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Abstract

Neutron activation and gamma spectrometry are usable also for the determination of cross-sections of different neutron reactions.

We have studied the cross-section of yttrium (n,xn) threshold reactions using quasi mono-energetic neutron source based on the

reaction on 7Li target at Nuclear Physics Institute of ASCR in Rez. Yttrium (n,xn) threshold reactions are suitable candidates for

fast neutron field measurement by activation detectors. Fast neutron field monitoring is necessary already today at a wide range

of accelerator facilities and will gain on importance in future fast reactors of generation IV, accelerator transmutation systems or

fusion reactors. The knowledge of the cross-sections is crucial for such purpose. Unfortunately, the cross-section is sufficiently

known only for 89Y(n,2n)88Y reaction. For higher orders of reactions there are almost no experimental data. Special attention was

paid to the 89Y(n,3n)87Y reaction. The nuclei are produced, both in the ground state with half-life 79.8 hours and in the isomeric

state with half-life 13.38 hours. The isomer decays mainly through the gamma transition to the ground state, the beta decay of the

excited state is negligible within our accuracy. The cross-sections of both 87Y productions were analyzed.
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1. Introduction and motivation

For future advanced reactor systems same as for fusion reactors and advanced spallation sources of neutrons, the

suitable activation neutron detectors will be necessary. During the experiments of the international collaboration ”En-

ergy and Transmutation of radioactive Waste” it was shown that yttrium is good candidate for monitoring of neutron

fields by activation samples, mainly because of its (n,xn) threshold reactions, whose products are easily identifiable

and with good half-life for γ-spectrometry. Unfortunately the knowledge of cross-sections of these reactions is in-

sufficient. So we decided to measure cross-section of yttrium (n,xn) reactions at different neutron energies. Quasi

mono-energetic (QM) neutron source at Nuclear Physics Institute (NPI) of the Academy of Sciences of the Czech

Republic in Rez (Bem et al., 2007) was used as the neutron source. The source is based no 7Li(p,n)7Be reaction.

This series of measurements is continuation of previous measurements (Vrzalova et al., 2013) made by our group us-

ing NPI source and quasi-monoenergetic neutron source at The Svedberg Laboratory in Uppsala, Sweden (Prokofiev

et al., 2007-05-13).

2. Samples and measurements

The measurements were done using six different proton energies. Positions of QM peak were 17.4, 24.5, 24.8,

27.9, 28.7 and 33.5 MeV. Two of them were almost the same, so there is a good opportunity to check the consistency

of evaluation procedure and systematic uncertainty sources. Two types of samples were used: ”YN” samples which

were made of solid yttrium foil with dimensions 25 × 25 × 0.64 mm3, with weight ∼ 1.8 g and ”YO” samples which

had form of pills made of compressed yttrium powder with dimensions �9 × 1.5 mm3, with weight ∼ 0.6 − 0.8 g.

The samples were fixed on an aluminum holder which was mounted behind the neutron source. Gold samples were

irradiated together with the yttrium samples. The gold samples with much better known cross-sections of neutron

reactions were used as the experimental condition monitors. Figure 1 shows the arrangement of samples and neutron

source. Both pictures were made using VISED (Schwarz and Carter, 1997) program. For each irradiated sample, the

neutron spectrum was calculated by means of MCNPX (X-6, 2002) simulation.

Fig. 1. (a) 3D model of neutron source with samples; (b) visualization of neutron source with samples for MCNPX

2.1. Evaluation of cross-section

The evaluation procedure consists in the calculation of number of produced nuclei Nyield for each isotope. Then

using this value the cross-section is calculated. The Nyield is calculated accordingly to formula

Nyield =
S peak ·Cabs (E)

Iγ · εp (E) ·COIE ·Carea

treal

tlive

eλ·t0

1 − e−λ·treal

λ · tirr

1 − e−λ·tirr
, (1)



116   P. Chudoba et al.  /  Physics Procedia   59  ( 2014 )  114 – 118 

where S peak - peak area, Cabs (E) - self-absorption correction, Iγ - gamma emission probability, εp (E) - detector

efficiency, COIE - true coincidences correction, Carea - square emitter correction, treal - real time of measurement,

tlive - live time of measurement, t0 - cooling time, tirr - irradiation time, λ - decay constant. The last three fractions

represent respectively dead time correction, correction for decay during cooling and measurement and correction for

decay during irradiation. The peak area was determined using Canberra’s Genie 2000 software. The uncertainties of

peak areas were between 0.5% and 3%. The uncertainties brought in by corrections are about 1%, except the detector

efficiency which has uncertainty not worst then 3%. Using formula (1) to get the number of produced nuclei it is

possible to use formula (2) to calculate the cross-section. This formula has the form

