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Abstract

Forest fires have environmental impacts that create economic problems as well as ecological damage. Developing a means to 
predict the possible size of a fire shortly after it first breaks out has the potential to guide proper resource allocation for improved 
fire control and was the main motivation of this research. In this study, the burned areas resulting from possible forest fires were 
estimated using historical forest fire records which contained parameters like geographical conditions of the existing 
environment, date and time when the fire broke out, meteorological data such as temperature, humidity and wind speed, and the 
type and number of trees in a unit area. The data was from the Department of Forestry in Turkey and contained 7,920 forest fire 
records from 2000 and 2009. The output from the estimation methods implemented in this work predicted the size of the area lost 
due to the fire and the corresponding fire size, i.e. big, medium, or small fire. Some of the estimation methods investigated were 
Multilayer Perceptron (MLP), Radial Basis Function Networks (RBFN), Support Vector Machines (SVM) and fuzzy logic. The 
results of these estimates are presented and compared to similar studies in literature.
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1. Introduction

Forest fires are one of the environmental problems that threaten forests and natural life in the world. In general 
expression, a fire which tends to spread freely and can burn all living and natural components within the forest is 
called forest fire. Every year, an average of 4 million hectares of forest in the world and an average of 550 thousand 
hectares of forest in the Mediterranean belt burns. In particular, Turkey is located in a very sensitive area;
approximately 60% of its forests are in first degree sensitive areas. For the year 2008, 2135 forest fires occurred; as 
a result 29749 hectares of forest were burned. The economic damage caused by these fires was approximately 100 
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million USD [1]. This indicates the necessity of trying to prevent and/or minimize the damage caused by forest fires.
The aim of this study was to estimate the size of a burned area due to a forest fire. However, the models were 

implemented using only meteorological, climate and topography data which are readily available at real-time. Even 
if the fire size were to be estimated roughly, this would provide a tremendous benefit for firefighting units to 
allocate resources, especially in peak seasons where there may be multiple fires happening at the same time.

2. Literature Review

Forest fire prevention and loss estimation systems depend on real time data retrieval from various sources. In 
order to implement these systems, a lot of countries have formed forest fire database and/or decision support
systems. Among the most notable systems, European Forest Fire Information Systems (EFFIS) [2], Canadian Forest 
Fires Danger Rating System-CFFSDRS [3] and National Fire Danger Rating System-NFDRS in USA [4] can be 
counted. These systems use landscape information, topography, real-time weather data, etc. to identify forest fire 
possibility and risk at any given time. CFFSDRS uses subsystems such as Fire Weather Index (FWI) and Fire 
Behavior Prediction (FBP).

There are several studies performed on forest fire prediction systems using forest fire databases based on 
computational intelligence models. Brillinger et. al. [5] created a statistical model using historical data in order to 
predict the possibility of a forest fire for a given particular topography and elevation. The system was based on 
previous seasonal fire history in that region without using weather conditions. Jaiswal et. al. [6] created a 
Geographical Information System (GIS) based model calculating forest fire risk using climate, landscape and 
topographic data. Iliadis [7] created a decision support system using fuzzy logic and algebra. He predicted the risky 
forest areas in Greece and out of 20, he correctly spotted 12 of them.  In one application, association rule mining 
along with clustering was used for identifying the risky regions for forest fires and burned area estimation for 
existing forest fires [8]. Cheng and Wang used spatio-temporal data mining techniques and recurrent neural 
networks to estimate the burned area in forest fires [9]. Cortez and Morais used multivariate regression, decision 
trees, random forest, artificial neural networks and SVM to estimate forest fire loss and obtained the best results 
through SVM [10]. The success rate was %46 for estimation errors of less than 1 hectare. In another study [11], 
forest fire prediction was implemented with neural networks and SVM using only humidity and precipitation. In this 
study, we used a different novel approach, using output clusters for different burned area sizes.

