is weight homogeneous with an isolated singularity. The weight homogeneity of ϕ will be
essential for the computation of these spaces. It implies indeed, among other things, that
each of the coboundary operators δk

ϕ is weight homogeneous of the same degree N� :=
�(ϕ) − |� |, as can be seen from (9). That is to say, we have:

P ∈ Xk(A)i ⇒ δk
ϕ(P ) ∈ Xk+1(A)i+N� .

If P ∈ Xk(A) is a cocycle, then each of its weight homogeneous components will be a
cocycle. In the same way, if P ∈ Xk(A) is a coboundary then each of its weight homoge-
neous components will be a coboundary. Moreover, if P ∈ Xk(A) is a weight homogeneous
coboundary, it is the coboundary of a weight homogeneous element in Xk−1(A).

3. Isolated singularities and the Koszul complex

In the next chapters, we will study the Poisson cohomology associated to a weight
homogeneous polynomial ϕ ∈ A = F[x, y, z] (with char(F) = 0). As ϕ will be supposed
to have isolated singularities, we will, in this part, recall some results about this notion, see
[17,18] for proofs.

Algebraically, we say that a weight homogeneous element ϕ of F[x, y, z] has an isolated
singularity (at the origin) if

Asing := F[x, y, z]
/〈

∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉
(16)

is finite dimensional, as a F-vector space. The dimension of Asing is then called the Milnor
number of the singular point. When F = C, this amounts, geometrically, to saying that the
surface Fϕ : {ϕ = 0} has a singular point only at the origin.

Remark 3.1. By definition, Asing is exactly the F-algebra of regular functions of the affine
variety { ∂ϕ

∂x
= ∂ϕ

∂y
= ∂ϕ

∂z
= 0} which is the singular locus of the Poisson structure {·,·}ϕ

(as can be seen from (4)). This algebra Asing will play an important role in the Poisson
cohomology of the algebras (A, {·,·}ϕ) and (Aϕ, {·,·}Aϕ

).

Now, with the Cohen–Macaulay theorem, we will see that, if ϕ ∈ A is a weight homo-
geneous polynomial with an isolated singularity (what we will denote by w.h.i.s.), then
the sequence of its partial derivatives ∂ϕ

∂x
,

∂ϕ
∂y

,
∂ϕ
∂z

will be a regular sequence of A. In order
to explain that, we first have to write down the definition of a homogeneous system of
parameters of an algebra.

Definition 3.2. Let A be an associative and commutative graded F-algebra. A system
of homogeneous elements F1, . . . ,Fd in A, where d is the Krull dimension of A, is
called a homogeneous system of parameters of A (h.s.o.p.) if A/〈F1, . . . ,Fd〉 is a finite-
dimensional F-vector space.
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For example, if we consider the F-algebra A = F[x, y, z], which is graded by the
weighted degree, we have a natural h.s.o.p. given by the system x, y, z. Moreover, we have
seen above that a weight homogeneous element ϕ ∈ A has an isolated singularity (that is
to say is w.h.i.s.) if and only if the three partial derivatives ∂ϕ

∂x
,

∂ϕ
∂y

,
∂ϕ
∂z

give a h.s.o.p. of A.
In order to understand the following theorem, that we will need, we still have to give

the definition of a regular sequence.

Definition 3.3. A sequence a1, . . . , an in a commutative associative algebra A is said to be
a A-regular sequence if 〈a1, . . . , an〉 	= A and ai is not a zero divisor of A/〈a1, . . . , ai−1〉
for i = 1,2, . . . , n.

For example, it is clear that the sequence x, y, z is a regular sequence in F[x, y, z]. But,
what about ∂ϕ

∂x
,

∂ϕ
∂y

,
∂ϕ
∂z

, when ϕ is w.h.i.s.?

Theorem 3.4 (Cohen–Macaulay). Let A be a Noetherian graded F-algebra. If A has a
h.s.o.p. which is a regular sequence, then any h.s.o.p. in A is a regular sequence.

Thus, when ϕ ∈ F[x, y, z] is w.h.i.s., then ∂ϕ
∂x

,
∂ϕ
∂y

,
∂ϕ
∂z

is a regular sequence. This is the
key fact which leads to the following proposition, that will play a fundamental role in our
computations of Poisson cohomology, associated to a polynomial.

Proposition 3.5. For any ϕ ∈A the following diagram

F A

�∇

A3

�∇×

0 A
�∇ϕ

�∇

A3
×�∇ϕ

�∇×

A3
· �∇ϕ

Div

A

A
�∇ϕ

�∇

A3
×�∇ϕ

�∇×

A3
· �∇ϕ

Div

A

A
�∇ϕ

A3
×�∇ϕ

A3
· �∇ϕ

A

is commutative and has exact columns. If ϕ is w.h.i.s. then the rows of this diagram are
also exact.

Remark 3.6. If ϕ ∈ A is weight homogeneous, then, as maps from Xk(A) to Xk−1(A),
each of the vertical arrows is weight homogeneous of degree zero, while each of the hori-
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zontal arrows is weight homogeneous of degree �(ϕ), the (weighted) degree of ϕ, leading
to:

X3(A)r

�∇ϕ

�∇

X2(A)r+�(ϕ)

�∇×

X3(A)r−�(ϕ)

�∇ϕ

�∇

X2(A)r
×�∇ϕ

�∇×

X1(A)r+�(ϕ)

· �∇ϕ

Div

X0(A)r+2�(ϕ)

X2(A)r−�(ϕ)

×�∇ϕ

X1(A)r
· �∇ϕ

X0(A)r+�(ϕ)

Proof. Each column of this diagram is easily interpreted as the de Rham complex of A.
The classical argument of exactness of the de Rham complex of C∞(Rn) is easily adapted
to the algebraic case: if �f = (f1, f2, f3) ∈A3 is composed of three homogeneous polyno-
mials of degree d then Div( �f ) = 0 implies that the first component of �∇ × ( �f × �e ) is equal
to ( �∇ × ( �f × �e ))1 = 2f1 + �∇f1 · �e−x Div( �f ) = (d +2)f1, in view of Euler’s formula (13)
(�e is the Euler derivation (x, y, z) ∈ A3, that is to say �e� , with �1 = �2 = �3 = 1), so
that �f = 1

d+2
�∇ × ( �f × �e ). Similarly, �∇ × �f = �0 implies that ( �∇( �f · �e ))1 = f1 + �∇f1 · �e =

(d + 1)f1, that lieds to �f = 1
d+1

�∇( �f · �e ), according again to Euler’s formula.
Each of the rows of the diagram represents (part of) the so-called Koszul complex.

Let us prove that the Koszul complex, associated to ϕ ∈ A is exact, when ϕ is w.h.i.s. If
�f = (f1, f2, f3) ∈A3 satisfies the equation �f × �∇ϕ = �0, then we have three equalities like
f1

∂ϕ
∂y

− f2
∂ϕ
∂x

= 0. Since the partial derivatives of ϕ form a regular sequence, ∂ϕ
∂y

is not a

zero divisor in A/〈 ∂ϕ
∂x

〉, so there exists α ∈ A such that f1 = α
∂ϕ
∂x

and then f2 = α
∂ϕ
∂y

. The

other equations imply that f3 = α
∂ϕ
∂z

, that is to say �f = α �∇ϕ. For the second part of the
exactitude of the Koszul complex, the reasoning is exactly of the same kind. �
Remark 3.7. If ϕ ∈ A is a weight homogeneous polynomial without square factor then

the first part of the Koszul complex A
�∇ϕ−→ A3 ×�∇ϕ−→ A3 is exact, but the second part

A3 ×�∇ϕ−→ A3 · �∇ϕ−→ A need not be exact if ϕ is not w.h.i.s. For example, let ϕ = xyz ∈ A.
The polynomial ϕ is square free but the origin is not an isolated singularity for ϕ. Then,
the element �f = (x, y,−2z) ∈ A satisfies the equation �f · �∇ϕ = �0 but, by an argument of
degree, there is no element �g ∈A3 such that �f = �g × �∇ϕ.