σ =
Nyield · S · A · Ba

Nn · NA · m , (2)

where S - foil area, A - molar weight, Ba - beam instability correction, Nn - number of neutrons in peak, NA - Avo-

gadro’s number, m - foil mass. The character of neutron spectra forces to involve one more correction. Since almost

half of the produced neutrons are in low energy background tail, it is necessary to involve background subtraction

correction.

2.2. Background subtraction method

The quasi-monoenergetic neutron source based on 7Li(p,n)7Be reaction has the energy spectrum with contributions

from monoenergetic peak and continuum at lower energies. Figure 2 shows an example of the neutron spectrum with

the cross-sections for (n,2n) and (n,3n) reactions on yttrium. The neutron background is negligible only in case,
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Fig. 2. Neutron spectrum and cross-section for (a) (n,2n) reaction; (b) (n,3n) reaction

when the threshold energy is just under the energy of the peak, for other cases subtraction procedure (Svoboda, 2011)

was involved. This procedure is based on the ratio between the folding of calculated cross-section σ (E) and neutron

spectrum N (E) in the peak energy interval and the same convolution in the whole spectrum interval. Since the neutron

spectrum is binned, the integral operators are replaced by sum operators. The background subtraction correction factor

is defined accordingly to formula (3). Using this coefficient it is possible to correct the number of produced nuclei for

the ones produced by background neutrons accordingly to (4).

Cbgr =

∫

Peak
σ (E) · N (E) dE

∫

S pectrum
σ (E) · N (E) dE

−→
∑

i∈Peak
σi · Ni

∑
i
σi · Ni

(3)

Nyield −→ Nyield,peak = Nyield ·Cbgr (4)
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Cross-sections are calculated using TALYS 1.4 (Koning et al., 2008). The background subtraction procedure is inde-

pendent on the absolute value of cross-section. It is dependent only on the shape of the cross-section. The advantage

of it will be seen in discussion of results. Two uncertainties are brought in the final cross-section by the background

subtraction procedure: 1) uncertainty of the used cross-sections below QM peak, 2) uncertainty of the used neutron

spectra. We estimate the sum of these two uncertainties to be around 10%.

3. Cross-section results

Currently the experimental cross-section data of yttrium (n,xn) reactions are almost nonexistent. Only for (n,2n)

reaction there are enough experimental points in the EXFOR database. For (n,3n) and higher order reactions, there

are almost no experimental data. The data in this work are still preliminary, but they are in good agreement with the

current experimental data in EXFOR. The cross-sections of the reaction 89Y(n,3n)87mY are available only in (Vrzalova

et al., 2013) for neutron energies from 59.0 to 89.3 MeV, in bachelor thesis (Geier, 2011) for neutron energy 32 MeV

and in this contribution for neutron energies from 24.5 to 33.5 MeV. The results together with data from (Geier, 2011)

marked as ”Rez 2011”, TALYS calculations and EXFOR data are shown in figures 3 and 4.
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Fig. 3. Cross-sections for (a) 89Y(n,2n)88Y reaction; (b) 89Y(n,3n)87Y reaction
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Fig. 4. Cross-sections for (a) 89Y(n,3n)87mY reaction; (b) 89Y(n,3n)87Y reaction - total production
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The data shows good agreement with the TALYS. For 89Y(n,3n)87mY reaction there is a shift in absolute value, but

the shape agrees very well with the TALYS calculations.

4. Conclusion

Using the NPI quasi mono-energetic 7Li(p,n)7Be neutron source, six irradiation of yttrium samples with neutron

energies 17.4, 24.5, 24.8, 27.9, 28.7 and 33.5 MeV were made. Obtained cross-sections are in this contribution. The

agreement of obtained 89Y(n,2n)88Y cross-sections and the cross-sections from EXFOR shows good applicability of

the discussed method of background subtraction. The systematic shift between the data ”Rez 2012” and ”Rez 2011”

is most probably due to different method of obtaining the neutron spectra. The difference will be subject of further

analysis. The data are still preliminary, but there should not be significant changes in the results.
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