3. Forest Fire Data

Forest fires are caused by several factors. Weather conditions such as temperature, relative humidity, wind are 
important elements on the spread property of a forest fire. Relative humidity, which is related to combustible 
content’s moisture, is at its highest degree at the early morning, but by the midday it gets its minimum value. When 
it is less than 10%, it becomes very dangerous. Evaporation increases with increasing temperature, and increased 
evaporation reduces humidity. In general, fire risk starts at 77 °F, and it increases with increasing temperature. 
Another weather factor is wind, which has destructive effects on the branches of flammable materials, makes the fire 
spread quickly and negatively affects firefighting. In terms of forest fires, risk starts at a wind speed of 15 km/hr.

Land conditions are also influential on forest fires. Aspect which shows the degree of sunlight on hills is 
important. Also, high tendency prevents the spread of fire. In addition, fire risk reduces with increasing altitude. 
80% of forest fires in Turkey have been at an altitude of 0-400 meters.

Season and hour, when the forest fires occur in a day, have considerable effects on the behavior of fires. Most 
forest fires occur especially from spring to autumn. Moisture content of air is related to the hour of the day, since
sun light and evaporation directly influences it. Furthermore, type and number of trees in unit area determine 
sensitivity of the forest in a possible fire. Some trees tend to burn very quickly when a fire occurs, in contrast some 
are resistant. Generally the trees which have wide leaves cause the fire becoming bigger, whereas pin leaves make 
the fire spread slowly. If the tree distribution in an area is condensed, enlargement is easy, fire can spread very 
quickly and this makes prevention of fires difficult, so the number of trees in a unit area is also an important factor.

Our proposed solution includes nine input parameters, relative humidity, wind speed, temperature, aspect, 
tendency, season, hour, tree type, number of trees in unit area, and one output parameter, burned area due to the fire. 

The data used in the experiments was collected from 2000 to 2009 and included 7920 forest fires. A lot of 
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preprocessing was performed on the data due to inconsistencies, different metrics used by different stations, manual 
data entry errors, etc. Nonnumeric values were enumerated; values in each column were normalized to [0-1].
Euclidean distance was used in distance calculations between different points in the data set. Figure 1 illustrates the 
distribution of the forest fires based on their amount of burned areas. Figure 1 (note that the x-axis is not linear, and 
y- axis values are log transformed) indicates most of the fires (78%) were less than 1 hectares in size.

Fig. 1. The distribution of the burned area values in the forest fire data set

4. Methodology

MLP [12], RBFN [12] and SVM [13] were implemented in this study for forest fire burned area estimation.
Several different input-output configurations were implemented. Burned area values were clustered using k-means 
and different numbers of output clusters were tested. Using k-means, cluster centroids were also calculated. For each 
network model, the numbers of neurons in the output layer were determined by the number of clusters. For the 
training and the cross validation (CV) set, the output was set as a fuzzy data vector in such a way that one data could 
be part of 2 clusters with a certain membership degree. The fuzzification of the output was represented in Figure 2. 
For example, if the burned area of a particular forest fire was 150 hectares, then that fire would be represented as a 
small fire with a membership degree of (150–63.86) / (273.05–63.86) = 0.41, and as a medium fire with a
membership degree of (273.05–150) / (273.05–63.86) = 0.59, hence the output vector would be [0 0.41 0.59 0 0].

Fig. 2. Output cluster values for 5 cluster case

During the experiments, it was observed that due to the uneven distribution of burned areas of the forest fires, it 
was very difficult to predict the burned area in hectares, since almost %80 of the data represented fires that were less 
than 1 hectares, but there were also a handful of forest fires that had more than 10000 hectares in burned area. As a 
result, the output values were fuzzified and different number of clusters (2,3 and 5) were used in the output. The 
results indicate that trying to identify the clusters (small fire, medium fire, big fire, etc.) were a better approach than 
trying to predict the actual burned area. The output burned area clusters were tabulated in Table 1 for 5 cluster case. 
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Table 1. Output cluster values for 5 different sizes of forest fires

Cluster 
No

Cluster Description Cluster center (in hectares) Number of data points 
in cluster

Number of test data 
in cluster

1 Very small fire 1.32 7825 1565
2 Small fire 63.86 76 15
3 Medium fire 273.05 14 3
4 Big fire 773.17 3 1
5 Very big fire 5661 2 1