We will often apply Proposition 3.5 directly but sometimes, we will use it in terms of
the following corollary.

Corollary 3.8. Let ϕ ∈ A be w.h.i.s. and let �h ∈ A3. If ( �∇ × �h) · �∇ϕ = 0 then there exist
f,g ∈A such that �h = �∇f + g �∇ϕ.
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Proof. According to the diagram in Remark 3.6, the operator �h �→ ( �∇ × �h) · �∇ϕ, consid-
ered as a map between X2(A) and X0(A), is a weight homogeneous operator of degree
�(ϕ). Therefore, it suffices to prove the result for an element �h ∈ X2(A)r , with r ∈ Z. If
( �∇ × �h) · �∇ϕ = 0 then, by Proposition 3.5, there exists �k ∈ A3 such that �∇ × �h = �k × �∇ϕ.
In view of Remark 3.6, �k can be chosen in X2(A)r−�(ϕ). Summarizing, we have to prove
that an equation of the type:

�∇ × �h = �k × �∇ϕ, �h ∈ X2(A)r , �k ∈ X2(A)r−�(ϕ) (17)

implies that �h = �∇f + g �∇ϕ, with f,g ∈A.
We will do this by induction on r ∈ Z, by proving the result directly for all r < �(ϕ) −

� [2], with � [2] := max{�1 + �2,�1 + �3,�2 + �3}, where the integers �1,�2,�3
are the weights of the variables x, y, z.

If r < �(ϕ) − � [2] then, according to the decompositions in (15), X2(A)r−�(ϕ) = {0}
so that the equality (17) leads to �∇ × �h = �0. Using Proposition 3.5, we obtain �h = �∇f ,
with f ∈ A as required.

Let r ′ � �(ϕ)−� [2] and assume that (17) implies, for all r < r ′, the existence f,g ∈ A
such that �h = �∇f + g �∇ϕ. Let us suppose that an element �l ∈ X2(A)r ′ satisfies an equation
like in (17), namely, suppose that there exists �h ∈ X2(A)r ′−�(ϕ) such that

�∇ × �l = �h × �∇ϕ. (18)

Then, �h satisfies (17), with r = r ′ − �(ϕ). Indeed, computing the divergence of both
summands of (18) gives ( �∇ × �h) · �∇ϕ = 0 and using Proposition 3.5 once again leads to
the existence of �k ∈ X2(A)r ′−2�(ϕ) such that we have �∇ × �h = �k × �∇ϕ. By induction
hypothesis, there exist f,g ∈ A such that �h = �∇f + g �∇ϕ. Then, using formula (10), we
obtain �∇ × �l = �h × �∇ϕ = �∇f × �∇ϕ = �∇ × (f �∇ϕ).

We can now conclude with Proposition 3.5 that there exists f ′ ∈ A such that �l −f �∇ϕ =
�∇f ′. Hence the result. �
Remark 3.9. As Z2(A, ϕ) = {�h ∈A3 | ( �∇ × �h) · �∇ϕ = 0}, Corollary 3.8 leads to the equal-
ity

Z2(A, ϕ) = { �∇f + g �∇ϕ | f,g ∈ A}.
This identity will be useful when we will determine H 2(A, ϕ) in Section 4.4.

4. Poisson cohomology associated to a weight homogeneous polynomial with an
isolated singularity

Let us consider the polynomial algebra A = F[x, y, z] (char(F) = 0), equipped with the
Poisson structure {·,·}ϕ , where ϕ ∈ A is w.h.i.s. (weight homogeneous polynomial with an
isolated singularity). We determine the Poisson cohomology spaces of the Poisson algebra
(A, {·,·}ϕ).
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Remark 4.1. If ϕ ∈ A is w.h.i.s. then �(ϕ) − �i > 0, for i = 1,2,3 (where �(ϕ) is still
the (weighted) degree of ϕ and �1,�2,�3 are the weights of the variables x, y, z), and in
particular, �(ϕ) > 1.

4.1. The space H 0(A, ϕ)

A precise description of the 0th Poisson cohomology space, which is also the algebra of
the Casimirs, is given in the following proposition.

Proposition 4.2. If ϕ ∈ A is w.h.i.s. then the zeroth Poisson cohomology space of (A, {·,·}ϕ)

is given by

H 0(A, ϕ) = Cas(A, ϕ) �
⊕
i∈N

Fϕi.

Proof. Let f ∈ A − {0} be a weight homogeneous 0-cocycle, thus satisfying δ0
ϕ(f ) =

�∇f × �∇ϕ = �0. Write f as f = hϕr , where r ∈ N and where h ∈ A− {0} is a polynomial
that is not divisible by ϕ. We have �∇f = ϕr �∇h + rhϕr−1 �∇ϕ, so �∇�h × �∇ϕ = �0. Propo-
sition 3.5 implies the existence of g ∈ A such that �∇h = g �∇ϕ. Since h and ϕ are weight
homogeneous and in view of Euler’s formula (13),

�(h)h = �∇h · �e� = g �∇ϕ · �e� = �(ϕ)gϕ,

so �(h) = 0, as h is not divisible by ϕ. Thus h ∈ F and f = hϕr ∈ ⊕
i∈N Fϕi . Conversely,

it is clear that δ0
ϕ(ϕr) = �∇(ϕr) × �∇ϕ = �0, for any r ∈ N. �

Remark 4.3. According to Remark 3.7, if ϕ ∈ A is a weight homogeneous polynomial
without square factor but ϕ is not necessarily w.h.i.s., then the first part of the Koszul
complex is still exact, so Proposition 4.2 is also valid for this more general class of poly-
nomials. However, if ϕ has a square factor, the result is not true anymore. For example, if
ϕ = ψr with r � 2 and ψ ∈ A a weight homogeneous polynomial without square factor,
then H 0(A, ϕ) � H 0(A,ψ) � ⊕

i∈N Fψi so that H 0(A,ϕ) 	� ⊕
i∈N Fϕi .

4.2. The space H 1(A, ϕ)

We first prove a result which will be useful to determine H 1(A, ϕ).

Lemma 4.4. Let ϕ ∈ A be w.h.i.s. and �g ∈ A3. Suppose that there exist r ∈ N and α ∈ F
such that { �g · �∇ϕ = 0,

Div(�g ) = αϕr .
(19)

Then α = 0 (equivalently Div(�g ) = 0).



760 A. Pichereau / Journal of Algebra 299 (2006) 747–777
Proof. According to Remark 3.6, the operator �g �→ (�g · �∇ϕ,Div(�g )) (from A3 to A2)
restricts for any d ∈ Z to an operator between X1(A)d and X0(A)d+�(ϕ) ×X0(A)d . There-
fore it suffices to prove the lemma for an element �g ∈ X1(A)d , with d ∈ Z. Suppose that
such an element �g satisfies (19), then, according to Proposition 3.5, the first equation im-
plies that there exists �k ∈ X2(A)d−�(ϕ), such that �g = �k × �∇ϕ. We will apply induction
on r ∈ N. First, if r = 0, then, according to formula (12), α = Div(�g ) = Div(�k × �∇ϕ) =
( �∇ × �k) · �∇ϕ, so that α = 0, for degree reasons.