The data set was divided into 3 sections. 60% of the data was used for training purposes, 20% was used for CV
and the remaining 20% of the data was reserved for testing. Table 1 indicates the numbers of data points in the 
clusters were not evenly distributed. Training with such a distribution would prevent the models to learn all clusters 
properly. So, the amount of data points in each cluster were normalized by duplicating the data in the misrepresented 
clusters, hence each cluster had similar amount of data. The same data distribution was used for training, CV and 
testing.  But, for the 5 cluster case, “Big Fire” and “Very Big Fire” cases only had 3 and 2 data points. As a result,
for “Big Fire”, 1 data point (before duplication) was assigned for training, 1 data point was spared for CV and 1 data 
point was used in testing;  in a similar fashion  for “Very Big Fire”, 1 data point was assigned for training and 1 data 
point was used in testing. So, the data from “Very Big Data” was not represented in the CV data set.

In a separate model, the training input data was clustered into 350 different clusters using k-means algorithm. 
Then, for each cluster, the mean output value, which is the burned area in hectares, was calculated. Then, each test 
data vector was matched against the clusters to identify which cluster the data belonged in. Finally, the test data 
output was compared to the cluster center output (mean output value of the cluster) and performance was measured.

5. Results and Discussions

The results from four of several different fire estimation models are described herein. For the models whose 
performances were had less than 50 % True, the results are not explicitly reported. Direct estimation of the burned 
area in hectares, log estimation of the burned area, log estimation of 5 clusters and 3 clusters cases were among the 
unsuccessful models investigated. Though natural logarithm transformed 2 clusters output case were relatively 
successful, those results are not explicitly stated here. In this paper, the best results obtained from 5 clusters, 3 
clusters and 2 clusters outputs are presented.

In Table 2 the performance results of MLP for 5 clusters at the output are tabulated. RBFN results are not 
presented here due to their poor performance. MLP success was 53.02% when all the clusters were treated equally.

Table 2. MLP performance for 5 clusters at the output

Cluster No True False Total Data points in Cluster True % False %
1 1228 337 1565 78.45 21.55
2 8 7 15 53.33 46.67
3 1 2 3 33.33 66.67
4 0 1 1 0.00 100.00
5 1 0 1 100.00 0.00

Total data points 1238 347 Average Percent Success Rate (%) when all 
clusters have equal weight 53.02 46.98

Percent success (%) 78.11 21.89

In another model, 3 output clusters were used. The results are tabulated in Table 3. The MLP overall performance 
was improved to 62.89% compared to 53.02% for the 5 cluster case.

Table 3. MLP performance for 3 clusters at the output

Cluster No True False Total Data points in Cluster True % False %
1 1402 179 1581 88.68 11.32
2 2 0 2 100.00 0.00
3 0 1 1 0.00 100.00

Total data points 1404 180 Average Percent Success Rate (%) when all 
clusters have equal weight

62.89 37.11
Percent success (%) 88.63 11.37
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In one of the previous studies [11], models only using 2 parameters (humidity and wind speed) were developed 
and the results were provided. In order to compare the results obtained in this study, same parameters were used in 
another developed model. The results from the reduced parameter MLP model are tabulated in Table 4.

Table 4. MLP performance for the reduced input (2 inputs) and 3 clusters at the output model

Cluster No True False Total Data points in Cluster True % False %
1 1532 49 1581 96.90 3.10
2 0 2 2 0.00 100.00
3 1 0 1 100.00 0.00

Total data points 1533 51 Average Percent Success Rate (%) when all 
clusters have equal weight 65.63 34.37

Percent success (%) 96.78 3.22

The results from Table 4 indicate better overall outcome (65.63%) was observed by using the reduced parameter 
model, however again, no improvement was visible with the RBFN model (not presented here).

In another developed model the data was clustered to only 2 clusters at the output (small and big fire). This time, 
SVM was also included in the developed models. Instead of directly using the burned area in hectares, natural 
logarithm (ln) of the output was used by applying ln(x+1) to the output. These new 2 cluster models were developed 
with MLP, RBFN and SVM and the best results were obtained with SVM. These results are tabulated in Table 5.