Assume now that for some fixed r � 0, any �g that satisfies (19) is divergence free.
Suppose that �h ∈ A3 satisfies �h · �∇ϕ = 0 and Div(�h) = α′ϕr+1, for some α′ ∈ F. Writ-
ing �h = �k × �∇ϕ, the formulas (12), (13) and (14) show that �g := �∇ × �k − α′

�(ϕ)
ϕr �e�

satisfies (19), with α = −α′(�(ϕ)r + |� |)/�(ϕ), so that, by induction hypothesis,
0 = α = −α′(�(ϕ)r + |� |)/�(ϕ). It follows that α′ = 0. �

Now, we can give the main result of this Section. We recall that |� | is the sum of the
weights of the three variables x, y, z.

Proposition 4.5. If ϕ ∈ A is w.h.i.s., then the first Poisson cohomology space of (A, {·,·}ϕ)

is a free module over Cas(A, ϕ), given by:

H 1(A, ϕ) �
{ {0} if �(ϕ) 	= |� |;

Cas(A, ϕ)�e� = ⊕
i∈N Fϕi �e� if �(ϕ) = |� |.

Proof. Let �f ∈ X1(A) be a nonzero element of Z1(A, ϕ), that is to say, �f ∈ A3 satisfies
the equation:

�∇( �f · �∇ϕ) = Div( �f ) �∇ϕ. (20)

According to Remark 3.6, we suppose that �f is weight homogeneous. Our purpose is to
write �f = �∇k × �∇ϕ + c

�(ϕ)
ϕr �e� ∈ B1(A, ϕ)+⊕

i∈N Fϕi �e� , where c = 0 if �(ϕ) 	= |� |
and c need not be 0 otherwise. Our proof will be divided in three parts.

(1) First, using cocycle condition (20), we find an element �g ∈ A3 which satisfies the
equations (19). This equality implies indeed that δ0

ϕ( �f · �∇ϕ) = �∇( �f · �∇ϕ)× �∇ϕ = �0, so that

the weight homogeneous element �f · �∇ϕ of A is a Casimir. According to Proposition 4.2,
there exist c ∈ F and r ∈ N such that �f · �∇ϕ = cϕr+1. Using Eq. (20) once more, we obtain
Div( �f ) = c(r + 1)ϕr . Letting �g := �f − c

�(ϕ)
ϕr �e� , formulas (13) and (14) imply that �g

satisfies (19), where α = c(1 − |� |
�(ϕ)

). Lemma 4.4 leads to

{
Div(�g ) = 0, �g · �∇ϕ = 0,

0 = c(1 − |� |
).
�(ϕ)



A. Pichereau / Journal of Algebra 299 (2006) 747–777 761
(2) Now, we will show that if �g ∈ A3 satisfies Div(�g ) = 0 and �g · �∇ϕ = 0, then
�g ∈ B1(A, ϕ). Let �g be a such element. As �g · �∇ϕ = 0, Proposition 3.5 implies the ex-
istence of an element �h ∈A3 such that �g = �h × �∇ϕ. Moreover, we have

0 = Div(�g ) = Div(�h × �∇ϕ) = ( �∇ × �h) · �∇ϕ.

Corollary 3.8 leads now to the existence of elements k, l ∈ A such that �h = �∇k + l �∇ϕ, so
that �g = �∇k × �∇ϕ = δ0

ϕ(k) ∈ B1(A, ϕ).
(3) The first two parts of this proof lead to the existence of k ∈ A and c ∈ F such that⎧⎨⎩

�f = �∇k × �∇ϕ + c
�(ϕ)

ϕr �e� ,

0 = c(1 − |� |
�(ϕ)

).
(21)

Now, we have to consider two cases: �(ϕ) 	= |� | and �(ϕ) = |� |.

• If �(ϕ) 	= |� | then c = 0 and �f = �∇k × �∇ϕ = δ0
ϕ(k) ∈ B1(A, ϕ). Thus, when

�(ϕ) 	= |� |, then H 1(A, ϕ) � {0}.
• Now, suppose that �(ϕ) = |� |, then (21) leads to Z1(A, ϕ) ⊆ B1(A, ϕ)+⊕

i∈N Fϕi �e� . Conversely, for any i ∈ N, formulas (13) and (14) lead to δ1
ϕ(ϕi �e� ) =

(|� | − �(ϕ))ϕi �∇ϕ = 0. So that

Z1(A, ϕ) = B1(A, ϕ) +
⊕
i∈N

Fϕi �e� .

Let us show that this sum is a direct one. It suffices to consider a weight homogeneous
element αϕi �e� ∈ B1(A, ϕ), α ∈ F, i ∈ N. It means that there exists k ∈ A such that
αϕi �e� = �∇k × �∇ϕ. Then (12) and (14) lead to

0 = Div( �∇k × �∇ϕ) = Div
(
αϕi �e�

) = α|� |(i + 1)ϕi,

therefore α = 0 and the sum B1(A, ϕ) ⊕ ⊕
i∈N Fϕi �e� is direct. Thus, when �(ϕ) = |� |,

then H 1(A, ϕ) � ⊕
i∈N Fϕi �e� . �

Remark 4.6. We see that the case �(ϕ) = |� | is particular. When ϕ is homogeneous (i.e.,
weight homogeneous with �1 = �2 = �3 = 1), it is the case where the degree of ϕ is
three, that is to say, where ϕ is a cubic polynomial.

4.3. The space H 3(A, ϕ)

Now, we give the third Poisson cohomology space of (A, {·,·}ϕ), where ϕ ∈ A =
F[x, y, z] is w.h.i.s. Recall that, in this case,

Asing = F[x, y, z]
/〈

∂ϕ
,
∂ϕ

,
∂ϕ

〉

∂x ∂y ∂z
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is a finite-dimensional F-vector space, whose dimension is the Milnor number, denoted
by μ. Let u0 = 1, u1, . . . , uμ−1 be weight homogeneous elements of A, such that their
images in Asing give a F-basis of Asing.

Proposition 4.7. If ϕ ∈A = F[x, y, z] is w.h.i.s. then the third cohomology space H 3(A, ϕ)

is the free Cas(A, ϕ)-module:

H 3(A, ϕ) �
μ−1⊕
j=0

Cas(A, ϕ)uj � Cas(A, ϕ) ⊗F Asing.

Proof. Let f ∈A � X3(A) be a weight homogeneous polynomial of degree d ∈ N.
(1) We first show that there exist �g ∈A3, N ∈ N and elements λi,j ∈ F, where 0 � i � N

and 0 � j � μ − 1, such that:

f = �∇ϕ · ( �∇ × �g ) +
N∑

i=0

μ−1∑
j=0

λi,j ϕ
iuj ∈ B3(A, ϕ) +

∑
k∈N

0�j�μ−1

Fϕkuj . (22)

Let � [1] := max(�1,�2,�3). We apply induction on d , proving directly the result for
d � �(ϕ)−� [1] (this is not an empty case, as can be seen from Remark 4.1, for example,
it contains the case f ∈ F). By definition of the elements u0, . . . , uμ−1, we have:

f = �∇ϕ · �l +
μ−1∑
j=0

αjuj , (23)

where �l ∈ X1(A)d−�(ϕ) and α0, . . . , αμ−1 ∈ F.
If d � �(ϕ) − � [1] then the correspondences (15) imply that �l is an element (a, b, c)

of F3 so that f is indeed of the form (22), with �g = (bz, cx, ay), N = 0 and λ0,j = αj .
Now, suppose that d > �(ϕ) − � [1] and that any weight homogeneous polynomial of

degree at most d − 1 is of the form (22). Let us consider the decomposition (23) for f of
degree d . Proposition 3.5 implies that there exists �g ∈ A3 such that:

�l − Div(�l )
d − �(ϕ) + |� | �e� = �∇ × �g, (24)

since Div(�l − Div(�l )
d−�(ϕ)+|� | �e� ) = 0, as follows from �(Div(�l )) = d − �(ϕ) and (14).

Using the induction hypothesis on Div(�l ), we conclude that (23), with �l given by (24),
is indeed of the form (22) (one uses that, according to formula (10), ϕ( �∇ × �k) · �∇ϕ =
( �∇ × (ϕ�k)) · �∇ϕ, for �k ∈ A3).

(2) So, we have already obtained that
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A = { �∇ϕ · ( �∇ × �l ) | �l ∈A3} +
μ−1∑
j=0

Cas(A, ϕ)uj

= B3(A, ϕ) +
μ−1∑
j=0

Cas(A, ϕ)uj , (25)

and it suffices to show that this sum is direct in A � X3(A).
We suppose the contrary. This allows us to consider the smallest integer N0 ∈ N such

that we have an equation of the form:

N∑
i=N0

μ−1∑
j=0

λi,jϕ
iuj = �∇ϕ · ( �∇ × �g ) = −δ2

ϕ(�g ), (26)

with �g ∈ A3, N � N0 and λi,j ∈ F (for N0 � i � N and 0 � j � μ − 1) and λN0,j0 	= 0,
for some 0 � j0 � μ − 1. We will show that this hypothesis leads to a contradiction.

First, suppose that N0 = 0, then the definition of the uj , Euler’s formula (13) and (26)
imply that λ0,j = 0 for all 0 � j � μ − 1, which contradicts the hypothesis λN0,j0 	= 0.

So we suppose that N0 > 0, using Euler’s formula (13), Eq. (26) can be written as
�∇ϕ · (

∑N
i=N0

∑μ−1
j=0

λi,j

�(ϕ)
ϕi−1uj �e� ) = �∇ϕ · ( �∇ × �g ). Proposition 3.5 implies that there

exists �h ∈A3 such that:

N∑
i=N0

μ−1∑
j=0

λi,j

�(ϕ)
ϕi−1uj �e� = �∇ × �g + �h × �∇ϕ.

The divergence of both sides of this equality and formula (14) give:

N∑
i=N1

μ−1∑
j=0

λ′
i,j ϕ

iuj = ( �∇ × �h) · �∇ϕ = −δ2
ϕ(�h ),

where λ′
i,j = λi+1,j

�(ϕ)
(�(ϕ)i + �(uj ) + |� |) and N1 = N0 − 1. So, we have obtained an

equation of the form (26), with N1 < N0 and λ′
N1,j0

	= 0. This fact contradicts the hypothe-

sis and we conclude that the sum (25) is direct. The description of H 3(A, ϕ) follows. �
4.4. The space H 2(A, ϕ)

Finally, using Proposition 4.7 (and in fact the writing of H 3(A, ϕ)), we obtain the
second Poisson cohomology space of the algebra (A, {·,·}ϕ), when ϕ ∈ A = F[x, y, z]
is w.h.i.s.

Proposition 4.8. If ϕ ∈A = F[x, y, z] is w.h.i.s. then the second Poisson cohomology space
of the algebra (A, {·,·}ϕ) is the Cas(A, ϕ)-module:
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H 2(A, ϕ) �
μ−1⊕
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj ⊕
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Cas(A, ϕ)uj
�∇ϕ

⊕
μ−1⊕
j=1

�(uj )=�(ϕ)−|� |

F �∇uj ,

where the first row gives the free part.
In particular, we have:

H 2(A, ϕ) �
⎧⎨⎩

⊕μ−1
j=1 Cas(A, ϕ) �∇uj , if �(ϕ) < |� |,⊕μ−1
j=1 Cas(A, ϕ) �∇uj ⊕ Cas(A, ϕ) �∇ϕ, when �(ϕ) = |� |.

Remark 4.9. We see that the Poisson structure {·,·}ϕ will be exact (that is to say a
2-coboundary) if and only if �(ϕ) 	= |� |. This fact comes from the equality δ1

ϕ(�e� ) =
−(�(ϕ) − |� |) �∇ϕ, a consequence of formulas (13) and (14).

Remark 4.10. Contrary to the other cohomology spaces, H 2(A, ϕ) is generally not a free
Cas(A, ϕ)-module. In fact, using formulas (13) and (14), we get:

δ1
ϕ

(
ϕiuj �e�

) = (
�(uj ) − �(ϕ) + |� |)ϕiuj

�∇ϕ − �(ϕ)ϕi+1 �∇uj . (27)

This equality, which will be also useful later, explains that we have to distinguish, in the
expression of H 2(A, ϕ), the uj satisfying �(uj ) = �(ϕ) − |� | from the other ones. If j

is such that �(uj ) = �(ϕ) − |� | then (27) yields that ϕk �∇uj ∈ B2(A, ϕ), for all k � 1,
but this is not true when �(uj ) 	= �(ϕ) − |� |. This is the reason why H 2(A, ϕ) is not
always a free module over Cas(A, ϕ).

Moreover, for all j satisfying �(uj ) 	= �(ϕ) − |� |, (27) implies that ϕiuj
�∇ϕ, i � 0,

can be written as cϕi+1 �∇uj + δ1
ϕ(c′ϕiuj �e� ), with c, c′ ∈ F − {0}.

Proof. First, let us show that:

Z2(A, ϕ) � B2(A, ϕ) +
μ−1∑
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj

+
μ−1∑
j=0

�(u )=�(ϕ)−|� |

Cas(A, ϕ)uj
�∇ϕ +

μ−1∑
j=1

�(u )=�(ϕ)−|� |

F �∇uj . (28)
j j
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Let �f ∈ Z2(A, ϕ). According to Remark 3.9, there exists g,h ∈A such that

�f = �∇g + h �∇ϕ. (29)

Moreover, Proposition 4.7 implies the existence of �g1, �h1 ∈ A3, N ∈ N and of elements
λi,j , δi,j ∈ F, with 0 � i � N and 0 � j � μ − 1, such that:

g = δ2
ϕ(�g1) +

N∑
i=0

μ−1∑
j=0

λi,jϕ
iuj , h = δ2

ϕ(�h1) +
N∑

i=0

μ−1∑
j=0

δi,j ϕ
iuj , (30)

while we have the 2-coboundaries:

�∇(
δ2
ϕ(�g1)

) = −�∇(
( �∇ × �g1) · �∇ϕ

) = δ1
ϕ( �∇ × �g1) ∈ B2(A, ϕ),

δ2
ϕ(�h1) �∇ϕ = (

( �∇ × �h1) · �∇ϕ
) �∇ϕ = δ1

ϕ(�h1 × �∇ϕ) ∈ B2(A, ϕ).

Using this fact, (29) and (30), we obtain

�f ∈ B2(A, ϕ) +
μ−1∑
j=1

Cas(A, ϕ) �∇uj +
μ−1∑
j=0

Cas(A, ϕ)uj
�∇ϕ.

Remark 4.10 then implies that �f can be decomposed as in the right-hand side of (28). On
the other hand, all elements of the right-hand side of (28) are 2-cocycles, yielding equality
in (28). (Indeed, using formula (10), we have, for all f,g ∈ A, δ2

ϕ(ϕ �∇f ) = −�∇ϕ · ( �∇ ×
(ϕ �∇f )) = 0 and δ2

ϕ(g �∇ϕ) = −�∇ϕ · ( �∇ × (g �∇ϕ)) = 0.)
For the proof that the sum in (28) is a direct one, one uses the definition of the uj and

applies Propositions 3.5, 4.2 (expression of H 0(A, ϕ)) and 4.7 (writing of H 3(A, ϕ)) as in
the proofs of Propositions 4.5 and 4.7. �
Remark 4.11. Using Euler’s formula (13) and the writings of the Poisson cohomology
spaces H 1(A, ϕ) and H 2(A, ϕ) given in Propositions 4.5 and 4.8, we can make the ring
structure on the space H ∗(A, ϕ) := ⊕3

k=0 Hk(A, ϕ), induced by the wedge product, ex-
plicit. One obtains, for example, that ∧ :H 1(A, ϕ) × H 2(A, ϕ) → H 3(A, ϕ) is surjective
when �(ϕ) = |� |.