Table 5. SVM performance for the ( ln x + 1 ) transformed output with 2 cluster model

Cluster No True False Total Data points in Cluster True % False %
1 1077 203 1280 84.14 15.86
2 130 174 304 42.76 57.24

Total data points 1207 377 Average Percent Success Rate (%) when all 
clusters have equal weight 63.45 36.55

Percent success (%) 76.20 23.80

Applying natural logarithm transformation to the forest fire data did not improve the performance of the 
estimation process. However, the distributions of the data to different clusters were positively affected. The models 
were also analyzed using the error metrics based on the deviation from target for the actual burned area. For this 
purpose, RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MAPE (Mean Absolute Percent Error) 
values are calculated and the model results are presented in Table 6.

Table 6. Performance comparison of models used in the study

Estimation 
model

Model details RMSE MAE MAPE 
(%)

MLP 3 cluster, 2 input 15.85 4.11 51
RBFN 5 cluster 18.35 4.05 54
SVM 2 cluster with ln transformed output 7.33 3.36 69

Table 6 indicates that the burned area estimation had a high deviation from target, (more than 50% MAPE). One 
explanation for this is the large number of very small fires and a handful of very big fires within the data set
resulting in a very high overall MAPE, since almost %80 of the fires resulted in less than 1 hectare of burned area;
for such fires, even a 1 hectare deviation would result in more than %100 error. At the same time, RMSE was also 
recorded relatively high compared to the MAE due to the huge error deviations in big fires. The contribution of the 
squared error from big fires resulted in high RMSE, since RMSE is more sensitive to outlier data and large errors.

When these results were compared to the previous studies performed in the literature, it was observed that the 
current study fared well compared with the other models in literature, even though there were not many studies 
performed for burned area estimation.  Also it should be noted that the estimation results in these types of studies are 
very dependent on the quality of the data set. In [7] 60% was achieved for risky area identification and in [10] good 
overall estimation was achieved with the best MAE performance of 2.85 hectares and best RMSE was 12.71. In 
[11], a different analysis was implemented with the detection of a fire or no fire day with over 90% accuracy. 
However, they did not perform burned area estimation. The best overall estimation results obtained in this study 
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(66%) were obtained by the implementation of MLP model to 3 output clusters (small, medium and big fire) and 
MAE of 3.36 hectares and RMSE of 7.33 hectares using SVM model with 2 clusters at the output (small or big fire). 

The results of the last model where the input vectors were clustered into 350 different clusters and the 
corresponding mean output values were calculated for each cluster were also satisfactory. In [10], the percent of test 
data points within 1 hectare of error was 46%, in this study 53% was achieved for less than 1 hectares of error. 
When the tolerance was increased to 2 hectares, the model in [10] achieved 61% success, whereas 72% of the data 
points in this study were within 2 hectares of the output mean value of the clusters. 

6. Conclusions

In this study, the burned forest area during a forest fire was estimated using different models. Trying to forecast 
the size of a staring fire is especially important for firefighters in order to figure out how much manpower and 
resources should be allocated in each fire. Since the environmental damage, ecological effects and financial loss in 
these forest fires might have a considerable impact on a country or region, any level of success in a rough estimate 
for the forest fire can be crucial in proper resource allocation and scheduling for extinguishing these fires. Several 
different estimation models were prepared and the most successful ones are presented in this study. The results 
indicate that in some models the performances in the estimation process were above %60, beating most of the 
studies implemented in literature. The best model turned out to be an MLP model using only two inputs (humidity 
and wind speed) and three clusters (small, medium and big fire) in the output with more than %65 success rate.

Future works may include probabilistic models that can detect the contingency of the start of a possible forest fire 
under certain conditions. Such a model can be combined with the models developed in this study to provide a
complete system where risky conditions for a big fire can be closely monitored, also live satellite or camera views 
can be included in order to provide visual features that can increase the performance of the overall model.
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