5. Poisson cohomology of the singular surface

In this chapter, we still consider an element ϕ ∈ A = F[x, y, z] (char(F) = 0), which
is w.h.i.s. (weight homogeneous with an isolated singularity) and we restrict the Poisson
structure {·,·}ϕ to the singular surface Fϕ : {ϕ = 0} and compute the cohomology of the
Poisson algebra obtained.
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5.1. The Poisson complex of the singular surface Fϕ

The algebra of regular functions on the surface Fϕ is the quotient algebra:

Aϕ := F[x, y, z]
〈ϕ〉 .

Because ϕ is a Casimir, 〈ϕ〉 is a Poisson ideal for (A, {·,·}ϕ) and the Poisson structure
{·,·}ϕ restricts naturally to Fϕ , that is to say goes down to the quotient Aϕ . That leads to
a Poisson structure on Aϕ , denoted by {·,·}Aϕ

. Let us denote by π the natural projection
map A → Aϕ , then, for each f,g ∈ A, we have {π(f ),π(g)}Aϕ

= π({f,g}ϕ) (that is to
say, π is a Poisson morphism between A and Aϕ).

Definition 5.1. We say that P ∈ Xk(A) and Q ∈ Xk(Aϕ) are π -related and we write
Q = π∗(P ) if

π
(
P [f1, . . . , fk]

) = Q
[
π(f1), . . . , π(fk)

]
, (31)

for all f1, . . . , fk ∈ A.

In the following proposition, we give the Poisson cohomology spaces of the algebra
(Aϕ{·,·}Aϕ

). That leads to consider the skew-symmetric multi-derivations of the algebra
Aϕ and the Poisson coboundary operators, associated to {·,·}Aϕ

. The previous definition
will be useful in this discussion. By a slight abuse of notations we will, for an element
�f = (f1, f2, f3) ∈A3, denote by π( �f ), the element (π(f1),π(f2),π(f3)) ∈ A3

ϕ .

Proposition 5.2. If ϕ ∈ A is w.h.i.s., the Poisson cohomology spaces of the algebra
(Aϕ, {·,·}Aϕ

), denoted by Hk(Aϕ), are given by:

Cas(Aϕ) = H 0(Aϕ) � {
π(f ) ∈Aϕ | �∇f × �∇ϕ ∈ 〈ϕ〉},

H 1(Aϕ) � {π( �f ) ∈A3
ϕ | �f · �∇ϕ ∈ 〈ϕ〉 and − �∇( �f · �∇ϕ) + Div( �f ) �∇ϕ ∈ 〈ϕ〉}

{π( �∇f × �∇ϕ) | f ∈ A} ,

H 2(Aϕ) � {π( �f ) ∈ A3
ϕ | �f × �∇ϕ ∈ 〈ϕ〉}

{π(−�∇( �f · �∇ϕ) + Div( �f ) �∇ϕ) | �f ∈A3; �f · �∇ϕ ∈ 〈ϕ〉} ,

and H 3(Aϕ) � {0}.

Subsequently, we denote by Zk(Aϕ) (respectively Bk(Aϕ)) the space of all k-cocycles
(respectively k-coboundaries) of Aϕ .
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Proof. We first have to determine the skew-symmetric multi-derivations of Aϕ . Let us
point out that any P ∈ Xk(A) is π -related to a Q ∈ Xk(Aϕ) if and only if P [ϕ,f2, . . . ,

fk] ∈ 〈ϕ〉, for all f2, . . . , fk ∈ A. In this case, the equality (31) defines indeed an element
Q of Xk(Aϕ), in view of the skew-symmetry and the derivation properties of P . Moreover,
every Q ∈ Xk(Aϕ) is obtained in this way. Let us consider, for example, the case k = 1.

Let Q ∈ X1(Aϕ) and let us choose �f = (f1, f2, f3) ∈ A3 such that Q[π(x)] = π(f1),
Q[π(y)] = π(f2) and Q[π(z)] = π(f3). Then, we get Q = π∗(P ), with P = f1

∂
∂x

+
f2

∂
∂y

+ f3
∂
∂z

∈ X1(A) and P [ϕ] = f1
∂ϕ
∂x

+ f2
∂ϕ
∂y

+ f3
∂ϕ
∂z

= �f · �∇ϕ ∈ 〈ϕ〉.
Conversely, each of π( �f ) ∈ A3

ϕ satisfying the equation �f · �∇ϕ ∈ 〈ϕ〉 gives an element

of X1(Aϕ), defined by π∗(f1
∂
∂x

+ f2
∂
∂y

+ f3
∂
∂z

). Thus,

X1(Aϕ) � {
π( �f ) ∈A3

ϕ | �f · �∇ϕ ∈ 〈ϕ〉}.
With the same reasoning, we obtain

X2(Aϕ) � {
π( �f ) ∈A3

ϕ | �f × �∇ϕ ∈ 〈ϕ〉}.
As it is clear that X0(Aϕ) � Aϕ and Xk(Aϕ) � {0}, for k � 4, let us now consider the
space X3(Aϕ). In the same way that above, we get X3(Aϕ) = {π(f ) ∈ Aϕ | f �∇ϕ ∈ 〈ϕ〉}.
However, if f ∈ A satisfies f �∇ϕ = ϕ �g, with �g ∈ A3, then we have �g × �∇ϕ = �0 and
Proposition 3.5 implies the existence of an element h ∈ A satisfying �g = h �∇ϕ so that
f = hϕ ∈ 〈ϕ〉. That leads to X3(Aϕ) � {0}.

Now, let us consider the Poisson coboundary operators of the Poisson algebra
(Aϕ, {·,·}Aϕ

), denoted by δk
Aϕ

. Using the definition of δk
Aϕ

(similarly as (7)), we obtain,

for all P ∈ Xk(A), δk
Aϕ

(π∗(P )) = π∗(δk
ϕ(P )). That leads to:

δ0
Aϕ

(
π(f )

) = π( �∇f × �∇ϕ), for π(f ) ∈Aϕ � X0(Aϕ),

δ1
Aϕ

(
π(f )

) = π
(−�∇( �f · �∇ϕ) + Div( �f ) �∇ϕ

)
,

for π( �f ) ∈ {
π(�g ) ∈A3

ϕ | �g · �∇ϕ ∈ 〈ϕ〉} � X1(Aϕ),

δ2
Aϕ

(
π( �f )

) = 0, for π( �f ) ∈ {
π(�g ) ∈ A3

ϕ | �g × �∇ϕ ∈ 〈ϕ〉} � X2(Aϕ),

while the writing of the Poisson cohomology spaces follows. �
5.2. The space H 0(Aϕ)

In this Section, we consider still ϕ ∈A w.h.i.s. and the Poisson structure on Aϕ , denoted
by {·,·}Aϕ

. We describe the zeroth Poisson cohomology space, that is to say the space of
the Casimirs of (Aϕ, {·,·}A ) in the following proposition.
ϕ
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Proposition 5.3. If ϕ ∈ A = F[x, y, z] is w.h.i.s., the zeroth Poisson cohomology space of
the singular surface defined by this polynomial is given by

H 0(Aϕ) = Cas(Aϕ) � F.

Proof. Let f ∈ A be a weight homogeneous polynomial such that π(f ) ∈ H 0(Aϕ). Then
�∇f × �∇ϕ ∈ 〈ϕ〉 i.e., there exists �g ∈ A3 satisfying �∇f × �∇ϕ = ϕ �g. It follows that �g ·
�∇ϕ = 0 and Proposition 3.5 implies the existence of an element �h ∈ A3 such that �g =
�h × �∇ϕ. Summing up, ( �∇f − ϕ�h) × �∇ϕ = 0, and we can apply Proposition 3.5 again to
obtain a k ∈ A satisfying �∇f = ϕ�h + k �∇ϕ. Euler’s formula (13) gives

�(f )f = �∇f · �e� = ϕ
(�h · �e� + �(ϕ)k

)
.

So, f ∈ 〈ϕ〉 unless �(f ), the (weighted) degree of f , is zero, thus H 0(Aϕ) � F. �
5.3. The space H 1(Aϕ)

This section is devoted to the determination of the first Poisson cohomology space of
(Aϕ, {·,·}Aϕ

), where ϕ ∈A = F[x, y, z] is w.h.i.s.

Remark 5.4. Using Proposition 5.3, we can simplify the writing of Z1(Aϕ). Let indeed
�f ∈ A3 be an element satisfying: −�∇( �f · �∇ϕ) + Div( �f ) �∇ϕ ∈ 〈ϕ〉. Then −�∇( �f · �∇ϕ) ×
�∇ϕ ∈ 〈ϕ〉, that is to say π( �f · �∇ϕ) ∈ H 0(Aϕ) � F, according to Proposition 5.3. For degree
reasons, this leads to �f · �∇ϕ ∈ 〈ϕ〉. So, we can simply write

Z1(Aϕ) = {
π( �f ) ∈ A3

ϕ | − �∇( �f · �∇ϕ) + Div( �f ) �∇ϕ ∈ 〈ϕ〉}.
Now, let us give the main result of this section (we recall that |� | is the sum of the

weights �1,�2,�3 of the variables x, y, z and that the family {uj } is an F-basis of Asing
and is defined in Section 4.3).

Proposition 5.5. If ϕ ∈ A = F[x, y, z] is w.h.i.s. then the first Poisson cohomology space
of the singular surface {ϕ = 0} is given by

H 1(Aϕ) �
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Fπ(uj �e� ).

In particular, if �(ϕ) < |� | then H 1(Aϕ) � {0}.

Proof. Let �f ∈ A3 satisfy π( �f ) ∈ Z1(Aϕ), it means that there exists �k ∈ A3 satisfying
δ1
ϕ( �f ) = ϕ�k. Then 0 = δ2

ϕ(ϕ�k ) = ϕδ2
ϕ(�k ), because, as we said in Section 2.1, the operator

δ2
ϕ commutes with the multiplication by ϕ. So ϕ�k ∈ B2(A, ϕ) and �k ∈ Z2(A, ϕ). According

to Proposition 4.8,
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�k ∈ B2(A, ϕ) ⊕
μ−1⊕
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj

⊕
μ−1⊕
k=0

�(uk)=�(ϕ)−|� |

Cas(A, ϕ)uk
�∇ϕ ⊕

μ−1⊕
l=1

�(ul)=�(ϕ)−|� |

F �∇ul.

Each of the first three summands is stable by multiplication by ϕ, while Remark 4.10 gives

μ−1⊕
l=1

�(ul)=�(ϕ)−|� |

ϕF �∇ul ⊂ B2(A, ϕ).

As a consequence, since ϕ�k ∈ B2(A, ϕ),

�k ∈ B2(A, ϕ) ⊕
μ−1⊕
l=1

�(ul)=�(ϕ)−|� |

F �∇ul.

So there exist �h ∈ A3 and elements λl ∈ F, with l satisfying �(ul) = �(ϕ) − |� |, such
that

�k = δ1
ϕ(�h) +

μ−1∑
l=1

�(ul)=�(ϕ)−|� |

λl
�∇ul.

For all 1 � l � μ − 1 such that �(ul) = �(ϕ) − |� |, we have ϕ �∇ul = −δ1
ϕ( 1

�(ϕ)
ul�e� ),

so that

δ1
ϕ( �f ) = ϕ�k = δ1

ϕ

(
ϕ�h −

μ−1∑
l=1

�(ul)=�(ϕ)−|� |

λl

�(ϕ)
ul�e�

)
.

This implies

�f − ϕ�h +
μ−1∑
l=1

�(ul)=�(ϕ)−|� |

λl

�(ϕ)
ul�e� ∈ Z1(A, ϕ). (32)
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• If �(ϕ) 	= |� |, then Proposition 4.5 implies that (32) belongs to B1(A, ϕ), so that

π( �f ) ∈
μ−1∑
l=1

�(ul)=�(ϕ)−|� |

Fπ(ul �e� ) + B1(Aϕ).

• If �(ϕ) = |� | then (32) is simply the equation �f − ϕ�h ∈ Z1(A, ϕ) � B1(A, ϕ) +
Cas(A, ϕ)�e� , according to Proposition 4.5. So, we have π( �f ) ∈ Fπ(�e� ) + B1(Aϕ).
As we have �(ul) � 1, if 1 � l � μ − 1, the result of both cases can be summarized
as follows:

Z1(Aϕ) ⊆ B1(Aϕ) +
μ−1∑
l=0

�(ul)=�(ϕ)−|� |

Fπ(ul �e� ).

Euler’s formula (13) implies that π(ul �e� ) ∈ Z1(Aϕ)(δ1
ϕ(ul �e� ) ∈ 〈ϕ〉), when �(ul) =

�(ϕ) − |� |, so that the other inclusion holds too. It also allows us to show that the
above sum is a direct one. Hence the result about H 1(Aϕ). �

5.4. The space H 2(Aϕ)

We now compute the second Poisson cohomology space of (Aϕ, {·,·}Aϕ
), where ϕ ∈

A = F[x, y, z] is w.h.i.s.

Proposition 5.6. If ϕ ∈ A = F[x, y, z] is w.h.i.s. then H 2(Aϕ) is given by

H 2(Aϕ) �
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Fπ(uj
�∇ϕ).

Remark 5.7. It follows from Propositions 5.5 and 5.6 that there is a natural isomorphism
between H 1(Aϕ) and H 2(Aϕ), that maps the element uj �e� (with �(uj ) = �(ϕ) − |� |)
to the element uj

�∇ϕ of H 2(Aϕ).

Proof. First, we show that the family {π(uj
�∇ϕ) | �(uj ) = �(ϕ) − |� |} generates the

F-vector space H 2(Aϕ). Let �h ∈ A3 such that π(�h) ∈ Z2(Aϕ), that is to say, such that
there exists �g ∈ A3 satisfying �h × �∇ϕ = ϕ �g. According to Remark 3.6, we may suppose
�h ∈ X2(A)d and �g ∈ X1(A)d , with d ∈ Z. Since �g · �∇ϕ = 0, Proposition 3.5 implies that
�g = �k × �∇ϕ and �h = ϕ�k + f �∇ϕ, with f ∈ X3(A)d−�(ϕ) and �k ∈ X2(A)d−�(ϕ).

If d < �(ϕ) − |� | then f = 0 and �h ∈ 〈ϕ〉; otherwise π(�h ) = π(f �∇ϕ), while, using
formulas (13) and (14), we get δ1

ϕ(f �e� ) = (d − 2�(ϕ) + 2|� |)f �∇ϕ − �(ϕ)ϕ �∇f . That

leads, in the case d 	= 2(�(ϕ) − |� |), to π(�h) = π(f �∇ϕ) ∈ B2(Aϕ). Therefore, let us
suppose that d = 2(�(ϕ) − |� |), so that �(f ) = �(ϕ) − |� |. For degree reasons, the
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projection map A → Asing = A/〈 ∂ϕ
∂x

,
∂ϕ
∂y

,
∂ϕ
∂z

〉 restricts to an injective map A�(ϕ)−|� | →
Asing, so that f is a F-linear combination of the uj satisfying �(uj ) = �(ϕ) − |� |, that
leads to

π(�h) ∈
μ−1∑
j=0

�(uj )=�(ϕ)−|� |

Fπ(uj
�∇ϕ),

and for all j , uj
�∇ϕ ∈ Z2(Aϕ).

It suffices now to show that this family is F-free, modulo B2(Aϕ). It is empty if �(ϕ) <

|� |, so we suppose �(ϕ) � |� |. Let λj be elements of F with j such that �(uj ) =
�(ϕ) − |� | and let �l, �j ∈A3 satisfying

μ−1∑
j=0

�(uj )=�(ϕ)−|� |

λjuj
�∇ϕ = −�∇(�l · �∇ϕ) + Div(�l ) �∇ϕ + ϕ �j

= δ1
ϕ(�l ) + ϕ �j, (33)

where the right-hand side is an arbitrary representative of an element of B2(Aϕ). As
the left-hand side belongs to the space X2(A)2�(ϕ)−2|� |, we may suppose that �l ∈
X1(A)�(ϕ)−|� | and �j ∈ X2(A�(ϕ)−2|� |.

Equation (33) implies �∇(�l · �∇ϕ) × �∇ϕ ∈ 〈ϕ〉, so that π(�l · �∇ϕ) ∈ Cas(Aϕ). For degree
reasons, Proposition 5.3 leads to the existence of g ∈A of degree �(ϕ) − |� | such that
�l · �∇ϕ = ϕg = (g�e� · �∇ϕ)/�(ϕ). Then Proposition 3.5 implies that �(ϕ)�l = g�e� and
δ1
ϕ(�l ) = −ϕ �∇g, so that

μ−1∑
j=0

�(uj )=�(ϕ)−|� |

λjuj
�∇ϕ = −ϕ �∇g + ϕ �j = ϕ �F, (34)

where �F = −�∇g + �j ∈ X2(A)� (ϕ) − 2|� |. We get �F × �∇ϕ = �0, but for degree reasons,
Proposition 3.5 leads to �F = �0 so that, for all j , λj = 0, since the family {uj } if F-free
in A. �

6. Poisson homology associated to a weight homogeneous polynomial with an
isolated singularity

In this last section, we consider the algebras A = F[x, y, z] (with char(F) = 0) and
Aϕ = A/〈ϕ〉, where ϕ ∈A is weight homogeneous with an isolated singularity (w.h.i.s.).
These algebras are still respectively equipped with the Poisson structures {·,·}ϕ and {·,·}Aϕ

.
We use the Poisson cohomology of these Poisson algebras (A, {·,·}ϕ) and (Aϕ, {·,·}Aϕ

),
given in Sections 4 and 5, to determine their Poisson homology.
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6.1. The Poisson homology of A

6.1.1. Definitions
We recall the construction of the Poisson homology complex associated to a Poisson

algebra (B, {·,·}). First, the k-chains of this complex are the so-called Kähler differential
k-forms (see [5] for details), whose space is denoted by Ωk(B). We recall that Ωk(B) =
∧kΩ1(B) while Ω∗(B) := ⊕

k∈N Ωk(B) is the B-module of all (Kähler) differential forms,
with, by convention, Ω0(B) = B. We denote by d the exterior differential. The boundary
operator, δk :Ωk(B) → Ωk−1(B), called the Brylinsky or Koszul differential, is given by
(see [2]):

δk(f0 df1 ∧ · · · ∧ dfk) =
k∑

i=1

(−1)i+1{f0, fi}df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfk

+
∑

1�i<j�k

(−1)i+j f0 d{fi, fj } ∧ df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfk, (35)

where the symbol d̂fi means that we omit the term dfi . It is easy to see that this operator
satisfies δk ◦ δk+1 = 0. The homology of this complex is called the Poisson homology of
(B, {·,·}).

The boundary operators of the algebras (A, {·,·}ϕ) and (Aϕ{·,·}Aϕ
) are respectively

denoted by δ
ϕ
k and δ

Aϕ

k , while the Poisson homology spaces are denoted by Hk(A, ϕ) and
Hk(Aϕ). As for the Poisson cohomology, the boundary operator δk commutes with the
multiplication by a Casimir, so that the Poisson homology spaces are modules over the
spaces of the Casimirs.

6.1.2. The Poisson homology complex of A
In the particular case of our polynomial algebra A = F[x, y, z], it is clear that Ω∗(A) is

the A-module generated by the wedge products of the 1-differential forms dx, dy, dz and
that we have Ωi(A) = {0}, for all i � 4. As for the multi-derivations of A, we have the
isomorphisms (with the same choices as in Section 2.1)

Ω0(A) � Ω3(A) � A, Ω1(A) � Ω2(A) � A3, (36)

which allows us to use the same notations and formulas than in the previous sections, when
we talk about differential forms. For example, the 1-differential form dϕ corresponds, with
these notations, to the element �∇ϕ of A3 (as the biderivation {·,·}ϕ).

Proposition 6.1. If ϕ ∈ A is w.h.i.s., the homology spaces of (A, {·,·}ϕ) are given by:

Hk(A, ϕ) � H 3−k(A, ϕ), for all k = 0,1,2,3.

Proof. We have already seen in (36) that Ωk(A) � X3−k(A). In fact, for example,
a 1-form f dx ∈ Ω1(A) corresponds to the biderivation f ∂

∂y
∧ ∂

∂z
∈ X2(A). Moreover, un-

der the previous identifications, we get easily δ
ϕ = (−1)kδ3−k

ϕ , that leads to the result. �
k
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Remark 6.2. There exists a more general result that gives, in certain cases, isomorphisms
between Poisson cohomology and homology spaces, using the modular class of a Poisson
algebra (see [8,23] for details).

6.2. The Poisson homology of Aϕ

6.2.1. The Poisson homology complex of Aϕ

Now, let us determine the Poisson homology complex of the singular surface Fϕ . For
the quotient algebra Aϕ = F[x, y, z]/〈ϕ〉, the space Ω∗(Aϕ) is obtained by subjecting the
Aϕ-module generated by the wedge products of dx, dy, dz to the relations ϕ = 0, dϕ = 0
and dϕ ∧dx = 0, etc. We recall the natural surjective map π :A →Aϕ , which is a Poisson
morphism. This map induces another surjective map π# :Ωk(A) → Ωk(Aϕ) between the
spaces of all k-chains, which allows us to see the differential k-forms of Aϕ as images of
differential k-forms of A. Thus, as the differential forms of A are identified to elements
of A or A3, as can be seen in (36), we can write the spaces of all differential k-forms
of Aϕ as quotients of Aϕ and A3

ϕ and then as quotients of A and A3. We obtain, while
Ω0(Aϕ) � Aϕ ,

Ω1(Aϕ) � A3
ϕ

{f �∇ϕ | f ∈ A} � A3

{f �∇ϕ + ϕ �g | f ∈ A, �g ∈A3} ,

Ω2(Aϕ) � A3
ϕ

{ �∇ϕ × �f | �f ∈ A3} � A3

{ �∇ϕ × �f + ϕ �g | �f , �g ∈A3} ,

Ω3(Aϕ) � Aϕ

{ �∇ϕ · �f | �f ∈ A3} � A
〈 ∂ϕ
∂x

,
∂ϕ
∂y

,
∂ϕ
∂z

〉 = Asing.

Remark 6.3. Unlike for A, there is no isomorphisms between the spaces of skew-
symmetric multi-derivations and differential forms on Aϕ . For example, Ω0(Aϕ) � Aϕ

while X3(Aϕ) � {0} and X2(Aϕ) ⊆ A3
ϕ . Observe also that Ω3(Aϕ) 	� {0}, although Fϕ is

an affine variety of dimension two.

In view of definition (35), the operator δ
ϕ
k induces an operator Ωk(Aϕ) → Ωk−1(Aϕ),

that is exactly δ
Aϕ

k , so that the Poisson homology spaces of Aϕ are given by

H0(Aϕ) � A
{ �∇ϕ · ( �∇ × �f ) + ϕg | g ∈ A, �f ∈A3} ,

H1(Aϕ) � { �f ∈A3 | �∇ϕ · ( �∇ × �f ) ∈ 〈ϕ〉}
{− �∇( �f · �∇ϕ) + Div( �f ) �∇ϕ + g �∇ϕ + ϕ�h | g ∈ A, �f , �h ∈A3} ,

H2(Aϕ) � { �f ∈A3 | − �∇( �f · �∇ϕ) + Div( �f ) �∇ϕ ∈ Iϕ}
{ �∇ϕ × �h + ϕ�k | �h, �k ∈ A3} ,

where Iϕ := {
f �∇ϕ + ϕ �g | f ∈A, �g ∈A3},

H3(Aϕ) � Asing.
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Remark 6.4. In view of the writing of the Poisson homology groups of A and Aϕ , we can
describe explicitly the map induced by π between these groups. In fact, this map is exactly
the reduction modulo ϕ between the spaces Hk(A) and Hk(Aϕ), for k 	= 1, and it is the
reduction modulo Iϕ , for k = 1. This phenomenon will be illustrated in the determination
of the Poisson homology groups of Aϕ .

6.2.2. The Poisson homology spaces of the singular surface Fϕ

In this section, ϕ ∈ A = F[x, y, z] is still w.h.i.s. and we determine these spaces.

Proposition 6.5. If ϕ ∈ A is w.h.i.s. then the homology spaces of the singular surface are
given by:

H0(Aϕ) �
μ−1⊕
j=0

Fuj � Asing, H1(Aϕ) �
μ−1⊕
j=1

F �∇uj ,

H2(Aϕ) �
μ−1⊕
j=0

Fuj �e� � Asing.

Remark 6.6. The fact that H0(Aϕ) � Asing was already proved by J. Alev and T. Lam-
bre, with other methods, in [1]. Their result is more general as they only suppose
that ϕ is a weight homogeneous polynomial, not necessarily with an isolated singular-
ity.

Remark 6.7. The multiplication by �e� gives a natural isomorphism between H0(Aϕ) and
H2(Aϕ), while the operator of gradient �∇ gives a surjective map from H0(Aϕ) to H1(Aϕ).

Proof. (1) We first determine H0(Aϕ). According to Proposition 4.7 (i.e., the writing of
H 3(A, ϕ)), we have:

A = { �∇ϕ · ( �∇ × �f ) | �f ∈A3} +
μ−1∑
j=0
i∈N

Fϕiuj ,

= { �∇ϕ · ( �∇ × �f ) + ϕg | g ∈A, �f ∈A3} +
μ−1⊕
j=0

Fuj .

Moreover this last sum is a direct one, as follows from the definition of the uj (in Sec-
tion 4.3) and the inclusion { �∇ϕ · ( �∇ × �f ) + ϕg | g ∈ A, �f ∈ A3} ⊆ 〈 ∂ϕ

∂x
,

∂ϕ
∂y

,
∂ϕ
∂z

〉, easily

obtained with Euler’s formula (13). That leads to H0(Aϕ) � ⊕μ−1
j=0 Fuj .

(2) Now, we use the result we obtained for H 2(A, ϕ) to determine the first Poisson
homology space of Aϕ . Let �f ∈ A3 satisfying �∇ϕ · ( �∇ × �f ) ∈ 〈ϕ〉, thus, there exists g ∈ A
with −δ2

ϕ( �f ) = �∇ϕ · ( �∇ × �f ) = ϕg.
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According to Proposition 4.7, g ∈ B3(A, ϕ) ⊕ ⊕μ−1
j=0 Cas(A, ϕ)uj . As both of the

summands of this sum are stable by multiplication by ϕ and because ϕg ∈ B3(A, ϕ),
we have g ∈ B3(A, ϕ), i.e., there exists �k ∈ A3 satisfying g = �∇ϕ · ( �∇ × �k ). Thus,
�f − ϕ�k ∈ Z2(A, ϕ) together with Proposition 4.8 imply that

�f ∈
μ−1∑
j=1

F �∇uj + {
δ1
ϕ(�l ) + g �∇ϕ + ϕ�h | g ∈A, �l, �h ∈A3},

so that { �∇uj | 1 � j � μ−1} generates the F-vector space H1(Aϕ) and it suffices to prove
that �∇u1, . . . , �∇uμ−1 are linearly independent elements of H1(Aϕ). Assume therefore that
there exist elements λj of F (1 � j � μ − 1), �k, �l ∈ A3 and g ∈A such that

μ−1∑
j=1

λj
�∇uj = −�∇(�l · �∇ϕ) + Div(�l ) �∇ϕ + g �∇ϕ + ϕ�h.

Then, as the uj are weight homogeneous, Euler’s formula (13) leads to

μ−1∑
j=1

λj�(uj )uj ∈
〈
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

〉

and the definition of the uj implies λj = 0, for 1 � j � μ − 1.
(3) Finally, we compute the second Poisson homology space of Aϕ . Let �f ∈A3 satis-

fying δ1( �f ) ∈ Iϕ , i.e., there exist l ∈A, �g ∈ A3 such that δ1( �f ) = l �∇ϕ + ϕ �g.

• Let us study the term ϕ �g. We first point out that l �∇ϕ ∈ Z2(A, ϕ), so that ϕ �g = δ1( �f )−
l �∇ϕ ∈ Z2(A, ϕ). Using Proposition 4.8, formula (27) and the fact that δ1

ϕ commutes

with ϕ, we obtain the existence of �h ∈ A3 and cj ∈ F, such that:

ϕ �g ∈ δ1
ϕ

(
ϕ�h +

μ−1∑
j=1

�(uj )=�(ϕ)−|� |

cjuj �e�

)

+
μ−1⊕
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj ⊕
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Cas(A, ϕ)uj
�∇ϕ. (37)

• Next, we consider the term l �∇ϕ. According to Proposition 4.7, there exists �k ∈A3

such that l ∈ δ2
ϕ(�k ) + Cas(A, ϕ) ⊗F Asing. The equality δ2

ϕ(�k ) �∇ϕ = δ1
ϕ(�k × �∇ϕ) and

formula (27) lead to:
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l �∇ϕ ∈ δ1
ϕ

(
�k × �∇ϕ +

μ−1∑
j=0

�(uj ) 	=�(ϕ)−|� |

Cj uj �e�

)

+
μ−1⊕
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj ⊕
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Cas(A, ϕ)uj
�∇ϕ, (38)

where Cj ∈ Cas(A, ϕ).

The equalities (37) and (38) give:

δ1
ϕ

(
�f − ϕ�h −

μ−1∑
j=1

�(uj )=�(ϕ)−|� |

cjuj �e� − �k × �∇ϕ −
μ−1∑
j=0

�(uj ) 	=�(ϕ)−|� |

Cj uj �e�

)

∈
μ−1⊕
j=1

�(uj ) 	=�(ϕ)−|� |

Cas(A, ϕ) �∇uj ⊕
μ−1⊕
j=0

�(uj )=�(ϕ)−|� |

Cas(A, ϕ)uj
�∇ϕ.

Using Proposition 4.8 once more, we obtain

�f − ϕ�h −
μ−1∑
j=1

�(uj )=�(ϕ)−|� |

cjuj �e� − �k × �∇ϕ −
μ−1∑
j=0

�(uj ) 	=�(ϕ)−|� |

Cj uj �e� ∈ Z1(A, ϕ).

It suffices now to use Proposition 4.5 to conclude that

�f ∈
μ−1∑
j=0

Fuj �e� + { �∇ϕ × �k + ϕ�h | �h, �k ∈A3}.
Finally, using Euler’s formula (13) and the definition of the uj , it is easy the see that this
sum is a direct one in A3. Hence the result for H2(Aϕ). �
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